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Abstract: We study the behavior of poly(methyl methacrylate) (PMMA) exposed to femtosecond
pulses of extreme ultraviolet and X-ray laser radiation in the single-shot damage regime. The
employed microscopic simulation traces induced electron cascades, the thermal energy exchange of
electrons with atoms, nonthermal modification of the interatomic potential, and a triggered atomic
response. We identify that the nonthermal hydrogen decoupling triggers ultrafast fragmentation of
PMMA strains at the absorbed threshold dose of ~0.07 eV/atom. At higher doses, more hydrogen
atoms detach from their parental molecules, which, at the dose of ~0.5 eV/atom, leads to a complete
separation of hydrogens from carbon and oxygen atoms and fragmentation of MMA molecules. At
the dose of ~0.7 eV/atom, the band gap completely collapses indicating that a metallic liquid is
formed with complete atomic disorder. An estimated single-shot ablation threshold and a crater
depth as functions of fluence agree well with the experimental data collected.

Keywords: PMMA; free-electron laser; ablation; nonthermal melting; band gap collapse

1. Introduction

Poly(methyl methacrylate) (PMMA) is a polymer that is widely used in the free-
electron laser experiments for pulse characterization via ablation [1] and desorption im-
prints [2]. The material hardness and robustness to mechanical stress together with sen-
sitivity to radiation damage makes it a perfect candidate for applications, such as pulse
monitors. Despite its wide experimental use during the last two decades, it still remains
very challenging to study it theoretically [2–4]. A lack of understanding of the microscopic
details of damage hinders further development of the techniques employing PMMA.

In models employed in the community, the processes playing a role in the damage
often need to be chosen ad hoc [4,5]. For example, often an assumption of thermal melting
is used to evaluate the damage threshold [6], or nonthermal bond breaking is assumed to
be the dominant damage mechanism [7]. A choice of proper models requires microscopic
understanding of processes involved, which is still lacking in the field of complex materials,
such as polymers [3]. It is especially true with respect to irradiation with modern free-
electron lasers, such as FLASH [8], FERMI [9], LCLS [10], SACLA [11], and European
XFEL [12]. They provide femtosecond high-intensity extreme ultraviolet (XUV) and X-
ray pulses capable of single-shot material ablation, the nature of which remains an open
question.

Here, we apply a detailed model to simulate the PMMA response to ultrafast XUV
and X-ray exposure in the regime of single-shot damage [13,14]. We study the electronic
and atomic behavior of irradiated PMMA targets to identify the nature of the damage. The
model includes the following stages: (a) nonequilibrium electron cascades, (b) coupling of
electrons and atoms (electron–phonon coupling) possibly leading to thermal melting, (c)
modification of the interatomic potential energy surface due to electronic excitations, and
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(d) atomic relocation triggered by such a change in the interatomic forces, which may result
in nonthermal bond breaking and melting. Tracing all the involved processes allows us to
identify their relative importance and reveal the microscopic kinetics of damage formation
in PMMA at various deposited doses.

2. Model

To model femtosecond irradiation of PMMA, we used XTANT-3 hybrid code de-
scribing electronic kinetics and atomic dynamics with changing interatomic potential and
coupling between electrons and ions [13]. XTANT-3 includes a few interconnected models
that are executed in parallel and exchange information on each time step of the simulation:

1. A Monte Carlo (MC) simulation is used to model the XUV or X-ray photon absorption
and induced electron cascades, including all secondary electrons and Auger decays of
core holes [15]. An excited electron is traced until its energy falls below a predefined
cut off of 10 eV counted from the bottom of the conduction band of the material, the
lowest unoccupied molecular orbital (LUMO). Elastic electron scattering, transferring
kinetic energy to atoms, is described with Mott’s cross section with a modified Molier
screening parameter [16]. Inelastic electron scattering (impact ionization) is described
with binary-encounter Bethe (BEB) scattering cross section [17].

2. Low-energy electrons populating the valence band and the conduction band below
the cut off energy are assumed to follow Fermi–Dirac distribution at all times [13].
This fraction of electrons loses electrons due to photo- and impact ionizations and
gains new particles when an electron from the MC model loses its energy below the
cut off [15]. The energy of such an electron is then added to the low-energy fraction of
electrons, leading to a change in its chemical potential and temperature. This fraction
of electrons also exchanges energy with the atoms via the nonadiabatic coupling
described below.

