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Fungal infections pose a significant risk for the increasing population of individuals who are immunocompromised. Phagocytes
play an important role in immune defense against fungal pathogens, but the interactions between host and fungi are still not well
understood. Sphingolipids have been shown to play an important role in many cell functions, including the function of phagocytes.
In this review, we discuss major findings that relate to the importance of sphingolipids in macrophage and neutrophil function and
the role of macrophages and neutrophils in the most common types of fungal infections, as well as studies that have linked these
three concepts to show the importance of sphingolipid signaling in immune response to fungal infections.

1. Introduction

Beginning in the 20th century, fungi have emerged as
important human pathogens. Increases in the population of
immunocompromised individuals, due to AIDS or medical
interventions, have allowed for invasive fungal infections to
take hold in the human population worldwide [1]. Although
muchwork remains to be done in understanding interactions
between host and invasive fungi, it is well established that
phagocytes serve a central role in the immune response to
fungal pathogens [2]. Phagocytes, such as macrophages and
neutrophils, are essential effector cells of the innate immune
system and are responsible for recognition and killing of
fungal pathogens [2–6]. Recent published work has revealed
a role for a class of bioactive signaling lipids, known as
sphingolipids, in regulating the antimicrobial activity of host
phagocytic cells [7–11].This reviewwill center on the involve-
ment of host sphingolipids in macrophage and neutrophil
function during fungal infection. For general reviews on
innate antifungal immunity, the reader is referred to [2, 5, 6].
For reviews on microbial sphingolipids in pathogenesis, the
reader is referred to [12, 13].

2. Invasive Fungal Infections

Unlike bacteria and viruses, systemic fungal diseases were not
described until the late 19th century and were considered to
be extremely rare. Today, fungal infections are on the rise
and there is a pressing need for research focused on immune
responses to these relatively “new” human pathogens [14]. It
is estimated that there are nearly 1.5 million fungal species;
of those species, only a small subset (approximately 300) has
been reported to be pathogenic to humans [15]. Although
superficial fungal infections, which affect the outer layers
of the skin, nails, and hair, are the most common fungal
infections in humans, invasive infections pose a more serious
threat to human health. Despite the availability of several
antifungal drugs, mortality associated with invasive fungal
infections remains unacceptably high and is estimated to
be over 50% for most mycoses. As a group, fungal infec-
tions cause over a million deaths annually worldwide [16].
The most common global opportunistic invasive fungi are
Candida albicans, Aspergillus fumigatus, and Cryptococcus
neoformans, but there are many other fungal species that
infect humans including endemic fungi such as Blastomyces
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dermatitidis, Coccidioides immitis, and Histoplasma capsula-
tum [16, 17].

2.1. Candidiasis. Candidiasis is caused by commensal Can-
dida species, which live in the human gastrointestinal tract
and vagina. The most commonly found species is C. albicans
[5]. In a healthy host, phagocytic cells of the innate immune
system are able to recognize and eliminate any invading Can-
dida [18]. Under immunosuppressed conditions, Candida is
able to breach the integrity of mucosal barriers and cause
systemic infection. Infection may also occur in patients with
a central venous catheter in which Candida on the skin is
able to bypass cutaneous barriers and a significant amount of
fungi enters the circulation [18, 19]. Candida has the unique
ability to switch between yeast and hyphal forms [18, 20].The
ability to reversibly convert from isotropic (yeast) growth to
apical (hyphal and pseudohyphal) growth has been theorized
to contribute to virulence [21]. Virulence is attenuated in
both yeast and hyphal locked mutants and infection sites are
populated by both morphological forms, which points to a
role for both forms in the pathogenesis of candidiasis [21].

2.2. Aspergillosis. Aspergillus is ubiquitously found in the
environment. The most common pathogenic Aspergillus is
A. fumigatus [22, 23]. Infection occurs via inhalation of
conidia into the lungs. Healthy human hosts are typically
able to clear invading conidia [21] and prevent germination
and spread into the lung [24]. Invasive Aspergillus infection
occurs primarily when neutrophils are somehow impaired
(i.e., chronic granulomatous disease, or neutropenia) and
thus unable to contain and clear invasive hyphal growth in
the lungs [22–24].

