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ABSTRACT

The rapid accumulation of cancer-related data owing to high-throughput 
technologies has provided unprecedented choices to understand the progression of 
cancer and discover functional networks in multiple cancers. Establishment of co-
expression networks will help us to discover the systemic properties of carcinogenesis 
features and regulatory mechanisms of multiple cancers. Here, we proposed a 
computational workflow to identify differentially co-expressed gene modules across 
8 cancer types by using combined gene differential expression analysis methods and 
a higher-order generalized singular value decomposition. Four co-expression modules 
were identified; and oncogenes and tumor suppressors were significantly enriched in 
these modules. Functional enrichment analysis demonstrated the significantly enriched 
pathways in these modules, including ECM-receptor interaction, focal adhesion and 
PI3K-Akt signaling pathway. The top-ranked miRNAs (mir-199, mir-29, mir-200) and 
transcription factors (FOXO4, E2A, NFAT, and MAZ) were identified, which play an 
important role in deregulating cellular energetics; and regulating angiogenesis and 
cancer immune system. The clinical significance of the co-expressed gene clusters was 
assessed by evaluating their predictability of cancer patients’ survival. The predictive 
power of different clusters and subclusters was demonstrated. Our results will be 
valuable in cancer-related gene function annotation and for the evaluation of cancer 
patients’ prognosis.
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INTRODUCTION

The rapid accumulation of cancer-related data owing 
to high-throughput technologies has provided unprecedented 
choices to understand the progression of cancer and discover 
functional networks in multiple cancers. The vast majority 
of cancer-related studies have focused on a single cancer, 
but always ignored the common traits across different cancer 
types. Different cancers usually share common hallmarks, 
such as evading growth suppressors, resisting cell death and 
inducing angiogenesis. Moreover, the methods based on 
biological networks including gene co-expression networks, 
metabolic networks, protein-protein interaction networks and 
genetic regulatory networks can infer regulatory mechanisms 
related to biological processes. The network-based methods 
to search biological processes related to cancer hallmarks 
will help us in identifying the characterizations of tumor 
biology. Few studies focus on genome-scale networks across 
different cancer types. Thus, the network analysis may help 
us to unveil common traits involved in multiple cancers.

The majority of the network-based methods are 
performed to identify distinct patterns within one cancer 
[1, 2]. Compared with only analyzing one cancer, several 
methods have been used to identify common patterns 
shared by two or more cancers. Zhang et al. used a network 
mining algorithm to build tightly connected gene co-
expression networks from the microarray datasets spanning 
33 cancer types. Their results indicate that the commonly 
recognized characteristics of cancers are supported by 
highly coordinated transcriptomic activities [3]. Yang et al. 
did the weighted correlation network analysis (WGCNA) 
to highlight common properties of prognostic genes in 
four cancer types [4]. Li et al. described a network method 
to analyze the driver mutation by integrating both cancer 
genomes and transcriptomes and identified a significant 
correlation of genotype to phenotype in six solid tumors [5].

Several computationally efficient methods have 
been developed for construction of the networks, such 
as Generalized Singular Value Decomposition (GSVD) 
[6] and higher-order GSVD (HO-GSVD) [7]. GSVD 
is used for identifying common structures across two 
conditions [6]. The analysis based on HO-GSVD can 
extract common gene modules in two or more conditions 
[7–9]. Ponnapalli et al. first proposed HO-GSVD to 
analyze common structures shared by multiple datasets 
[7]. Xiao et al. developed a new HO-GSVD method for 
analyzing common and tissue-specific modules from 
seven rat tissues and four human brain regions [8]. Wang 
et al. applied a simple mathematical framework of HO-
GSVD for analysis of multiple tissues [9]. These studies 
indicate that HO-GSVD is a valuable method in common 
gene pattern discovery among different tissues. Motivated 
by this approach, we applied HO-GSVD to pan-cancer 
analysis in this study. To our best of knowledge, this 
approach has not been used for pan-cancer research.

Differential gene expression analysis has been 
widely used for identifying differentially expressed 

genes between conditions. The commonly used methods 
include edgeR [10], limma [11], SAMseq [12] and 
DESeq [13]. Most studies only use one method to analyze 
gene expression patterns. Soneson et al. compared the 
commonly used methods for differential expression 
analysis and found that no single method is optimal under 
all circumstances and the method of choice in a particular 
situation depends on the experimental conditions [14].