3. Nonadiabatic coupling between electrons and ions is calculated with the Boltzmann
collision integral [18]. This allows us to model the evolution of the system beyond
the Born-Oppenheimer approximation. In case of periodic atomic motion within an
ideal crystal, it reduces to the electron–phonon coupling. However, the applied model
is capable of describing coupling of electrons to an arbitrary atomic displacement
beyond the phononic approximation [19]. The matrix elements entering the Boltz-
mann integrals are obtained with the use of the tight binding molecular dynamics
simulations similar to the Tully surface hopping method [20]. Transient electron
populations are defined by the above-mentioned Fermi–Dirac distribution.

4. The transferable tight binding (TB) method is used to describe the evolution of the
molecular orbitals (electronic density of states), interatomic forces, and matrix ele-
ments for nonadiabatic electron–ion coupling. In the present work, we employ the
density-functional tight binding (DFTB) method with matsci-0-3 parameterization on
the non-self-consistent level [21]. This parameterization uses an sp3 linear combina-
tion of atomic orbitals (LCAO) basis set for hydrogen, carbon, and oxygen atoms [22].
The TB Hamiltonian depends on the positions of all the atoms in the simulation box
and, thus, evolves on each time step of the simulation. The TB parameterization does
not depend on the electronic temperature, which is an approximation; however, it
has been demonstrated in a series of previous works that such a model describes
irradiated systems with a reasonable accuracy (see overview [13] and the references
therein, showing comparisons with available FEL experiments).

5. Atomic motion is traced with help of the classical Molecular Dynamics (MD) method.
It solves Newtonian equations of motion for each atom using the Verlet algorithm [23]
with the potential energy surface provided from the TB method described above. Ad-
ditionally, energy gain or loss from the nonadiabatic coupling of low-energy electrons
and elastic scattering of high-energy electrons is fed to atoms via velocity scaling at
each time step. We used 0.1 fs time steps in the simulations. A microcanonical (NVE)
ensemble was used with periodic boundary conditions.
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All further details of the code can be found in [13]. To model PMMA, we used
240 atoms in the supercell. Prior to productive simulation runs, the supercell was relaxed
using a zero-temperature molecular dynamics (the steepest descent method) simulation to
find the equilibrium atomic positions and supercell vectors for the given interatomic poten-
tial. Figure 1 shows this prepared initial atomic configuration, which mimics suspended
strands of PMMA molecules, similarly to previous works on the modeling of polymers
under periodic boundary conditions [24,25]. Despite the fact that PMMA may contain a
wide variety of strands arrangements or even be in amorphous phase [26], here, we chose
the simplest and most accessible configuration for tight-binding modelling.
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Figure 1. Initial atomic structure of PMMA in the supercell: top view along Z (top left), side view
along Y (top right), side view along X (bottom left), perspective view (bottom right). Black balls are
C, red balls are O, and blue balls are H atoms.

The simulation starts from this initial configuration with random velocities assigned
to atoms according to the Maxwellian distribution at the room temperature. Atoms are
allowed to thermalize for a few hundred femtoseconds prior to arrival of the laser pulse
centered at t = 0 fs. The laser pulse used is Gaussian with 10 fs FWHM and 92 eV photon
energy. After irradiation, the system is traced up to 2 picoseconds to observe the damage
kinetics at sufficiently high deposited doses. Many simulation runs are performed with the
absorbed doses ranging from 0.01 to 1 eV/atom to identify various damage thresholds in
the system. Atomic snapshot illustrations are prepared with help of VMD software [27].