2.3. Cryptococcosis. Cryptococcosis is a systemic fungal
infection in immune compromised hosts that results in
deadly meningitis once the fungus has disseminated to the
central nervous system (CNS) [25–27]. C. neoformans, the
most common cause of cryptococcosis, is a yeast commonly
found in the environment, and thus exposure is fairly preva-
lent but rarely progresses to disease in healthy individuals
[28–30]. Immunocompetent individuals are able to combat
and contain Cryptococcus in the lung after inhalation of
spores to prevent spread to the CNS. A successful immune
response results in killing of Cryptococcus by phagocytes and
granuloma formation that is thought to prevent Cryptococcus
from accessing the vasculature and causing infection of
the CNS. In the case of an immunocompromised host,
Cryptococcus is not successfully cleared by phagocytes and
spreads through the vasculature and across the blood brain
barrier causing life threatening meningitis [26, 30].

2.4. Challenges in Development of Therapies against Invasive
Fungal Infections. Together, these infections present a unique
set of challenges for treatment. Most systemic fungal infec-
tions occur in immunocompromised individuals who may
be suffering from AIDS, cancer, or organ failure, adding
another layer of complexity to the disease [17]. Additionally,
there are only a limited number of therapeutic interventions

widely available. None of the available classes of drugs are
wide spectrum and there is high toxicity associated with the
most effective therapies [31].This relative scarcity of available
compounds is owing to the relatedness of fungi to humans
compared to viruses and bacteria. Many essential pathways
are conserved between fungi and humans, which forces
researchers to search for structures and pathways unique to
fungi [31]. As an alternative, phagocytes can be exploited as
a cell-based therapy in conditions of immune suppression
[32, 33]. Therefore, understanding the intracellular pathways
that contribute to the killing mechanisms of these immune
cells (such as sphingolipid signaling)may provide newmeans
for the development of novel therapeutic strategies against
fungal infections.

3. Role of Macrophages in Fungal Infections

The name macrophage comes from Greek and means “big
eater.” Macrophages are professional phagocytic cells capable
of detecting a multitude of signals to bind and consume
opsonized pathogens, as well as dying cells and cell debris
[34]. Macrophages derive from the myeloid lineage and
develop from both monocytic precursors and embryonic
progenitors during embryonic development [35]. Tissue
macrophages are responsible for immune surveillance and
upon recognition of pathogen-associated molecular pat-
terns (PAMPS) will drive inflammation by recruiting other
leukocytes including monocytes and neutrophils [36]. They
secrete a variety of cytokines including tumor necrosis factor-
alpha (TNF-𝛼), interleukin 1 (IL1), and nitric oxide (NO),
which contribute to activation of antimicrobial defense, and
interleukin 12 (IL12) and interleukin 23 (IL23), which direct
differentiation of inflammatory T helper cells [37].They have
also been shown to be capable of releasing antimicrobial
extracellular traps (ETs) that may play a role in clearance of
infections [38].

3.1. Candida. Macrophages are one of the most important
lines of defense against C. albicans in tissues and the blood
stream [39]. Evidence for the role of macrophages inCandida
infection has been demonstrated in different mouse models.
For instance, depletion of mouse splenic macrophages (but
not neutrophils) with liposome-entrapped clodronate was
shown to increase susceptibility of both BALB/cByJ and nude
mice strains to disseminated candidiasis [40]. In addition,
inactivation of macrophages with intraperitoneal injection
of carrageenan was shown to increase susceptibility in an
oropharyngeal candidiasis model in BALB/c and CBA/CaH
mice [41]. Finally, depletion of alveolar macrophages by 2-
chloroadenosine resulted in delayed mortality of BALB/c
in a lung injury model but reduced Candida clearance and
neutrophil recruitment in the lung [42]. From these results, it
is thought that macrophages are important for recognition,
killing, and recruitment of other cell types but must be
activated by T helper 1 cytokines for efficient killing [41].
Macrophages recognize Candida through Toll-like receptors
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2 and 4, Dectin-1, mannose receptor, and Dectin-2 [18, 43–
46]. Mannan has been shown to be one of the most impor-
tant pattern-associated molecular patterns for recognition
of Candida by macrophages [18]. Under immune sufficient
conditions, the yeast form ofCandida is effectively controlled
by phagocytic action of macrophages, but under certain
conditions, Candida is able to overgrow and may switch to
filamentous hyphal growth that is more of a challenge for the
immune system. Once infection is able to take hold (such
as under the condition of immune suppression), yeasts that
are able to transition to the hyphal form are able to escape
macrophages by physically destroying cells due to their size
or by inducing pyroptosis [20, 47].