In this study, we applied the above four methods 
for differential expression analysis to get common genes 
in eight types of cancers through a three-step procedure. 
First, the differentially expressed gene set shared by four 
caner types was selected using one method. Second, the 
commonly expressed gene set selected by four methods 
was set as a candidate gene set. We then converted 
candidate gene IDs to the corresponding DAVID gene IDs 
and removed the non-mapped genes. The gene expression 
matrices of multiple cancers were decomposed by the HO-
GSVD method for identifying the common modules across 
different cancers. We chose the vectors with top eigenvalues 
in the right basis matrix as candidates of co-expression 
genes. The co-expression genes were selected based on the 
assumption that a small proportion of genes in candidate 
vectors is highly similar. We used the DAVID tools to 
validate the functional significance of the modules. The 
gene modules involved in the significant pathways were 
retained for further analysis. Multiple types of enrichment 
analysis were performed, including gene ontology terms, 
KEGG pathways, cell type enrichment, disease association 
and miRNA and transcription factor enrichment analysis 
[15–17]. The functional interaction networks were 
constructed for the identified modules. The survival analysis 
was then applied for the prognostic properties of modules 
across cancers. By following the procedure shows in the 
Figure 1, we found that the co-expression gene modules are 
enriched with oncogenes and tumor suppressors, which play 
an important regulatory role in multiple cancers. The genes 
in the main- and sub-modules are closely associated with 
the prognosis of multiple cancers.

RESULTS

Identifying co-expression gene modules

We analyzed differentially expressed genes using the 
raw count data and constructed co-expression networks 
using the FPKM count data. 5229 differentially expressed 
genes were detected in breast invasive carcinoma (BRCA), 
kidney renal clear cell carcinoma (KIRC), prostate 
adenocarcinoma (PRAD), thyroid carcinoma (THCA), 
lung adenocarcinoma (LUAD), bladder urothelial 
carcinoma (BLCA), colon adenocarcinoma (COAD) and 
stomach adenocarcinoma (STAD) using limma, edgeR, 
DESeq, and SAMseq methods (Figure 2A). 4973 genes 
were used for construction of co-expression networks 
and pathway enrichment analysis. Five clusters with 
significant pathways were identified (Supplementary 
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Figure 1: Overview of the workflow. There are three main steps including gene differential expression analysis, identification of co-
expression modules and significant enrichment analysis.

Figure 2: Identification of differentially expressed genes and co-expression modules. (A) Venn diagram showing the overlap 
between differentially expressed genes selected by the four methods. (B) Venn diagram showing the overlap between the genes in the four 
co-expression modules.
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Table 1). The significant pathways enriched in the smallest 
cluster 10 were almost identical to the pathways in the 
cluster 5. Then five clusters except cluster 10 were kept for 
further analysis. The highly specific genes were included 
in each cluster. But there were a few genes shared by these 
clusters (Figure 2B). The results showed that these co-
expression modules with specific genes may share similar 
biological information. To comprehensively investigate the 
characterization of the identified co-expression modules, 
we applied multiple types of enrichment analysis.

We applied functional enrichment analysis to identify 
the KEGG pathways (Figure 3A–3D) and Gene Ontology 
terms (Supplementary Table 2) in the four clusters. For 
cluster 5, there are only six significant KEGG pathways as 
shown in the Figure 3B. ECM-receptor interaction, focal 
adhesion and PI3K-Akt signaling pathways were presented 
in the cluster 8 and cluster 5, consistent with the previous 
results obtained by pan-cancer analysis [18]. Moreover, these 
pathways are related to the deregulation of cellular energetics 
[19]. Abnormal ECM affects cancer progression by directly 
promoting cellular transformation and metastasis [20]. Focal 