3. Results

The simulation results show that PMMA started to exhibit the first signs of damage
in the bulk at the energy density around 0.07 eV/atom. Figure 2 clearly demonstrates
that first stable defect levels formed only at doses above ~0.07 eV/atom, indicating that
no defects were formed at lower doses. At the shown dose of 0.06 eV/atom, only a
transient perturbation of the energy levels occurred, quickly recovering and forming no
lasting damage. At higher doses, the defect levels within the gap persisted throughout the
simulation time. This allowed us to unambiguously identify the damage threshold. This
takes place via the following processes.
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Figure 2. Evolution of the electronic energy levels (eigenstates; molecular orbitals) in PMMA irradi-
ated with 0.06 eV/atom (left panel), 0.07 eV/atom (middle panel), and 0.08 eV/atom (right panel)
deposited doses. Initial HOMO-LUMO gap is marked with red lines to illustrate formation of defect
levels within the gap.

Some hydrogen atoms begin to detach from parental carbons and may attach to
the neighboring strain. Concurrently, active processes of cross-linking start. Hydrogen
detachment also leads to local bond breaking, resulting in the fragmentation of MMA
molecules, as was also discussed, e.g., in [5]. An example of these processes is shown
in Figure 3 for the deposited dose of ~0.1 eV/atom. We see that the final state consists
of a few MMA molecules broken into molecular fragments, which then diffuse between
neighboring PMMA strains.
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Figure 3. Atomic snapshots of the PMMA supercell irradiated with 0.1 eV/atom at different time
instants.

The maximal electronic temperature under these conditions reaches ~10,000 K, see
Figure 4. The electron–ion (electron–phonon) coupling rises up to ~6 × 1017 W/(m3K)
at the peak of the electronic temperature, but quickly drops to below 1 × 1017 W/(m3K)
(Figure 4). The electron–ion energy exchange leads to an atomic temperature increase
up to about 800 K by the time of 2 ps. Full equilibration of the electronic and the atomic
temperatures does not occur within this time. Note that some oscillations in the electron
temperature are present due to changes in the material band gap that affect electronic
populations. Spikes in the coupling parameter, albeit strong, average out at different time
steps and have only a minor effect on the temperatures as can be seen in Figure 4.
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During the damage process, there is a transient band gap collapse as seen in Figure 4,
accompanied by detachment of hydrogen atoms and fragmentation of some MMA molecules.
This indicates that the transition takes place via the electronically conducting phase, ending
up in a semiconducting phase with a small band gap present. To better understand
the changes in electronic structure, we plot the evolution of the electronic energy levels
(eigenstates, or molecular orbitals) in Figure 5. This figure demonstrates that the highest
occupied molecular orbital (HOMO) and LUMO states meet shortly after the FEL pulse,
and a few more levels join together soon after.

This creates defect levels within the gap, while the majority of the energy states are
still within the well-separated valence and conduction bands. However, the presence of
electrons on these created defect levels (formed by the raised HOMO levels) and availability
of the unoccupied states (formed by lowered LUMO levels) make the irradiated PMMA
transiently semiconducting. This happens as the lowest level of the conduction band
(LUMO) transiently joins the defect levels within the band gap produced by raising the
HOMO level from the valence band.

They then experience an avoided crossing at the times of a few tens of fs. Two more
levels join in soon, at the times of ~100 to ~150 fs. However, at the time of ~200 fs, one
level returns to the bottom of the conduction band. All this affects the width of the band
gap, since it is defined as the difference between the HOMO and LUMO levels, which
are highly dynamic at these times. The ongoing complex atomic dynamics (Figure 3),
showing the connection and disconnection of different PMMA strands, is accompanied
with corresponding changes in the band structure.
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Figure 4. Several quantities in PMMA irradiated with a 0.1 eV/atom deposited dose. (Top left panel)
Electronic and atomic temperatures, together with partial temperatures of carbon, oxygen, and
hydrogen atomic subsystems. (Top right panel) Band gap of PMMA. (Bottom left panel) Electron–
ion (electron–phonon) coupling parameter evolution during and after irradiation. (Bottom right
panel) Mulliken charges on carbon, oxygen, and hydrogen ions.
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In this process of damage, atomic charges are practically unaffected as Mulliken
analysis shows [28] with only a slight redistribution of electrons from carbon to oxygen
atoms (Figure 4). Mulliken charges are defined by the electronic populations on different
kinds of energy levels (molecular orbitals of different kinds of atoms). Even though the
energy levels are shifting during the phase transition, the electronic occupations are not
drastically affected (electrons are redistributed among the levels of the same kind), leading
to only minor changes in the average charges.