3.2. Aspergillus. There is a growing body of evidence for the
role of alveolar macrophages in the initial defense against
Aspergillus conidia that are inhaled into the lung [48].
Alveolar macrophages efficiently uptake Aspergillus conidia
in a Dectin-1 dependent manner and have the capacity
to kill conidia intracellularly [49]. Additionally, invasive
aspergillosis has been reported in a patient with inflamma-
tory defective macrophages [50]. Despite this evidence, in
2009, it was reported that macrophages were dispensable
in a C57BL/6 mouse model in which clodronate liposomes
were used to deplete alveolar macrophages [24]. It was
shown that, in the absence of macrophages, neutrophils were
capable of mounting a sufficient response to prevent hyphal
tissue invasion [24]. Another group has designed transgenic
monocyte depleting mice, which utilizes diphtheria toxin
induced cell ablation directed toward CCR2 expressing cells.
That group reported no difference in lung burden in their
depleted mice but showed that they were essential to the
priming and expansion of CD4+T cells [51]. Counter to these
results, in 2011, another group has published that depletion
of macrophages with clodronate in BALB/c mice results in
increased fungal burden in the lung and that the elevated
levels of neutrophils failed to control the infection [49].
Altogether, the evidence points to an important supportive
role for macrophages in Aspergillus infection.

3.3. Cryptococcus. In cryptococcal infections, macrophages
have been shown to play a critical role in normal host
defense but may also have a role in development of
disease in immunocompromised individuals. Depletion of
macrophages using transgenic diphtheria toxin induced cell
ablation directed toward CD11c expressing cells showed
increased susceptibility in the mouse model [52]. In an
experiment that compared two model hosts, one susceptible
(mouse) and one resistant (rat), it was found that clodronate
liposome depletion in each species had very different results
[53]. While macrophage depletion in mice leads to decreased
fungal burden, depletion in rats leads to increased fungal
burden and dissemination [53]. Additionally, depletion of
alveolar macrophages proved to be protective to immun-
odeficient mice infected with a glucosylceramide deficient
mutant of Cryptococcus (Δgcs1) but showed no effect when
these same mice were infected with wild type C. neoformans
H99 [54]. Importantly, the results with the C. neoformans

Δgcs1 strain are of particular clinical relevance since this
strain mimics the infection pattern of human cryptococcosis
in that it is avirulent in immunosufficient mice and it
becomes virulent in T and NK cell deficient mice [54]. Thus,
altogether, these findings demonstrate the paradoxical role
that macrophages play in cryptococcosis: good cop in case
of immunocompetency when macrophages are able to kill
the fungus, and bad cop in case of immunosuppression,
when they are unable to kill the fungus and rather provide
a safe environment for C. neoformans to replicate and be
transported elsewhere (favoring dissemination). Indeed, in
immunocompetent subjects, clearance of internalized Cryp-
tococcus is thought to dependonThelper 1mediated response
which results in formation of a granuloma and production of
TNF-𝛼 and Interferon gamma (IFN𝛾) [55]. These cytokines
causemacrophages to become classically activated andupreg-
ulate NADPH oxidase to allow for production of nitric oxide
which kills internalizedCryptococcus [56].On the other hand,
in an immunocompromised host, Cryptococcus is able to sur-
vive and proliferate within macrophages leading to eventual
dissemination into the blood stream and central nervous
system [26, 57].There is further evidence for this transcellular
passage theory, also known as “Trojan horse” model. An
experimentwhich inoculatedmicewithmacrophages already
containing Cryptococcus showed increased fungal burden in
the lung and spleen and also the brain at later stages of
infection as compared to mice inoculated with the same
number of free yeasts [58]. It was also shown that late
stage depletion of macrophages (72 hours after intravenous
infection) resulted in decreased disease severity and fungal
burden [58]. As another way to subvert macrophage pro-
cesses and disseminate, Cryptococcus has also been shown to
extrude itself from macrophages, leaving both macrophage
and yeast intact [59]. Altogether, this evidence supports a
protective role for macrophages in an immunocompetent
host but strongly supports the subversion of macrophages in
the condition of immunosuppression resulting in increased
dissemination. Generally, an efficient uptake of Cryptococcus
by macrophages requires the opsonization by complement
or specific antibodies [60, 61] while the presence of a large
capsule on Cryptococcus prevents phagocytosis in vitro.