Figure 3: Enrichment of co-expression modules. The four bar charts display the pathway enrichment results of cluster 2 (A), cluster 
5 (B), cluster 7 (C) and cluster 8 (D). The pathway shared by at least two cluster are colored with light green. The cell-type enrichment 
analysis of cluster 8 (E) and other clusters (Supplementary Figure 2) is shown as –log10 (Benjamini-Hochberg corrected p-value). The 
overlap of the members in the top 5-ranked miRNA families is shown as the Venn diagram (F).
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adhesion kinase, a protein tyrosine kinase, regulates cellular 
adhesion, motility, proliferation and survival in cancer cells, 
thereby promoting cancer progression and metastasis [21]. 
PI3K-Akt signaling pathway has been reported as one of the 
most important pathways in cancer metabolism and growth 
[22]. Figure 3C and Figure 3D show the enriched pathways 
in the cluster 7 and 8, respectively. Only focal adhesion was 
shared by the cluster 2, 5 and 8 (Figure 3A, 3B, 3D). These 
results indicated that the enriched pathways in the clusters 
are associated with tumorigenesis. To further evaluate 
whether the functional features in these clusters are also 
important in other cancers, we did analysis for another four 
cancers, including uterine corpus endometrial carcinoma 
(UCEC), head and neck squamous cell carcinoma (HNSC), 
rectum adenocarcinoma (READ) and liver hepatocellular 
carcinoma (LIHC) (Supplementary Figure 1). 8619 genes 
were identified. We converted the candidate gene IDs 
to the corresponding DAVID gene IDs. If two IDs were 
corresponding to the same gene, we removed the redundant 
one. Therefore, 490 redundant genes were removed and 8129 
genes used for further analysis. We got two clusters with 
significant pathways (Supplementary Table 3) using HO-
GSVD approach. We found that cluster 6 in the four cancers 
was highly enriched in focal adhesion ( . )p6 5 7 11= −e , 
ECM-receptor interaction ( . )p6 2 6 10= −e  and PI3K-Akt 
signaling ( . )p6 2 7 5= −e  pathways. For the eight cancers, 
these clusters partially shared some KEGG pathways. We 
observed some similar patterns in the following results of the 
GO biological process (BP) enrichment analysis. The top-
ranked five enriched BPs in the cluster 5 included collagen 
fibril organization ( . )p5 3 5 6= −e , extracellular matrix 
organization ( . )p5 4 5 6= −e , collagen catabolic process 
( . )p5 4 9 5= −e , skeletal system development ( . )p5 3 2 3= −e  
and cell adhesion ( . )p5 1 3 2= −e . The top three enriched 
BPs in the cluster 8 were the same as those in the cluster 5. 
It was reported that the collagen fibrils reorganization within 
an extracellular matrix facilitated tumorigenesis and invasion 
[23]. We found that the BPs in the cluster 7 are mainly 
involved in T cell and immune response [24]. The highly 
enriched BPs in the cluster 2 are related to angiogenesis. 
In addition to cluster 7, these commonly enriched BPs 
are associated with extracellular matrix organization and 
cell adhesion. Similarity to the KEGG pathways, the 
corresponding enriched BPs in these clusters also play an 
important role in cancers. As expected, all the above results 
indicated that the identified clusters with biological functions 
related to cellular energetics, angiogenesis and anti-cancer 
immunity are important to the cancer development.

To further explore the cell specificity and disease 
association of the differentially expressed genes, we 
analyzed cell type enrichment (Cten) and disease 
association for the genes in four clusters (Supplementary 
Tables 4, 5). Enriched cell types in these clusters were 
closely associated with all eight cancer types, including 
BRCA, KIRC, PRAD, THCA, LUAD, BLCA, COAD, 
STAD. The top three cell types for the cluster 8 included 
cardiac myocytes (score as –log10 (Benjamini-Hochberg 

corrected p-value), score = 57), smooth muscle (score = 
55) and adipocyte (score = 38) (Figure 3E). Adipocytes 
can support tumorigenesis by secreting adipokines and 
producing energy [25]. The immune cells in the cluster 
7 and cluster 8 included CD14+ Monocytes, CD33+ 
Myeloid and BDCA4+ Dentritic Cells. CD14+ Monocytes 
(score = 4.88 in the cluster 7 and score = 7.81 in cluster 
8) has been reported to affect dendritic cell differentiation 
and T-cell function in cancer patients [26]. These results 
indicated that the enriched cell types in the clusters 
were associated with tumor progression. Moreover, 
disease association analysis suggested that the genes in 
the four clusters were mainly enriched in cancer-related 
diseases with high significance (Supplementary Table 5, 
p ≤ −8 39 8. e ). All the above results further suggested that 
the four clusters which play important roles in biological 
processes related to tumor progression and immunity are 
associated with multiple cancers.

