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A B S T R A C T   

Many previous intervention studies have used functional magnetic resonance imaging (fMRI) data to predict the 
antidepressant response of patients with major depressive disorder (MDD); however, practical constraints have 
limited many of those attempts to small, single centre studies which may not adequately reflect how these models 
will generalize when used in clinical practice. Not only does the act of collecting data at multiple sites generally 
increase sample sizes (a critical point in machine learning development) it also generates a more heterogeneous 
dataset due to systematic differences in scanners at different sites, and geographical differences in patient 
populations. As part of the Canadian Biomarker Integration Network in Depression (CAN-BIND-1) study, 144 
MDD patients from six sites underwent resting state fMRI prior to starting escitalopram treatment, and again two 
weeks after the start. Here, we consider ways to use machine learning techniques to produce models that can 
predict response (measured at eight weeks after initiation), based on various parcellations, functional connec-
tivity (FC) metrics, dimensionality reduction algorithms, and base learners, and also whether to use scans from 
one or both time points. Models that use only baseline (pre-treatment) or only week 2 (early-response) whole- 
brain FC features consistently failed to perform significantly better than default models. Utilizing the change 
in FC between these two time points, however, yielded significant results, with the best performing analytical 
pipeline achieving 69.6% (SD 10.8) accuracy. These results appear contrary to findings from many smaller 
single-site studies, which report substantially higher predictive accuracies from models trained on only baseline 
resting state FC features, suggesting these models may not generalize well beyond data used for development. 
Further, these results indicate the potential value of collecting data both before and shortly after treatment 
initiation.  
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1. Introduction 

Major depressive disorder (MDD) is a prevalent, and potentially 
chronic disorder with a highly variable symptom profile (Fried and 
Nesse, 2015). While there are many effective treatments, including 
multiple classes of pharmacological interventions, response to any given 
treatment at the individual level is quite variable. Approximately one 
third of patients remit from depressive symptoms following their first 
antidepressant treatment, and many will require multiple trials of 
different medications or other treatments to reach remission (Rush et al., 
2006). While remission after multiple treatments may be possible, many 
patients drop out before an adequate response is found (Thornicroft 
et al., 2017), or experience prolonged distress and frustration while 
undergoing various (often unsuccessful) treatments. This has motivated 
the development of tools that can guide clinicians to quickly and accu-
rately inform the treatment choice that is best for each individual MDD 
patient. 

The heterogeneity of MDD suggests that response to treatment may 
be complex (Fried and Nesse, 2015). Certain clinical factors appear to 
correlate with response, such as duration, and severity of the disorder 
(Kraus et al., 2019), suggesting the existence of several depressive 
subtypes. In general, however, attempts to find stable clinical subgroups 
with associations that are robust enough to guide clinical decision 
making have not been successful (Arnow et al., 2015). Machine learning 
provides a promising alternative to these approaches, as it can produce 
models that can map complex interactions among input features to 
outcome measures, enabling accurate, individual predictions of 
response. 

Resting state (RS) functional connectivity (FC) has frequently been 
used to study neurophysiological alterations in MDD. This type of 
analysis has been used to reproduce positron emission tomography 
(PET) findings implicating corticolimbic dysregulation in MDD etiology 
(Anand et al., 2005; Mayberg, 1997); with subsequent studies consis-
tently reporting abnormal connectivity between the prefrontal cortex 
(PFC), anterior cingulate cortex (ACC), and limbic regions (Cullen et al., 
2009; Veer et al., 2010). Findings have also pointed to alterations in 
whole RS networks such as hyperconnectivity in the default mode 
network (DMN) (Greicius et al., 2007; Sheline et al., 2009). Changes in 
FC following antidepressant treatment have also been reported 
including normalization of DMN hyperconnectivity (Posner et al., 2013; 
Wang et al., 2015), modulation of striatal connectivity (Wang et al., 
2019), and increased corticolimbic connectivity (Anand et al., 2005). 

The sensitivity of RS FC measures to detect differences between MDD 
and healthy control groups as well as changes with antidepressant 
treatment, make them an attractive measurement for models predicting 
individual response to treatment, with several studies reporting accu-
racies exceeding 80% (Cohen et al., 2021; Gao et al., 2018). Most of 
these studies, however, use relatively small, single-site datasets, which 
tend to be more homogeneous, making it difficult to know if these results 
would translate to clinical practice (Schnack and Kahn, 2016). The 
magnitude of such site-induced biases in FC measures has also been 
shown to exceed the effect size of many psychiatric disorders (including 
MDD), making multi-site data collection essential for modelling the 
overall population (Yamashita et al., 2019). 