Hydrogen atoms have practically the same charge of around +0.16 during the entire
simulation. This suggests that, in a near surface region, where hydrogen atoms may be
emitted under irradiation, the majority of them should be observed as neutral atoms, with
a presence of about 16% charged ions (protons). So, an emission of molecular fragments
may be expected, which should lead to surface ablation as will be discussed in the next
section.
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Figure 5. Evolution of the electronic energy levels (eigenstates; molecular orbitals) in PMMA ir-
radiated with 0.1 eV/atom deposited dose. The initial HOMO-LUMO gap is marked with a red
arrow.

With an increase of the dose (fluence), more hydrogen atoms detach and reattach to
other carbons and oxygens, increasing the disorder. At the dose of ~0.5 eV/atom, the MMA
molecules start to actively break into atomic species; see Figure 6. The carbon atoms form
chains, whereas some oxygen atoms are still attached to their parenting carbons or float
freely. During this damage, the band gap of PMMA shrinks but does not fully collapse (see
Figure 7), indicating that it is still in a semiconducting state.

The behavior of the electronic structure after 0.5 eV/atom dose deposition is shown in
Figure 8. One can see that, in addition to the formation of the defect levels within the gap
(similarly to the abovementioned case of 0.1 eV/atom, cf. Figure 5), the bands widened,
shrinking the gap. It is rather difficult to distinguish the “defect” levels from the band
levels at such doses. With further increase of the dose, the bands completely merge: a full
band gap collapse occurs at higher doses of ~0.7 eV/atom, turning PMMA into a fully
disordered metallic liquid.
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Electronic and atomic temperatures, together with partial temperatures of carbon, oxygen, and
hydrogen atomic subsystems. (Top right panel) Band gap of PMMA. (Bottom left panel) Electron–
ion (electron–phonon) coupling parameter evolution during and after irradiation. (Bottom right
panel) Mulliken charges on carbon, oxygen, and hydrogen ions.
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After 0.5 eV/atom dose deposition, the temperatures of different elements do not fully
coincide but rise with different rates (see Figure 7). Due to nonthermal effects, electronic
and atomic temperatures equilibrate fast, significantly faster than we observed above for
0.1 eV/atom dose, while the electron–phonon coupling parameter is only about three-times
higher at its peak (cf. Figure 7 vs. Figure 4; the same effect was observed in polyethylene
in [25]).

The temperature of oxygen atoms here rises slightly faster than that of carbon and
hydrogen atoms. This appears to indicate the kinetic pathway of damage formation: the
modification of interatomic forces seems to affect oxygen bonds the most. This additional
force acting on oxygen atoms increases their kinetic energy faster than that of other atoms.
However, oxygen bonds are stronger than hydrogen bonds, so while hydrogen detaches
from parenting atoms, oxygen may still be attached to carbons.

During the damage, there is again only a slight redistribution of electrons between the
parental atoms: as Figure 7 shows, during the excitation stage, a small fraction of electrons
transfers from carbon to oxygen atoms, which then quickly returns during the fast electronic
temperature decrease. After around ~1.5 ps, there is a secondary electron redistribution
due to ongoing damage and separation of different elements indicating a presence of active
chemical reactions. We can see carbon atoms forming mainly linear chains, while oxygen
atoms and hydrogen atoms are grouping among themselves (Figure 6). The hydrogen
average charge remains almost unaffected, increasing from 0.16 to only ~0.18 at the end of
the simulation for a 0.5 eV/atom deposited dose. This suggests that, at such irradiation
parameters, the charge states of emitted hydrogens should not be very sensitive to the FEL
fluence.

4. Discussion

Although the simulations were performed in the bulk applying periodic boundary
conditions to the supercell, the damage predicted to take place in PMMA allows inter-
pretation of it as a cause of ablation of the surface. Indeed, the detachment of hydrogen
atoms and molecular fragments at the deposited dose above ~0.07 eV/atom indicates that
those free-floating fragments and atoms should be able to leave the surface. We, therefore,
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convert our threshold dose into an estimate of an incoming threshold fluence, according
to the relation [13]: Fth = Dthnatlat, where Fth is the threshold fluence, Dth is the evaluated
threshold dose, nat is the atomic density of PMMA, and lat is the photon attenuation length
for the given photon energy (taken from [29]).