4. Role of Neutrophils in Fungal Infections

Neutrophils are considered to be the most important cell
type for fungal killing. They sense pathogens with an array
of pattern recognition receptors (PRRs), which include Toll-
like receptors, C-type lectin receptors, glycosphingolipids
(GSLs), and cytoplasmic sensors for ribonucleic acids [62,
63]. PRRs, along with signals from other immune cells
(such as macrophages), work together to help neutrophils
sense their environment, undergo chemotaxis, and initi-
ate inflammatory responses [62, 64, 65]. Neutrophils are
equipped with an arsenal of granule proteins that have var-
ious enzymatic activities designed to neutralize pathogens,
including defensins, myeloperoxidase, proteases, lactoferrin,
and gelatinase [65, 66]. Once activated, neutrophils carry
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out effector functions, which include phagocytosis, mobi-
lization of granules, production of reactive oxygen species
(ROS), release of neutrophil extracellular traps (NETs), and
secretion of lytic enzymes, antimicrobial peptides, and neu-
trophil derived cytokines. These activities ultimately lead to
pathogen destruction by both intracellular and extracellular
killing and recruitment of additional immune cells [64–66].

4.1. Candida. Neutrophils are thought to be critical for con-
trolling systemic candidiasis. Patients suffering from induced
neutropenia or genetic neutrophil defects are at high risk for
invasive Candida infection [67, 68]. In the mouse, ablation
of neutrophils using RB6-8C5 (anti-Gr-1, anti-Ly6G/Ly6C)
antibody causes increased susceptibility to systemic, vaginal
[69], and oropharyngeal challenge with Candida [41]. Three
mechanisms have been described by which neutrophils kill
Candida in healthy individuals. The first is killing of unop-
sonized Candida and it depends on complement receptor 3
(CR3) and caspase recruitment domain-containing protein 9
(CARD9). A second mechanism of killing targets opsonized
Candida in an Fc𝛾 receptor (Fc𝛾R), protein kinase c (PKC),
and NADPH oxidase dependent manner [67]. Finally, a
third mechanism involves a newly discovered function of
neutrophils in the generation of neutrophil extracellular traps
(NETs). NETs are weblike structures extruded by neutrophils
composed of decondensed chromatin and over 30 different
neutrophil proteins [70]. NETs are generated in response
to Candida hyphae [71] and contain the antifungal protein
calprotectin [72]. It is thought that while intact neutrophils
are able to clear yeast forms of Candida, NETs may have
evolved as a way to defend against hyphae that evade
phagocytosis due to their size [71].

4.2. Aspergillus. Neutrophils are essential to defend the host
against Aspergillus infection. Like Candida infection, neu-
tropenia and neutrophil defects (such as chronic granuloma-
tous disease) are major risk factors for invasive aspergillosis
[73]. It has been confirmed that depletion of neutrophils via
monoclonal antibody RB6-8C5 (anti-Gr-1, anti-Ly6G/Ly6C)
during the earliest phase of infection is associated with high
mortality which shows that neutrophils provide essential
defense during inhalation and germination of Aspergillus
[24]. It is still unclear how neutrophils control Aspergillus in
healthy individuals.One theory is that neutrophils spread and
degranulate onto the surface of hyphae [74]. New research
suggests that NETs may also play a role. NETs are formed in
response to Aspergillus hyphae [71] and restoration of NET
formation using gene therapy to add the gp91(phox) gene
(encoding a subunit of NADPH oxidase) in a patient with
chronic granulomatous disease was shown to rapidly cure
aspergillosis [73].