Empirical results from predictive studies further support these 
claims. Sundermann et al. (2017), for example, found that models 
derived from a larger, more heterogeneous sample – presumably more 
representative of the true target patient population – predicted MDD 
diagnosis with lower accuracy (45.0 to 56.1% accuracy) than models 
that had typically been reported in the literature (based on smaller 
sample sizes). Ramasubbu et al. (2016) similarly showed that MDD 
diagnostic models only outperformed default accuracy after limiting 
their patient population to those with severe depressive symptoms. All 
of these observations have been recently reinforced by the meta-analysis 
of Sajjadian et al. (2021). They report a mean accuracy of 63% [95% 
confidence interval (CI) 56–71] from 8 of 54 eligible literature reports 

before November 2020 considered to be of high-enough quality to enter 
into the meta-analysis. The remaining 46 reported studies provided a 
significantly higher mean accuracy of 75% (95% CI 72–78). 

Variability in data-processing pipelines can also make it challenging 
to compare results from different studies. In addition to the pre- 
processing required in all fMRI analysis, studies utilizing FC must also 
choose definitions for regions of interest and the metric used to calculate 
FC, both of which have been shown to have substantial impact on overall 
model performance (Abraham et al., 2017; Dadi et al., 2019; Kalmady 
et al., 2019). We must also consider other modelling choices, such as 
methods to reduce the number of features (if at all), what type of base 
learner will be used, and with what parameters. Published results may 
also be artificially inflated if various pipeline choices are tested and 
chosen only after reviewing performance on the test set (Hosseini et al., 
2020). 

Here we investigate the utility of machine learning models that use 
whole-brain RS-fMRI features to predict escitalopram treatment 
response in a relatively large, multi-site MDD sample. We assess both the 
utility of pre-treatment FC measures and consider the utility of also 
using data collected after two weeks of treatment, which may serve as an 
early indicator of response. Further, we consider the impact of altering 
various steps in the analysis pipeline to assess what effect they may have 
on prediction accuracy. 

2. Methods 

2.1. Participants 

We used data from CAN-BIND-1, a multi-centre study developed to 
examine potential biomarkers of response to antidepressant therapies in 
MDD; see Lam et al. (2016) for a detailed overview of the full study 
protocol and Kennedy et al. (2019) for a full report on clinical outcomes. 
Of relevance to this analysis, patients were recruited at six sites across 
Canada: University of British Columbia (UBC), University of Calgary 
(UCA), Queen’s University at Kingston (QNS), McMaster University 
(MCU), Toronto General Hospital (TGH), and The Centre for Addiction 
and Mental Health, Toronto (CAMH). Informed consent was obtained 
from all participants, and the protocol was approved by the Research 
Ethics Boards at each institution, with additional approval from the 
University of Alberta Research Ethics Board for secondary data analysis. 

Eligible participants were outpatients between the ages of 18 and 60, 
fluent English speakers, meeting DSM-IV-TR criteria for MDD in a cur-
rent Major Depressive Episode, as assessed by the Mini International 
Neuropsychiatric Interview (MINI; Sheehan et al., 1998), with episode 
duration of at least three months, and a score of at least 24 on the 
Montgomery-Asberg Depression Rating Scale (MADRS; Montgomery 
and Åsberg, 1979). Participants were also required to be free of psy-
chotropic medications for at least five half-lives prior to initial visit and 
to have not started psychological treatment within the previous three 
months. 

Individuals were ineligible if they had a previous unsuccessful, or not 
tolerated, trial of either of the study medications (escitalopram or ari-
piprazole), had failed four or more previous pharmacological treat-
ments, or were at high risk for hypomanic switch (history of 
antidepressant-induced hypomania). Participants were also screened 
for other psychiatric disorders and excluded if they had a diagnosis of 
Bipolar I or II, or any primary psychiatric diagnosis other than MDD. 
Individuals with high suicidal risk, substance abuse/dependence in the 
past six months, psychosis in the current depressive episode, significant 
neurological disorders, head trauma, unstable medical conditions, 
pregnant or breastfeeding, or contraindications to MRI were also 
excluded. 