This relation assumes normal incidence of the FEL pulse and that the damage is
defined solely by the deposited energy density and not sensitive to a particular photon
energy. Since core holes in the K-shell of carbon and oxygen atoms decay within a few
femtoseconds [30], their transient presence should not change the damage mechanism and,
thus, would quickly result in conditions similar to those induced by photon energies below
K-edges [31]. This allows us to convert the calculated absorbed dose into the incoming
fluence across a wide range of photon energies.

The resulting threshold fluence is compared to the available experimental data in
Figure 9. We see in this figure that the agreement between the estimated threshold fluence
and the experimental one is reasonable. Hosaka et al.’s data point on the ablation threshold
of PMMA [32] is an order of magnitude lower than the predicted curve and than the other
experimental data at the same photon energy (92 eV). This discrepancy is attributed to the
fact that Hosaka et al. used a different experimental photon source with 7 ps pulse duration
rather than ultrashort FEL pulses used in all other experiments collected in Figure 9.
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with XTANT-3 and available experimental data [1,2,5,32–34].

A reasonable agreement between the theoretically calculated damage threshold flu-
ence and the experimentally measured ablation threshold supports our interpretation of
the results. We, thus, conclude that the onset of the damage in the bulk of PMMA is
accompanied by the start of the single-shot ablation at the surface.

Considering the same nature of the damage in the bulk and at the surface of PMMA,
we may evaluate the maximum depth of the ablation crater. To do that, we assume that
the crater depth profile is determined by the iso-surface corresponding to the depth where
the damage threshold dose is deposited, as was also suggested in [2]. Then, as it follows
from the Lambert–Beer law of radiation absorption, the maximum crater depth dmax may
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be estimated as dmax = lat ln(D/Dth), where D is the absorbed dose corresponding to the
peak fluence of an incoming FEL pulse.

The resulting dependence of the ablation depth on the deposited dose for the photon
energy of 92 eV is shown in Figure 10. For the estimate here, we used the theoretical
value of the damage threshold dose found above, Dth = 0.07 eV/atom (which corresponds
to ~1.3 kJ/cm3 in PMMA), and thus this estimate is fully predictive. We see that the
theoretical curve coincides very well with the experimental data from [2]. This validates
our findings and conclusions on the damage in PMMA and supports the interpretation of
the nature of the single-shot damage reported in [2,5].
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5. Conclusions

The response of PMMA to irradiation with ultrafast FEL pulses was studied theoreti-
cally with help of the hybrid code XTANT-3. Accounting for thermal electron–ion coupling,
tracing atomic dynamics, including nonthermal evolution of the electronic structure and
induced bond breaking, allowed us to analyze various damage channels and their interplay.
We demonstrated that the damage threshold in PMMA is ~0.07 eV/atom (1.3 kJ/cm3)
at which the first detachment of hydrogen atoms takes place leading to PMMA strains
cross-linking and molecular fragmentation.

This damage is a result of nonthermal effects caused by electronic excitation. It pro-
ceeds with a transient collapse of the band gap at femtosecond timescales via formation of
defect levels, subsequently reopening to a value of ~1 eV, which indicates a semiconducting
damaged state. The electron–ion coupling at such doses is too slow and heats up the atomic
system only at later timescales of a few picoseconds.

With an increase of the deposited dose above ~0.5 eV/atom, the fragmentation into atoms
and atomic disorder takes place due to nonthermal melting. At doses above ~0.7 eV/atom,
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the disordered state turns metallic with a complete band gap collapse. In all cases, the
damage has a nonthermal nature, whereas the thermal contribution is only minor.

The estimated damage threshold was compared with the experimental ablation thresh-
old, showing a reasonable agreement. This result supported our conclusion that the
damage threshold in the bulk coincides with the onset of ablation at the surface, as the
detachment of atoms and molecular fragmentation is expected to yield material emissions.
An evaluated maximum ablation crater depth as a function of a deposited dose for 92 eV
photon energy irradiation showed excellent agreement with the experimental data, further
validating our model and the conclusions drawn.
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