To further demonstrate the potential regulatory 
mechanisms, we also analyzed miRNAs and transcription 
factors using the WebGestalt tool (Supplementary Tables 6, 
7). Three of the top ranked miRNA families were identical 
in the cluster 2, 5 and 8, including mir-199, mir-29 and 
mir-200 (Figure 3F). Mir-199a was only presented in the 
cluster 2 and cluster 5 ( . , . )p p2 50 004 0 0035= = . Mir-
29a, mir-29b and mir-29c ( . , . )p p5 80 0009 5 88 5= = −e  
in the cluster 5 and 8 are the mature members of the mir-
29 family. Three of the main mir-200 family members 
( . , . )p p2 80 0004 5 88 5= = −e  in the cluster 2 and 8 have 
been reported to associate with tumor progression [27, 28]. 
The let-7 family of miRNAs ( . )p5 0 0009=  in the cluster 5 
is involved in tumorigenesis [29]. We also found that some 
clusters were high significantly enriched with transcription 
factors. FOXO4 gene was presented in the cluster 2, 5 
and 7 ( . , . , . )p p p2 5 72 82 9 4 29 5 0 0027= − = − =e e  
[30]. The clusters 2, 5 and 8 shared three 
transcription factors, including E2A 
( . , . , . ),p p p2 5 83 66 8 1 06 9 7 38 15= − = − = −e e e  NFAT 
( . , . , . ),p p p2 5 88 79 11 2 38 5 3 51 17= − = − = −e e e  and 
MAZ ( . , . , . ).p p p2 5 82 47 8 2 40 6 2 01 15= − = − = −e e e

E2A, FOXO4, NFAT and MAZ play important roles in 
tumor cell growth and metastasis in multiple cancers, such 
as colorectal cancer, breast cancer, prostate cancer and 
lung cancer [31–33]. Taken together, these results revealed 
that common regulators shared by the four clusters may 
cooperate with each other to regulate the biological 
processes of multiple cancers.

Functional network analysis of individual co-
expression modules

To further analyze the characterization of single 
identified modules, we constructed the functional 
interaction networks. These networks were built based 
on human PPIs, fly PPIs, worm PPIs, yeast PPIs, domain 
interaction, Lee's Gene Expression, Prieto's Gene 
Expression, GO BP sharing and PPIs from GeneWays 
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[34]. We found that the corresponding proportions of the 
genes linked to the functional interaction (FI) networks 
in the four modules were 80.63%, 83.78%, 76.60% and 
87.20%, respectively (Supplementary Table 1). This result 
indicated that the four clusters were highly conserved at 
the functional protein level. According to the results 
from the above subsections, all clusters were closely 
associated with the eight cancers. Among of them, most 
of the enriched pathways in the cluster 5 were consistent 
with the previous pan-cancer outcomes [18], therefore, we 
did further functional analysis of the cluster 5-based FI 
network as shown in the Figure 4.

The FI network was clustered into small 
modules and eight modules were annotated as M1~M8 
(Supplementary Table 8). We performed the enrichment 
analysis for GO BP and found that some high significantly 
BPs (FDR < 0.001) were consistent with the above results. 
Extracellular matrix disassembly, collagen catabolic 
process, extracellular matrix organization, collagen 
fibril organization, skeletal system development and cell 
adhesion were enriched in the M2. The BPs in the M7 
are associated with the negative regulation of extracellular 
matrix disassembly and endothelial cell migration. 
Endothelial cell migration has been reported to contribute 

the entry of cancer cells into the circulatory system [35]. 
There were two BPs in the M5, including O-glycan 
processing and protein O-linked glycosylation. It has 
been reported that alterations in glycosylation impacted 
cell cycle and may support neoplastic progression [36]. 
Interestingly, M1 had only one enriched pathway, that is, 
the notch signaling pathway. Notch signaling pathway 
plays an important in regulating stem cell self-renewal and 
the pathogenesis of breast cancer [37]. The most enriched 
pathway in the M2 was ECM-receptor interaction. 
Phenylalanine metabolism was the top enriched pathway 
in the M3. Nicotinic acetylcholine receptor signaling 
pathway in M4 and amino acid metabolism pathway in 
M6 are associated with cancer growth [38–40]. These 
results indicated that distinct BPs enriched in different 
sub-modules contribute to the development of cancers.