Participants were included in current analyses if they were part of 
the treatment group and had complete pre-treatment (baseline) and 
week 2 RS-fMRI data, as well as treatment response data at week 8. Of 
the 157 participants with complete data, 13 were excluded during 
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manual quality control for severe imaging artefacts or incidental MRI 
findings. Scans were also screened for excessive motion based on the 
‘lenient’ criteria outlined in Parkes et al. (2018), and none exceeded the 
threshold of 0.55 mm for the temporal mean of the frame displacement 
time series. Hence, data from 144 participants (age 34.9 ± 12.43, 90 
females; see Supplementary Material Table S1 for detailed patient 
clinical and demographic information) were included in model building 
and assessment. 

2.2. Treatment protocol and outcomes 

Once enrolled, patients underwent extensive clinical data collection, 
after which, they began treatment with escitalopram for 8 weeks. MRI 

data, including RS-fMRI, were collected at baseline, two weeks, and 
eight weeks after treatment initiation. After eight weeks, patients were 
assessed for response to escitalopram, as defined as ≥ 50% reduction in 
total MADRS score from baseline. Those who achieved ≥ 50% decrease 
in MADRS were classified as ‘responders’, and those who did not, as 
‘non-responders’. 

2.3. MR image acquisition 

Imaging data were acquired using 3 Tesla MRI scanners at six centers 
across Canada, varying by model and manufacturer (GE Healthcare 
Signa HDxT (TGH), GE Healthcare Discovery MR750 (CAM, MCU, UCA), 
Phillips Intera (UBC), Siemens Trio Tim (QNS)). Imaging protocols 

Fig. 1. (Top) Diagram of data flow through analytic pipelines. Pre-processed resting state fMRI data from either baseline or week 2 is fed through a series of 
operations that first generate functional connectivity (FC) features and then generate a predictive model based on these features. Alternate approaches are used for 
parcellation, connectivity estimation, dimensionality reduction, and base learner, every combination of which is tested for each set of input data, resulting in a total 
of 240 models for each of the baseline and week 2 datasets (5 parcellations × 3 connectivity metrics × 4 dimensionality reduction techniques × 4 classifiers) – leading 
to a total of 480 models. Along the highlighted pathway, for example, pre-processed data collected at week 2 is first parcellated using the Power coordinates, resulting 
in a 259x295 matrix for each participant’s data, where 259 is the number of regions of interest (ROI) included in the power coordinates after SNR masking, and 295 is 
the length of the temporal dimension of the original fMRI dataset. Between every pair of ROIs, the correlation between time-courses is then calculated, resulting in a 
single value for every ROI pair. The full set of correlations corresponds to the lower triangle of the full correlation matrix, which is then vectorized with a length of 
33,411 for each participant. This process of feature generation is repeated for each participant, resulting in a 144x33,411 matrix of FC features. Since feature 
generation is independent of response label, this procedure is completed prior to model generation. Features then fed into model generation are scaled, and passed to 
ANOVA feature selection, which chooses the k (value obtained based on internal cross-validation) most relevant features to be used in the linear SVM classifier. 
(Bottom) Delta models are processed through the same analytic pathway, with the addition of a subtraction step at the end of feature generation. Here, both baseline 
and week 2 FC features are generated, and the difference of the two matrices (the delta FC feature matrix) is used in subsequent predictive modelling. An additional 
240 models are generated using these delta features, considering all possible combinations of processing steps. 

J.K. Harris et al.                                                                                                                                                                                                                                



NeuroImage: Clinical 35 (2022) 103120

4

varied slightly among sites, to accommodate for scanner and manufac-
turer differences (see MacQueen et al., 2019 for detailed protocols). RS- 
fMRI was collected over a 10-minute scan (2000 ms repetition time) 
using a whole-brain T2*-sensitive blood-oxygen-level-dependent echo 
planar imaging sequence (30 ms echo time, 4 mm × 4 mm × 4 mm 
resolution). Accompanying whole-brain structural 3D T1-weighted im-
ages were acquired with a 1 mm isotropic resolution. In addition to 
protocol harmonization, substantial quality control and assurance ef-
forts were implemented to ensure consistent high-quality data was 
collected from all sites. These methods included, but were not limited to, 
automated file name and imaging protocol adherence checks, manual 
image quality control rating, and longitudinal monitoring of scanner 
stability using monthly phantom scans from all sites (see MacQueen 
et al. 2019). Details of image pre-processing are included in the Sup-
plementary Materials. 