4.3. Cryptococcus. Although macrophages are considered
the first line of defense against C. neoformans, the role of
neutrophils is equally important because, once recruited,
they are extremely efficient in killing C. neoformans and
other fungal cells [75, 76]. Studies on the role of neutrophils
duringC. neoformans infection have not been pursuedmuch,

mainly because primary neutropenia is not a risk factor for
cryptococcosis. However, this does notmean that neutrophils
are not important for protection against cryptococcosis,
and it only suggests that the decrease of neutrophils is not
sufficient to render the host susceptible to C. neoformans.
On the other hand, neutrophils might play an important
role for protection once the infection has occurred. This is
exemplified by many observations. First, patients in which
neutrophil killing activity is decreased may actually develop
cryptococcosis [77, 78]. Second, in late stages of human
immune deficiency virus (HIV) infection, with low num-
ber of CD4+ T cells and when cryptococcosis occurs, the
defensive mechanisms of macrophages and neutrophils are
depressed [79]. Thus, it is largely accepted that most, if not
all, opportunistic infections in acquired immune deficiency
syndrome (AIDS) patients (including cryptococcosis) also
develop because neutrophils and macrophages are not fully
activated [79, 80]. Third, macrophage-mediated chemotaxis,
phagocytosis, production of cytokines, superoxide, extra-
cellular traps, and antimicrobial peptides and their killing
activity are not optimal in the late stages of AIDS [80–83].
Fourth, although it is reported that cryptococcosis is not
usually associated with human neutropenia or defective neu-
trophil function, neutropenia is often present in HIV positive
patients, especially when patients have been diagnosed with
AIDS [80, 81, 84]. Fifth, there are also reports showing that
apparent immunocompetent individuals with pulmonary
cryptococcosis have impaired killing activity of neutrophils
and monocytes due to deficient production of TNF-𝛼, IL-
1𝛽, and nitric oxide [77]. These studies clearly highlight that
neutrophils are important to control Cryptococcus infection
in humans.

Studies in mice are controversial mainly because murine
neutrophils are notoriously weak compared to humans as
they do not produce (and secrete) fully activated defensins
[85]. Consequently, the role of neutrophils in C. neoformans
infection is still unresolved: only a very limited amount
of published work has addressed this issue using animal
models and depending on the model used (mouse and/or C.
neoformans strains and/or size and route of the inoculum) the
results seem to differ [52, 86–88]. For instance, Casadevall’s
group found that depletion of neutrophils in BALB/c mice
infected with the weak C. neoformans strain D52 (a mouse
model in which mice succumb to the infection) enhanced
resistance of the host [86] whereas other in vivo studies have
implied a protective role for neutrophils when a mouse strain
(SJL/J) relatively resistant to cryptococcosis was employed
[88]. In the first model of infection (BALB/c mice with D52
C. neoformans), depletion of neutrophils before intratracheal
Cryptococcus instillation resulted in protection of mice [86].
In this study, however, only a single depletion of neutrophils
(effective for approximately 3 days) was performed; indeed,
at day 7 of infection, neutrophil numbers were up again to
the level of control mice. This early and short window of
intervention points to a damaging role of neutrophils during
the initial phase of the infection [52, 86] and it does not allow
for formulating an overall conclusion regarding the role of
neutrophils in the final outcome of Cryptococcus infection.
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Considering that neutrophils continue to accumulate con-
siderably also in the later phases of infection [86, 88], the
question remains as to whether neutrophils exert different
roles in different stages of the disease especially before an
effective T cell mediated response is mounted (2-3 weeks).
To definitively assess the role of neutrophils during crypto-
coccosis, we depleted neutrophils throughout the infection,
in two different mouse strains (CBA/J or SJL/J) infected with
a clinical isolate and highly virulent C. neoformans (H99)
(Figure 1). Neutrophils were depleted by injecting 300 𝜇g of
RB6-8C5monoclonal antibody intraperitoneally, as indicated
(Figure 1). Confirmation of neutropenia, defined here as
a decrease of at least 70% of neutrophils, was confirmed
before Cryptococcus challenge and throughout the survival
experiment by blood neutrophil count. In our hand, 300𝜇g
of RB6-8C5 was the minimum dose required to ensure the
70% decrease of neutrophils. As a negative control, 300 𝜇g of
LTF-2 isogenic mAb was administered using a similar dose
regime and neutrophils were also routinely counted in these
mice and no depletion was found. Mice were then challenged
with C. neoformans H99 strain intranasally and survival was
monitored and recorded. The average survival of CBA/J and
SJL/J neutropenic mice was 15.4 ± 7 and 16.8 ± 7.8, respec-
tively, whereas the average survival of nonneutropenic mice
was 32.2 ± 9.7 and 35± 8.5, respectively (𝑃 < 0.05) (Figure 1).
These results clearly indicate that neutrophils are important
to control Cryptococcus infection in mice. In line with our
novel observations, other mouse models also supported a
protective role for neutrophils [88, 89]. In one model, which
employed the rather resistant mouse strain SJL/J (similar
to CBA/J) infected with the C. neoformans strain D52, the
T helper 1 response was preceded by accumulation of neu-
trophils in the lung as early as 3 hours after infection together
with increased macrophage inflammatory protein-1𝛼 (MIP-
1𝛼), monocyte chemotactic protein 1 (MCP 1/CCL2), and
keratinocyte chemoattractant (KC), which are neutrophil and
macrophage chemoattractants.The number of neutrophils in
the lung progressively and greatly increased in the following
days and weeks while the fungal burden decreased [88]. In
another study, in vivo imaging was used to show neutrophils
directly removing C. neoformans from the brain vasculature
[89]. Additionally, it was shown that depletion of neutrophils
enhanced fungal burden in the brain [89]. Thus, from these
studies, it is obvious that the apparent conflicting results in
the literature are likely due to the use of different mouse
models, Cryptococcus strains, and most importantly the time
frame of the induced neutropenia. Altogether, these studies
and our new results (Figure 1) strongly point to the fact that
neutrophils are important to control Cryptococcus infection,
especially when the infection has already developed.