We then defined an individual gene in the modules 
with at least ten neighbors as one hub gene, and obtained 
20 hub genes, including 15 linker genes and 5 module 
genes. Over half of the hub genes were enriched in the 
M2, including FN1, COL1A1, COL1A2, COL3A1 and 
COL6A3. FN1 is a FDA-approved drug target gene 
against cancer [41, 42]. COL1A1, COL1A2, COL3A1 and 
COL6A3 are members of the collagen family. These five 

Figure 4: Network visualization of the cluster 5. The functional interaction network consists of eight sub-modules marked with 
different colors. The genes and link genes in the modules are represented as circles and diamonds, respectively.



Oncotarget112934www.impactjournals.com/oncotarget

genes were enriched in pathways such as ECM-receptor 
interaction, protein digestion and absorption, integrin 
signaling pathway and PI3K-Akt signaling pathway. 
DES, THBS2, PLAU and POSTN in the M2 have been 
associated with multiple cancers [43–50]. DES encodes 
a muscle-specific class III intermediate filament and 
is related with colorectal cancer, breast cancer, prostate 
cancer, kidney cancer and lung cancer [43–46]. As the 
member of THBS family, THBS2 plays an important role 

in cancer progression [47]. PLAU is involved in cancer 
cell migration [48]. The protein encoded by POSTN has 
been reported to function in cancer stem cell [49, 50].

Survival analysis of gene co-expression modules

To further test the clinical significance of the co-
expressed gene clusters, we did survival analysis for the 
eight types of cancers. The patients were clustered into 

Figure 5: Survival analysis of gene co-expression modules for 8 types of cancers. (A) Survival analysis of the cluster 5 
using Kaplan-Meier curves. The calculation of the log-rank p-values is based on the split of patient groups using non-negative matrix 
factorization. The number of patients in each group is also labeled in each panel. (B) The distributions of prognostic genes for the eight 
cancer types in each cluster. The y-axis represents the gene proportion of each cancer in the corresponding cluster. The eight cancers are 
marked with different colors. (C) The differential significance distributions of nine sub-modules for each cancer. The y-axis represents the 
log-rank p-value and the x-axis is annotated with the sub-modules grouped by the network clustering. The solid line represents –log2(0.05).
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different groups using non-negative matrix factorization 
(NMF). The cluster 2 and cluster 5 were able to predict 
patient survival of various cancers, including KIRC, 
THCA, LUAD, BLCA, COAD and STAD (Figure 5A, 
Supplementary Figure 3). The cluster 7 and cluster 8 
could predict survival of LUAD, KIRC and BLCA cancer 
patients (Supplementary Figures 4, 5). The cox models 
were used to identify prognostic genes in various cancers. 
The distinct proportions of prognostic genes in the eight 
cancers were observed in the four clusters (Figure 5B). 
Among all of the clusters, KIRC contains the largest 
proportion of prognostic genes. We also carried out the 
survival analysis on the eight sub-modules in the cluster 5, 
as well as the module 9 containing the genes that weren't 
connected to the networks in the cluster 5 (Supplementary 
Tables 8, 9). The patients were grouped using the k-means 
method when the number of genes in the sub-module 
was one. In the survival analysis of individual sub-
modules, all sub-modules showed statistically significant 
differences in survival probabilities (Figure 5C). M1, 
M2, M4 and M9 were significantly associated with 
the patients’ survival in at least three cancers. But only 
one sub-module showed a significant difference in the 
survival analysis of BRCA and none of the sub-modules 
was significant in PRAD. Analysis of STAD showed that 
individual sub-modules couldn’t predict these patients’ 
survival but the corresponding cluster 5 had the predictive 
power. The results of the sub-modules in the survival 
analysis were mostly consistent with the cluster 5. All 
these results revealed that the sub-modules associated with 
known biological processes cooperate with each other to 
contribute to the prognosis in multiple cancers.