2.4. Data analysis 

FC was extracted as a connectome, measuring the pair-wise syn-
chronicity between the time-series of each pair of spatial ROIs; where 
the time-series for a single ROI is the average temporally changing signal 
intensity of all voxels included in the ROI. Many studies have noted that 
in both the calculation and the use of these connectomes in machine 
learning models, various steps in the pipeline can have a substantial 
impact on overall model performance (Abraham et al., 2017). To ensure 
that our reported results are not specific to a single pipeline, we tested 
multiple pipelines, altering decisions made at various steps, as depicted 
in Fig. 1. In relation to the computation of the connectome, we consid-
ered different combinations of parcellations and connectivity estimation 
metrics. We also considered various methods for feature dimensionality 
reduction, and various types of base learners. 

Demonstration of the effect of acquiring imaging data at different 
sites on these FC measures can be found in the Supplementary Materials. 

2.5. Parcellation 

To reduce dimensionality, and obtain neurobiologically relevant 
features, pre-processed RS images were parcellated based on either an a 
priori atlas or set of pre-defined ROI coordinates. A time-series for each 
region from either atlas or coordinate set was generated by taking an 
element-wise average of all voxels included in the region. Methods for 
defining these regions, and also the number of regions in each parcel-
lation, vary greatly depending on the parcellation scheme. We consid-
ered the five schemes listed below. Parcellations were all implemented 
using Nilearn (Abraham et al., 2014); with default parameters unless 
otherwise stated. 

Automated Anatomical Labelling (AAL) (Tzourio-Mazoyer et al., 
2002) − 116 region anatomical atlas based on manual segmentation. 

Dosenbach (Dosenbach et al., 2010) − 160 ROIs based on meta- 
analyses of task-based fMRI (radius = 4.5). 

Harvard-Oxford (Desikan et al., 2006) − 48 region cortical atlas 
based semi-automated segmentation (atlas_name = ‘cort-maxprob- 
thr25-2 mm’). 

Power (Power et al., 2011) − 264 ROIs generated based on func-
tional homogeneity (radius = 5.0). 

Yeo (Thomas Yeo et al., 2011) − 17 cortical networks based on 
clustering of functional connectivity in 1000 participants (data =
‘thick_17′). 

To ensure sufficient signal quality, we generated a binary mask that 
set a voxel position to zero, for exclusion, if the signal-to-noise ratio 
(SNR, time-series mean divided by standard deviation) for that position 
was less than 100 in greater than 5% of participants (Drysdale et al., 
2017). Voxels with insufficient SNR were excluded during mean time 
series calculation for parcellations. Based on this low SNR criteria, we 
excluded (all voxels in) five regions from the Power parcellation and one 
from the Dosenbach parcellation, generally along the inferior frontal 

and temporal lobes (Supplementary Fig. S1). 

2.6. Connectivity estimation 

For each parcellation, we then considered the following three mea-
sures to estimate pairwise FC between each pair of brain regions; again, 
calculated using Nilearn (Abraham et al., 2014). 

Correlation 
Partial Correlation – A variant of correlation that infers only direct 

connectivity between regions, as opposed to including indirect con-
nectivity through other regions. 

Tangent – optimized covariance metric for statistical learning 
(Abraham et al., 2017; Dadi et al., 2019). 

As part of the training procedure, FC features were scaled to zero 
mean, and unit variance with respect to the entire training set. This, and 
subsequent steps, including dimensionality reduction techniques, base 
learners, cross-validation, and hyperparameter optimization, were 
implemented using Scikit-learn (Pedregosa et al., 2011). 

2.7. Dimensionality reduction 

Various techniques were applied to further reduce the number of 
input features. The number of features selected, k, was optimized during 
internal cross-validation to be between 5 and 50; the upper limit selected 
in consideration of the sample size. In addition to the strategies listed 
below, models were also tested with this step omitted, to allow the base 
learners to use the full set of FC features. 

Principal components analysis (PCA) – Project data into a lower 
dimensional space; here keeping the first k components. 

ANOVA – Univariate Feature selection based on ANOVA f-value 
between the input features and labels, keeping features with k highest f- 
values. 

Agglomeration – Recursively merge features, stopping when k 
clusters are reached. 

None – Omit dimensionality reduction step and allow base learner to 
use all features. 