5. The Role of Sphingolipids in
the Immune Responses

Sphingolipids are a family of lipids defined by a backbone
mostly composed of an eighteen-carbon amino alcohol,
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Figure 1: Neutrophils are important to control cryptococcosis
in mice. Four six-week-old mice (CBA/J or SJL/J model) were
treated intraperitoneally every other day with 300 𝜇g of Rb6-
8C5 monoclonal antibody (mAb, gray arrows) directed against
neutrophils. After 2 days from the first dose (day 0), mice were
infected intranasally with a lethal dose of C. neoformans cells (5 ×
10
5) (black arrow). As controls, mice were treated with LTF-2

mAB (an IgG2 isotype for Rb6-8C5). Before mAb treatment and C.
neoformans challenge, and during infection, blood was collected for
neutrophil count (red arrows).

referred to as the sphingoid backbone. The simplest sphin-
golipids are sphingosine, phytosphingosine, and dihydrosph-
ingosine, which can be modified to produce an array of
more complex sphingolipids, some of which have regulatory
functions in important cell processes. For general reviews on
sphingolipid metabolism and signaling, the reader is referred
to [90–94].

Among the bioactive sphingolipids that have been impli-
cated in the regulation of the immune response against fungal
infections are sphingosine-1-phosphate (S1P), sphingomyelin
(SM), and glycosphingolipids (GSLs) (Figure 2) [94].

5.1. Sphingosine-1-Phosphate. S1P is produced by the phos-
phorylation of sphingosine by one of two sphingosine kinases
(SK1 and SK2) [94]. Once phosphorylated, S1P is recognized
by a family of G-protein coupled receptors (S1PR1-5) that
activate downstream effectors such as small GTPases (Rho,
Rac, and Ras), adenylate cyclases, PI-3-kinase, phospholipase
C, protein kinase C, or intracellular calcium [91]. The distri-
bution of the receptors on different cell types and the coupling
of receptors to different G-proteins allow S1P to differentially
exert its influence in many different pathways, including
inflammation [95]. S1P may also signal independently of
S1PRs as an intracellular second messenger [96].