In order to further validate the prognosis of cluster 
5 in multiple cancers, we performed survival analysis on 
HNSC, READ, LIHC and UCEC. The results showed that 
the cluster 5 was able to predict patient survival in HNSC, 
LIHC and UCEC (Figure 6A), but not in READ. The 
corresponding sub-modules obtained from the functional 
network analysis had statistically significant differences 
in survival analysis of the four cancers (Figure 6B). M2 
had predictive power for patient survival in three cancers. 
We also applied survival analysis on other eight cancers, 
including glioblastoma multiforme (GBM), brain lower 
grade glioma (LGG), ovarian serous cystadenocarcinoma 
(OV), skin cutaneous melanoma (SKCM), adrenocortical 
carcinoma (ACC), cervical squamous cell carcinoma 
and endocervical adenocarcinoma (CESC), kidney renal 
papillary cell carcinoma (KIRP) and lung squamous cell 
carcinoma (LUSC). As shown in the Supplementary Figure 
6, the cluster 5 can predict patients’ survival of LGG, 
SKCM, ACC and KIRP cancers. These results confirmed 
the prognostic ability of cluster 5 in 7 cancer types. We 
also applied survival analysis on the above twelve cancer 
types for the cluster 2, 7 and 8. All of the three clusters can 
predict patients’ survival of LIHC, UCEC, LGG, SKCM, 
ACC and KIRP cancers. Additionally, cluster 2 can predict 
the survival of HNSC and CESC cancer patients.

DISCUSSION

In this study, we applied four methods to analyze 
the data and obtained 4973 differentially expressed 
genes shared by the eight cancers. We constructed the 
co-expression network using HO-GSVD and identified 

Figure 6: Survival analysis of gene co-expression modules for HNSC, LIHC, READ and UCEC. (A) Survival analysis of 
the cluster 5 using Kaplan-Meier curves for HNSC, LIHC, READ and UCEC. (B) The differential significance distributions of nine sub-
modules for each cancer.
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modules and associated pathways. Some of these pathways 
have been reported in the pan-cancer analysis [18], such 
as focal adhesion, PI3K-Akt signaling pathway, ECM-
receptor interaction and Systemic lupus erythematosus. 
We constructed the functional interaction networks for 
further analyzing individual co-expression modules. These 
sub-modules were enriched with different pathways and 
cooperated with each other across cancers. We found that 
these modules are associated with patients’ survival in 
multiple cancers. In addition, the individual sub-modules 
in various cancers had different prognostic capability.

Gene differential expression analysis is a commonly 
used method for identifying differentially expressed genes 
without considering the relationship between genes. There is 
no consensus on the best method for differential expression 
analysis [14, 51]. Limma, edgeR, DESeq, and SAMseq 
have been commonly used for gene differential expression 
analysis. Each of them has advantages and disadvantages. 
The limma method, based on linear models and the voom 
transformation, is developed for analyzing RNA-seq data 
[52]. The negative binomial model and empirical Bayes 
methods in edgeR are used to detect differential gene 
expression, and then the gene-wise dispersions is estimated 
by conditional maximum likelihood [10]. DESeq models 
the count data using the negative binomial distribution and 
estimates the mean-variance relationship of each gene. In 
contrast to edgeR, it allows a widely data-driven parameter 
in the statistical test [13]. SAMseq, a non-parametric 
method, uses the Wilcoxon rank statistic and resampling 
procedure to identify differential expressed genes [12]. 
edgeR becomes liberal for small sample sizes with default 
settings to a certain extent and keeps a better balance 
between speed and accuracy than DESeq [14, 51]. Limma 
and DESeq are described as the safest choices in some cases 
in terms of the consistency of differentially expressed genes 
when analyzing the complete data. SAMseq can identify a 
large number of genes that are usually not detected with the 
other methods [53]. The combination of these methods can 
compensate for the shortcomings of a single method. The 
results of differential expression analysis obtained using 
these four methods are robust. We chose the co-expression 
networks to analysis cancer-related genes on the system 
level. Then we applied the simple framework of HO-GSVD 
to identify co-expression modules, which has been proved 
to be a simple, parameter-free and reproducible method. The 
results in the functional enrichment analysis showed the all 
the identified modules may play regulatory roles in multiple 
cancers. We found that the enriched BPs and pathways in 
the three clusters are associated with the cancer hallmarks 
including deregulating cellular energetics and inducing 
angiogenesis [54]. The enriched pathways in the cluster 
5 and 8 are related to deregulating cellular energetics, 
including focal adhesion, PI3K-Akt signaling pathway and 
ECM-receptor interaction. Focal Adhesion Kinase through 
ECM promotes the activation of PI3K-AKT signaling [55]. 
Then P13K-AKT signaling pathway increases glycolysis 