2.8. Base learner 

We then ran base learners on the data described above, to produce 
models that could discriminate between treatment responders and non- 
responders. We considered four different base learners, both linear and 
nonlinear, to assess their discriminative capacity. Here, we considered 
support vector machine (SVM) learners as they have been shown to be 
highly effective for classification and are one of the most commonly 
used. We also considered logistic regression for its simplicity and fast 
training time, and random forest as a more complex, and often effective, 
model. 

Logistic Regression – Basic linear classification model. 
Support vector Machine (SVM) with linear kernel. 
SVM with Radial Basis Function (RBF) Kernel – Non-linear SVM. 
Random Forest – Ensemble bagging algorithm based on decision 

trees. 

2.9. Timepoints 

We trained each combination of parcellation, connectivity estima-
tion, dimensionality reduction, and base learner described above with 
each of the three sets of input data based on the time(s) when the data 
was collected: (1) just baseline data, which was collected prior to 
treatment, (2) data collected 2 weeks into treatment, and (3) a combi-
nation of the two time points. For (3), we computed the features for a 
given parcellation and connectivity metric for both baseline and week 2, 
then subtracted the week 2 features from the baseline features; going 
forward, we refer to such models as “delta” models. We compared the 
performance of models trained using data from these three different 
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timepoints using Wilcoxon matched-pairs signed rank test, matching 
results from the same analytical pipelines trained using different data, 
and corrected for multiple comparisons using Bonferroni correction. 

Altogether, for each of the three timepoints, we consider 240 =
5x3x4x4 different models, as we consider five different parcellations 
(AAL, Dosenbach, Harvard-Oxford, Power, and Yeo), three different 
connectivity measures (correlation, partial correlation, and tangent 
embedding) four different dimensionality reduction strategies (PCA, 
ANOVA, agglomeration, and none), and four base learners (logistic 
regression, linear SVM, SVM with RBF kernel, and random forest). For 
each timepoint, and each setting (particular parcellation, connectivity 
measure, dimensionality reduction strategy, and base learner), we used 
internal 5-fold cross-validation to identify the best hyperparameter 
values, using a random search of 100 iterations over the prescribed 
parameter space for both dimensionality reduction and base learner 
(details of hyperparameter optimization included in Supplementary 
Materials). 

2.10. Cross-validation and assessment 

The quality of the learned models was assessed using an external 10- 
fold cross-validation strategy. Here, we partitioned the data into 10 
disjoint equal-sized folds, each with roughly the same number of in-
stances from each scan site and each classification label. Since all the 
parcellations used in this analysis were derived a priori, the parcellation 
and connectome calculation were performed outside of cross-validation. 

This approach produces a model for each fold (9/10 of the data), 
whose accuracy is assessed on the held-out remaining 1/10 of the data. 
The overall performance reported for each model is the mean accuracy 
across all folds. A default ‘dummy’ classifier was also generated to assign 
each patient to the majority class label from the training set. Each model 
for a given timepoint was compared to the default model to determine if 
it could significantly outperform chance level predictions. Models from 
each timepoint were first compared using an ANOVA analysis, with 
subsequent paired t-tests if significance was reached. During external 
cross-validation, the resubstitution accuracy was also assessed by mak-
ing predictions on the training data to be used as an indicator of over- 
fitting. 

The impact of changes to the analytical pipeline was statistically 
tested using the Wilcoxon matched-pairs rank test corrected with Bon-
ferroni correction, matching pipelines differing in only a single step. 

3. Results 

The default model, predicting the majority class, had a prediction 
accuracy of 53.5% (SD 3.7). Fig. 2 shows the cross-validation accuracy 
results for the top 10 models from each timepoint, along with details of 
corresponding analytic pipelines. 

3.1. Baseline models 

Models trained on baseline data had accuracies ranging from 39.0 
(SD 11.7) to 61.2% (SD 10.5), none of which performed significantly 
differently from the default classifier (p-value > 0.05). Only three 
models exceeded 60% mean accuracy. 

3.2. Week 2 models 

Models trained using week 2 data showed performance similar to 
baseline models, with mean accuracies between 37.5 (SD 8.8) to 66.5% 
(SD 12.0), only the highest of which performed significantly better than 
the default classifier (p = 0.014). The best performing model was also 
the only model to exceed 60% mean accuracy, having over 6% higher 
accuracy than the next best performing model. Corrected Wilcoxon rank 
test showed no significant difference between models from baseline and 
week 2 (p = 1.0). 