5.2. Sphingomyelin. SM is produced by the addition of a
phosphocholine moiety from phosphatidylcholine (PC) onto
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Figure 2: Overview of sphingolipid synthesis. Sphingolipids contain a sphingosine backbone that is modified to produce an array of
metabolites. Ceramide serves a central role and can be synthesized by breakdown of sphingomyelin, addition of fatty acid by ceramide
synthase, or de novo synthesis from serine palmitoyltransferase. Ceramide and sphingosine can be phosphorylated by their respective kinases
to form bioactive metabolites. More complex sphingolipids are formed from ceramide, including sphingomyelin and glycosphingolipids.

ceramide by a family of enzymes known as sphingomyelin
synthases. In mammals, there are two sphingomyelin syn-
thases, SMS1 and SMS2. SM is an abundant component of
cell membranes and is important for the formation of ordered
membrane domains known as lipid rafts in model mem-
branes [97, 98]. It is thought that lipid rafts play important
roles in many processes such as GPI-anchored protein sort-
ing, receptor clustering [99], endocytosis, exocytosis, vesicle
formation, and budding [100, 101]. Thus, the ability of SM
to contribute to lipid raft homeostasis may have important
implication in the functions of phagocytes whose activities
rely on receptor activation, endocytosis, and secretion. So
far, it has been shown that SMS2 deficiency prevents TNF-
𝛼 stimulated lipid raft recruitment of TNF receptor 1 and
preventsNF𝜅B activation inmacrophages [102]. Additionally,
SM can also be broken down by the sphingomyelinase
(SMase) enzymes to produce ceramide and phosphocholine,
thus serving as a major source of the bioactive sphingolipid,
ceramide [103, 104]. During synthesis of SM, SMSs also
produce the bioactive product diacylglycerol (DAG) [105–
107] which can activate DAG-binding targets, such as protein
kinase D (PKD). Indeed, PKD is a key regulator of protein

trafficking and secretion, and it has been shown to control
neutrophil secretion of antifungal factors [8, 105].

5.3. Glycosphingolipids. GSLs are composed of a sugarmoiety
attached to ceramide. More than 400 types of GSLs have
been identified based on the attached sugar structure, but
the ceramide chain lengths are also highly variable [108,
109]. Glycosphingolipid biosynthesis occurs via the action of
specific glycosyl transferases, which add galactose or glucose
moieties to ceramide [94]. These can be further modified
to produce an array of carbohydrate structures [110]. Major
relevant GSL species in phagocytes include lactosylceramide
and gangliosides [10, 111, 112]. GSLs are another major com-
ponent of lipid rafts and have also been found to have direct
interaction with both cytosolic and membrane proteins; they
play roles in cell adhesion, motility, growth, and neutrophil
function [111, 113–115]. Importantly, GSLs have been shown to
be able to directly bind to pathogens which is a crucial step in
initiating phagocytosis [111, 116, 117]. For example, Chlamydia
pneumoniae and Chlamydia trachomatis have been shown to
bind both Asialo-GM2 and GM1 [118], while influenza virus
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binds poly
(→50)

glucosylceramides and other GSLs [119]. For
a thorough discussion on the topic, please refer to [116].

6. The Role of Host Sphingolipids in
Fungal Infections

6.1. Candida. There is evidence for the role of host sphin-
golipids in the regulation of the immune response toCandida.
It has been shown that inhibition of sphingosine synthesis
with myriocin in Galleria mellonella, a commonly used
insect model for studying fungal infections [120], increases
mortality during Candida infection [121]. In the mouse
model, sphingolipid synthesis inhibition with myriocin or
fumonisin B1 treatment impairs phagocytosis of C. albicans
by macrophages in culture [122]. Fumonisin B1 treatment
of mice increased susceptibility to tail vein injected C.
albicans [122]. Additionally, the importance of the GSL
lactosylceramide (LacCer) in neutrophil function has been
studied and it was reported that LacCer is expressed on the
plasma membrane of neutrophils [10, 115]. It is important for
superoxide generation and the formation of domains with
the Src family kinase Lyn [114, 115]. These observations are
important in light of the evidence supporting the role of neu-
trophils in Candida infection. Furthermore, LacCer can bind
Candida directly [123] and it also acts as a pattern recognition
receptor to promote chemotaxis of neutrophils in response to
Candida soluble beta-D-glucan [63]. Additionally, GSLs and
specifically gangliosides have been shown to play essential
roles in adhesion and motility, both important processes for
phagocytes to serve their function [113].