in metabolic processes [19]. The enriched BPs in the 
cluster 2 are related to inducing angiogenesis, such as 
platelet degranulation, positive regulation of angiogenesis, 
leukocyte migration and angiogenesis. Angiogenesis plays 
an important role during macroscopic and microscopic 
neoplastic progression [54]. The microenvironment-
related BPs in the cluster 7 are closely associated with 
anti-cancer immunity. Not surprisingly, we found that the 
genes in the modules were implicated in diseases, such as 
neoplastic processes, immune system diseases, cancer or 
viral infections and neovascularization. Some miRNA and 
transcription factors were also enriched in the modules. The 
mir-200 family has been identified as a biomarker in cancer 
[56]. Mir-199a has been associated with various cancers, 
including kidney, breast, bladder, bronchial squamous and 
stomach cancers [57–61]. Studies indicate that mir-29 
family members may cooperatively or separately contribute 
to the development of breast and colon cancer [62]. FOXO4 
is reported to suppress tumor proliferation and metastasis in 
stomach carcinoma, and its clinical significance is observed 
in multiple cancers [63–65]. The NFAT-related roles have 
been studied in the tumor microenvironment [33]. MAZ 
promotes the tumor progression in glioblastoma, breast 
cancer, prostate cancer and hepatocellular cancer [31, 32]. 
The regulatory and clinical significance of E2A are studied 
in colorectal cancer [66]. Our study indicates that the genes 
in the identified modules play a cooperate role in multiple 
cancers through miRNA and transcription factors.

The sub-modules in the cluster 5 were analyzed 
for further understanding the regulatory mechanism 
in multiple cancers. We found that some genes in sub-
modules play vital roles in multiple cancers, such as 
tumor suppressors and oncogenes. There was only one 
pathway in the largest sub-module M1 but the sub-
module was highly enriched in cancer-related genes. 
Hub genes enriched in M2 have been identified to play 
a prognostic role in multiple cancers. Genes in M3 are 
involved in metastasis and prognosis. These sub-modules 
may help in discover new genes related with multiple 
cancers.

The identified modules showed different predictive 
power in prognosis of cancers. Some modules were able 
to predict survival in six cancers, such as cluster 2 and 
cluster 5. These modules were not significantly related 
to survival in BRCA and PRAD. Sample size and the 
number of deaths are two important factors in survival 
analysis. There exists the unbalanced number of genes 
involved in multiple cancers. These factors may result in 
the poor performance of prognostic capability. Some sub-
modules in the cluster 5 showed the statistical significance 
of survival analysis in at least three cancers, such as M1, 
M2, M4 and M9. Other sub-modules also revealed the 
prognostic capability in different cancers. The prognosis 
of cluster 5 was validated in other cancers. Importantly, 
the cluster 5 could be prognostic in 12 cancer types in 
total.
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In summary, we identified the functional modules 
and co-expression networks for the systematic analysis of 
the carcinogenic properties and regulatory mechanisms 
of multiple cancer. Further analysis indicates that these 
co-expression modules have a strong ability in predicting 
the survival of cancer patients. The results will be 
helpful in identifying new targets associated with cancer 
treatment. Our results will be valuable in cancer-related 
gene function annotation, and for the evaluation of cancer 
patients’ prognosis.

MATERIALS AND METHODS

Differential gene expression analysis

We downloaded TCGA gene expression data from 
the Gene Expression Omnibus under accession number 
GSE62944. Eight types of cancers were used to construct 
the co-expression network, including BRCA, KIRC, 
PRAD, THCA, LUAD, BLCA, COAD and STAD. After 
the construction of the co-expression network, we also 
analyzed UCEC, HNSC, READ and LIHC for further 
assessing the functional significance of the modules 
(Supplementary Table 9).

Four methods were used for differential gene 
expression analysis, including limma, edgeR, DESeq, and 
SAMseq. The sets of differentially expressed genes from 
each cancer were pooled together to increase the statistical 
power.

The genes with multiple test corrected p-value < 
0.05 were considered to be significantly differentially 
expressed. For SAMseq, the number of permutations used 
to estimate false discovery rates was set to 200 and the 
number of resamples used to construct test statistic was 
set to 100. For limma, we used the TMM method of the 
edgeR package and the voom transformation.