3.3. Delta models 

40 models of the 240 modelling pipelines tested exceeded a mean 
accuracy of 60%. Thirty of these 40 models came from pipelines utilizing 
correlation as the metric to calculate connectome matrices. Mean test 
accuracies (over all 240 models) ranged from 41.6 (10.1) to 69.6% (SD 
10.8), with 17 models performing significantly better than the default 
model at a p-value of < 0.05. Statistical comparison with models trained 
with baseline, or week 2 data, show highly significant differences (p =
1.6e-11, p = 2.4e-13, respectively) although only an overall modest 
mean performance improvement of 3.1 and 3.4% respectively. 

3.4. Pipeline choices 

We assessed the impact of different choices in the analytic pipeline 
only in the delta models (Fig. 3), as neither baseline nor week 2 models 
indicated predictive capacity beyond chance level. Connectivity metric 
showed the greatest impact on predictive accuracy, with partial corre-
lation models performing significantly worse than both correlation and 
tangent (p = 3.6e-12, p = 3.0e-5, respectively). Models trained with 
correlation data also significantly outperformed tangent models (p =
3.0e-7). 

Parcellation choice had a small impact on accuracy but was signifi-
cant between AAL and Yeo (p = 0.008), Dosenbach and Yeo (p = 0.003), 
and Power and Yeo (p = 0.016) parcellations. In general, parcellations 
with fewer regions tended to outperform those with more. Neither base 
learner nor dimensionality reduction technique had a significant impact 
on prediction accuracy, although the random forest base learner and 
ANOVA-based dimensionality reduction showed moderate improve-
ment over other techniques. 

4. Discussion 

Early symptom response to antidepressant medication has been well 
established to be one of the strongest predictors of treatment response to 
date (Jakubovski and Bloch, 2014; Szegedi et al., 2009). However, it is 
not known if neurobiological measures carry this same predictive 
power. Our analysis, utilizing a relatively large heterogeneous sample, 
shows that FC features collected from a single time-point, either prior to 
treatment initiation, or 2 weeks into treatment, were not capable of 
predicting response significantly above chance level, except for a single 
anomalous case amongst the week 2 models. In the same sample, 
however, the change in FC matrices between baseline and week 2 pre-
dicting response after eight weeks of treatment, was significantly above 
chance, with the highest performing model achieving 69.6% (SD 10.8) 
accuracy. 

Previous authors utilizing RS-fMRI data to predict individual 
response to pharmacological treatment have reported predictive accu-
racies in excess of 80% (Cohen et al., 2021; Gao et al., 2018); although 
these rarely included imaging data from more than one site, or samples 
with more than 50 participants. One notable result from the iSPOT trials, 
utilizing 80 participants, reported prediction accuracy for remission 
exceeding 80%, based on models trained from intrinsic FC measures 
between the posterior cingulate cortex (PCC) and anterior cingulate 
cortex (ACC)/medial prefrontal cortex (mPFC) (Goldstein-Piekarski 
et al., 2018); regions that have been implicated in depressive sympto-
mology (Cullen et al., 2009; Veer et al., 2010). Problematically, the 
mPFC, ACC, and other limbic regions lie in the inferior frontal and 
temporal lobes, which are known to experience substantial magnetic 
field inhomogeneities due to numerous air/tissue interfaces in the re-
gion (Truong et al., 2002), resulting in susceptibility artefacts and signal 
loss. SNR masks produced as part of this analysis (Supplementary 
Fig. S1) to ensure adequate signal coverage in regions included in model 
development excluded significant portions of regions of interest 
including subgenual ACC and raphe nuclei, which are important com-
ponents of emotional regulation and serotonergic pathways. Poor signal 
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Fig. 2. Ranked models with highest mean cross-validation accuracy for data from baseline (left), week 2 (center), and delta (right) timepoints. Bar charts 
depict the mean test accuracy for each pipeline with error bars representing standard deviation across folds. Pipelines that performed significantly better than default 
accuracy (p-value ≤ 0.05) are indicated with an asterisk, which occurs only in the delta models and a single week 2 model. Tables below further detail the pipeline 
settings of top performing models along with mean cross-validation accuracy, and standard deviation. 
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coverage in these areas may have failed to capture neuronal interactions 
pivotal to predicting treatment response. 