More recently, sphingolipids have been implicated in
the production of NETs. Neumann et al. demonstrated
that treatment of primary blood-derived human neutrophils
with bacterial sphingomyelinase, which hydrolyzes SM into
ceramide and phosphocholine, causes spontaneous genera-
tion ofNETs [124]. Although themechanism for this observa-
tion is unknown, the breakdown of SM could alter signaling
complexes that localize to rafts and lead to spontaneous NET
generation. This observation points to a role for rafts in
controlling the generation of NETs and suggests that SM and
GSL pathways could contribute to clearance of Candida by
NETs. Since the importance of neutrophils and macrophages
for fighting Candida infections is well established, these
insights into sphingolipid involvement in phagocyte function
could aid in developing alternative therapeutic strategies
against this fungus.

6.2. Cryptococcus. Host sphingolipids have been shown to
play an important role in controllingCryptococcus infections.
In particular, S1P plays a role onmultiple levels. In an obligate
intracellular murine model of Cryptococcus infection (Δgcs1),
which forms granulomas, SK1, the enzyme responsible for
production of S1P, was found to be essential to granuloma
formation. In fact, knockout of SK1 prevented formation of
granulomas by reducing the amount of S1P in the bron-
choalveolar lavage fluid which resulted in lowered levels of
MCP-1 and TNF-𝛼 [9, 25]. Additionally, S1P was found to
directly affect phagocytic cells. While addition of S1P to

macrophages increased their ability to uptake Cryptococcus
via the action of S1P receptor 2 [125], addition of S1P
to neutrophils increased their ability to kill Cryptococcus
extracellularly [9]. Sphingomyelin may also play a role in
regulating the response of phagocytic cells to C. neoformans.
In fact, some work has hinted at a role for lipid rafts in
phagocytosis of Cryptococcus as disruption of lipid rafts
with methyl-𝛽-cyclodextrin results in decreased uptake of
Cryptococcus by macrophages in vitro [126]. Since SM and
glycosphingolipids are key constituents of lipid rafts, these
studies warrant further investigation on the requirements
also for these complex sphingolipids in the recognition
and phagocytosis of C. neoformans by macrophages [97].
Finally, inhibition of SMS, the enzyme responsible for SM
biosynthesis, impairs the killing ability of neutrophils by
preventing the release of antifungal factors through a DAG-
PKD dependent mechanism [8, 105].

6.3. Aspergillus. There is a dearth of information concerning
host sphingolipid involvement in Aspergillus infection. It
is known that neutrophils and NETs play an important
role in clearance of infection. As discussed in the previous
sections, sphingolipids are important for many neutrophil
antifungal activities, including secretion of antifungal factors,
and possibly regulatingNET formation.Thiswarrants further
study to extend work that has been done in other fungi to
include Aspergillus and other emerging fungi.

6.4. Other Fungal Infections. There is an increasing amount
of evidence that lipid rafts play a role in the interaction
between phagocytes and fungi. Both complement receptor
3 and Dectin-1 are major fungal pattern recognition recep-
tors and they have been shown to colocalize in lipid raft
microdomains in response to Histoplasma capsulatum [127].
This finding shows the importance of these sphingolipid rich
domains especially during fungal infections, many of which
are recognized through these receptors.

7. Conclusions and Future Directions

Sphingolipids have been shown to play an important role in
many cellular processes, including the function of phagocytic
cells, which play critical roles in invasive fungal infections.
Signaling lipids such as S1P are able to directly bind pro-
teins to affect cellular pathways, while SM and GSLs may
affect cellular processes by altering domain formation on
the plasma membrane or serving as pattern recognition
receptors themselves (LacCer). Findings that highlight the
roles of sphingolipids in phagocytes are particularly useful
in light of the critical role that these cells play in controlling
fungal infections and may serve as a key to overcome the
challenges associated with treating these types of infections.
In the future, it is important to apply what we learned about
phagocytes into understanding how sphingolipids affect the
interactions between phagocytes and fungi. Much work that
has been done concerning this has not yet been validated for
other species. Another unexplored pathway is the possible



8 Mediators of Inflammation

connection between sphingolipids and formation of extra-
cellular traps and whether this could be another avenue to
fight off hyphal growth. In the future, understanding of host
pathways in phagocytes could lead to cell-based therapies
that exploit the strengths of phagocytes to combat fungal
infections in the context of an immunocompromised system.
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