We proposed a three-step procedure for selecting 
the common genes shared by the eight cancer types 
(BRCA, KIRC, PRAD, THCA, LUAD, BLCA, COAD, 
STAD). First, genes which were significantly differentially 
expressed in at least four types of cancers analyzed by one 
method were clustered into one gene set. Second, genes 
shared by all four gene sets obtained by four methods were 
selected as a candidate gene set. At last, the genes that 
were not mapped to the corresponding DAVID genes were 
removed. We detected genes shared by UCEC, HNSC, 
READ, and LIHC cancers by following the rules similar 
to the above procedure, but with modification. Three 
methods (edgeR, SAMseq, and Limma) were used and 
significant genes shared by at least two cancer types with 
one method were clustered in one gene set.

Co-expression network construction

The gene expression data expressed as fragments per 
kilobase of exon per million reads mapped (FPKM) and 
normalized on log2 scale were represented by matrices. 

We then used HO-GSVD to extract common modules 
through matrix decomposition. The basic idea behind 
this approach is using spectral decomposition to identify 
common structures (subnetworks) in multiple datasets.

For the tth cancer t T=( )1 2, , .., , the input data 
D Rt

n pt∈ × � is the real matrix represented by the rows 
denoted by the samples nt  and the columns denoted by 
the genes p.  The mathematical form of the HO-GSVD 
framework of T  real matrices is given by

D U V D U V D U VT T
T T T

T
1 1 1 2 2 2 1= = … =Σ Σ Σ, ,, ( )

where U Rt
n pt∈ ×  is composed of normalized left basis 

vectors, Σt
p pR∈ × � is a non-negative diagonal matrix 

consisted of the higher-order generalized singular values 
and V Rp p∈ ×  is composed of normalized right basis 
vectors. As the previous method [8], the right basis vectors 
V  were defined as the solution of the eigensystem of the 
matrix S:

S
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where the covariance matrix � E D Dt t
T

t=  can be treated as 
the co-expression matrix. Importantly, the common HO-
GSVD subspace is spanned by the right basis vectors V.
Then we used the right basis vectors to select common 
structures shared by all cancer types. The advantage of 
this approach for identification of co-expressed structures 
across cancer types is able to reproduce accurately 
common structures without relying on any predefined 
parameters.

Based on the eigenvalues of the eigen-
decomposition of S, we chose the top ten eigenvectors 
to identify co-expression gene modules. A small part of 
the genes is supposed to have significantly similarity 
with each other and these genes can be regarded as the 
co-expression genes. Similarly to the strategy used in 
[67], the selected eigenvectors were decomposed into 
two components and modeled using Gaussian Mixture 
Model (GMM). In addition, the small weight component 
of bimodal distribution can identify the small proportional 
genes with high similarity. We calculated the tail area-
based false discover rate (q-value) using the R package 
fdrtool to identify co-expression genes. Then we clustered 
the genes into the co-expression gene module through the 
cut-off of q-value (0.001).

Enrichment analysis

Functional enrichment analysis of the co-
expressions gene modules was performed using DAVID 
[15]. Benjamini-Hochberg method was used for the 
multiple test correction of p-values. KEGG pathways and 
Gene Ontology terms with Benjamini-Hochberg corrected 
p-value less than 0.05 were considered as significantly 
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enriched. To validate the functional significance of 
modules, only gene modules involved in significant 
pathways were retained for further analysis. The cell 
type enrichment was analyzed using Cten [17]. Disease 
association analysis was conducted using the gene set 
analysis toolkit WebGestalt. In addition, the enrichment 
of miRNAs and transcription factors was performed using 
WebGestalt [16].

Functional network analysis

We used module genes to construct the functional 
interaction network within the Cytoscape FI plugin 
[34]. Linker genes were used to maximize the number 
of connected genes in the module. Then we clustered 
the FI network into small modules. The functions of 
small modules were analyzed for GO terms and pathway 
enrichment.

Survival analysis

We downloaded overall survival data from the 
Firehose. The patients with multiple repeated samples 
were not included in the survival analysis. The R package 
‘survival’ was used for the Cox proportional hazards (PH) 
model and Kaplan-Meier survival analysis. To detect 
prognostic genes, we calculated P-values based on the raw 
Wald test for the Cox PH model. Based on the expression 
of module genes, we classified tumor samples into clusters 
through NMF [68]. We then estimated the significance 
of differences between different clusters with patients’ 
survival using log-rank test of the Kaplan-Meier method. 
We also performed survival analysis on small modules 
generated from the FI network.
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