Lower accuracies observed in this study are also consistent with a 
previously observed, paradoxical relationship between sample size and 
accuracy in psychiatric predictive models (Kalmady et al., 2019; Varo-
quaux, 2018; Wolfers et al., 2015); wherein larger samples tend to report 
lower overall accuracy. An overall increase in dataset heterogeneity is 
likely a large contributing factor to this decline, as it becomes more 
challenging to control heterogeneity as sample sizes increase. Although 
this heterogeneity may appear to decrease overall accuracy, results of 
less tightly controlled studies are likely more generalizable to clinical 

practice, as they tend to encompass more realistic patient populations 
and multiple collection sites. 

Instability in model performance across cross-validation folds, 
resulting in large error bars, is also a concern in small samples, and leads 
to uncertainty around the capacity of these models to generalize to new 
samples. All models tested exhibited a large degree of variance in per-
formance across cross-validation folds; with standard deviations reach-
ing up to 18.7%, which is consistent with empirical results from 
Varoquaux (2018) for samples of similar size. This result, however, 
draws into question whether the proposed models are indeed able to 
classify treatment response above a chance level. Moreover, the number 
of models run may raise concerns of ‘overhyping’ (Hosseini et al., 2020), 
where analysis choices are made after observing test set accuracies. This 
effect becomes clearly evident in the week 2 model results, where the 
only significant model has an accuracy over six percent higher than the 
next best performing model; an effect that is more likely to be spurious, 
rather than a reflection of superior modelling choices. Even the more 
consistent performance of the delta models may be questionable in light 
of the number of models run, although they were found to statistically 
outperform baseline and week 2 models with a high degree of 
significance. 

Model stability and performance are also negatively impacted by 
small sample sizes relative to the number of features; a cited concern of 
neuroimaging features in machine learning (Du et al., 2018; Varoquaux, 
2018). Under these conditions, the training samples inadequately cover 
the feature space leading to overfitting. Fig. 4 demonstrates that across 
time point and across model type, resubstitution accuracy consistently 
exceeds test accuracy, an indication of overfitting. Given the inherently 
high-dimensional nature of FC data, considerably larger sample sizes 
may be required to elucidate subtle patterns necessary for prediction, 
although resubstitution accuracy would still be expected to exceed test 
accuracy in larger real-world data sets but by smaller amounts. Similar 
concerns have been suggested in utilizing genetic features (Wray et al., 
2013), which was cited as a major concern in a recent report by Shu-
make et al. (2021). Here, authors failed to show improvement in accu-
racy when including genetic data in models that predict SSRI treatment 
response. These results were somewhat disappointing given the 
considerable support in the literature for a heritable component to SSRI 
response and the interest in the predictive capacity of genetic data in 
treatment response (Amare et al., 2017). 

Amassing data sets of adequate size is extremely challenging, due, in 
part, to the high costs and scarce resources for image acquisition. 
Prognostic studies, such as ours, where additional follow-up and patient 
monitoring is required, bring additional challenges. Improved predictive 
accuracy observed in the delta models, which include imaging data for 
each patient from two separate timepoints, requires yet additional re-
sources. Results from Klöbl et al. (2020), however, suggest medication- 
induced FC alterations may be achieved in a much shorter timeframe by 
an acute intravenous SSRI challenge. This may allow the week 2 time-
point used in delta models to be acquired at the baseline visit following 
an intravenous challenge, eliminating the need for a second scanning 
session and 2-week medication trial before response prediction can be 
made. 

Whether we consider one- or two-timepoints, our current approach 
requires a large number of participants to find meaningful patterns, 
leading to good generalization. An alternative approach to increasing 
sample size may be to reduce the number of features used to describe 
each patient; either through parcellation choice or a priori manual 
feature selection. When comparing performance of models utilizing 
different parcellations in Fig. 3 (top), a trend emerges favouring those 
with fewer regions (and therefore fewer features), which may suggest 
that larger parcellations produce too many features to be adequately 
modelled within the given sample. Ultimately, however, smaller par-
cellations require more voxels to be averaged together in a single region, 
implicitly imposing regional homogeneity, which may lead to infor-
mation loss (Dornas and Braun, 2018) important in the predictive task. 

Fig. 3. Impact of analytic pipeline choices on prediction accuracy. For 
each evaluated step of the analytic pipeline, the figure shows the mean dif-
ference between pipelines with indicated alternatives and mean overall pre-
dictive accuracy. Error bars are scaled to one-sixth standard deviation. For each 
step in the pipeline, alternative operations were compared using a Wilcoxon 
matched-pairs rank test with Bonferroni correction. Steps involved in feature 
generation had the greatest impact on model performance, specifically the 
choice of connectivity metric, where correlation showed the highest mean 
performance. Neither step in model generation (dimensionality reduction or 
base learner) had a substantial impact on performance. 
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Manual feature selection similarly has the potential to overlook con-
nections that may meaningfully contribute to predictions. 

Results from delta models in our analysis show a modest improve-
ment over default accuracy, similar to reports from larger, multisite 
studies such as (1) Chekroud et al. (2016), utilizing clinical measures 
from the STAR*D study to predict treatment response after 2 weeks 
reporting a mean accuracy of 67.9% (SD 3.8), which improved over 
baseline prediction accuracy of 64.65% (SD 3.2), (2) Shumake et al. 
(2021) using pre-treatment clinical and small nucleotide polymorphism 
(SNP) features to achieve 62.8% accuracy, and (3) Bartlett et al. (2018) 
who achieved 63.9% accuracy predicting SSRI remission using both pre- 
treatment, and also early-treatment cortical thickness measurements. 

A plateau in accuracy approaching 70% across these larger studies 
may be an indication of a theoretical upper limit on the capacity of 
models to predict response to pharmacological treatment in MDD, likely 
impacted to some degree by uncertainty associated with the response 
labels (Cortes et al., 1995). This limit, however, may be different for 
alternative prediction targets of treatment response such as remission, 
and treatment resistance (Sajjadian et al., 2021). MADRS scores, the 
basis of the binary labels of response in this analysis, are inherently 
noisy due to variability in rater assessment (Davidson et al., 1986), and 
may also be biased due to factors independent of biological response that 
impact mood such as changes in external stressors, spontaneous recov-
ery, and placebo effects. 

5. Limitations 

This study is not without limitations. As an open label trial, there was 
no placebo group to control for known placebo effects in treatment 
response. While this dataset is from one of the larger fMRI studies to 
examine treatment response in MDD, it may still be substantially smaller 
than what might be necessary for modelling inherently high- 
dimensional FC data. As discussed earlier, the inability of single- 
timepoint models (i.e., baseline, or week 2) to exceed chance level 
performance may be mitigated by including more patients in the 
training data. 

In this analysis we chose to use cross-validation splits with equal 
proportions of data from each acquisition site. This approach, however, 
does not assess how the model would perform on data with uncontrolled 
site-specific variability. Alternatively, defining folds by acquisition site, 
where each fold consists of data from a single site, might better assess a 
model’s capacity to generalize to new sites. We did not take this 
approach in our analysis, given the uneven distribution of patients 
across imaging sites (see Supplementary Materials Table S1) and limited 
sample size. Ideally, future analyses may evaluate model performance 
on a completely independent and external testing data set. 

Further, while we attempted to explore the impact of different 
modelling choices on overall performance in predicting treatment 

response in MDD, this was not an exhaustive search of the space. For 
example, we limited parcellations to pre-defined atlases and co-ordinate 
sets but did not consider the potential of data-driven strategies. Novel 
approaches to each step of the analytic pipeline continue to be devel-
oped and may improve classification accuracy. In addition, we note 
there are state-of-the-art approaches for learning from resting-state fMRI 
(such as Chen et al., 2022; Santana et al., 2019; Zhao et al., 2022). 
However, as the main point of this paper is showing that including week 
2 data can significantly improve the accuracy over just using the base-
line data, we decided it was sufficient to show this on these standard 
machine learning approaches. 

6. Conclusion 

This study explored ways to learn a model that can predict the 
effectiveness of escitalopram for treating MDD, based on RS-fMRI data, 
taken at baseline and/or at 2 weeks. Our extensive empirical analysis 
(over 720 possible models) suggests that models that use only the data at 
baseline, or that use only the data at 2 weeks, are not sufficient for this 
task. However, we were able to produce several effective learned models 
that combine the data from both timepoints. While we acknowledge that 
baseline data might be sufficient, given a larger sample, additional 
features, and perhaps other learning techniques, we anticipate, even 
then, including early biological changes following treatment initiation 
may lead to yet more accurate predictions. 
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