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Hematopoietic stem cell transplantation (HSCT) is an increasingly common treatment for children with a range of
hematological disorders. Conditioning with cytotoxic chemotherapy and total body irradiation leaves patients severely
immunocompromised. T-cell reconstitution can take several years due to delayed restoration of thymic output. Understand-
ing T-cell reconstitution in children is complicated by normal immune system maturation, heterogeneous diagnoses, and
sparse uneven sampling due to the long time spans involved. We describe here a mechanistic mathematical model for
CD4 T-cell immune reconstitution following pediatric transplantation. Including relevant biology and using mixed-effects
modeling allowed the factors affecting reconstitution to be identified. Bayesian predictions for the long-term reconstitution
trajectories of individual children were then obtained using early post-transplant data. The model was developed using data
from 288 children; its predictive ability validated on data from a further 75 children, with long-term reconstitution predicted
accurately in 81% of the patients.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE
TOPIC?
� The rate and extent of CD4 T-cell recovery post-stem cell
transplantation has been studied separately in selected groups of
patients through summarizing counts at certain time points or
the time to reach a certain count.
WHAT QUESTION DID THIS STUDY ADDRESS?
� Using a mechanistic nonlinear mixed effects model, can we
simultaneously model rate and extent using data from all avail-
able patients with heterogeneous diagnoses, stem cell sources,
and therapeutic conditioning protocols? What are the key
patient factors associated with CD4 T-cell recovery?

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� A single mechanistic model can be used to fit heterogeneous
data on CD4 T-cell recovery in children. The important factors
associated with CD4 T-cell reconstitution have been identified
and quantified with time.
HOW THIS MIGHT CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE
� There are two major uses of the model. First, in predicting
CD4 T-cell recovery, it can be used to inform future study and/
or clinical protocol design of novel conditioning protocols, and
second, as a Bayesian tool to predict CD4 T-cell recovery in
individual patients to inform clinical practice.

Hematopoietic stem cell transplantation (HSCT) is used to treat a
range of malignant and nonmalignant disorders, including leukemias,
immunodeficiencies, metabolic disorders, hemoglobinopathies, and
marrow failure. Patients who undergo HSCT usually receive condi-
tioning to eradicate disease and reduce or ablate the host immune
system to prevent rejection. This comes in the form of radiotherapy,
cytotoxic chemotherapy, and antilymphocyte antibodies. Condition-
ing leaves patients severely immunocompromised and liable to both
opportunistic infections and re-emergence of latent infections, such
as adenovirus, cytomegalovirus, and Epstein-Barr virus. Infection
constitutes a major cause of mortality from HSCT.
After HSCT, the reconstitution of some hematopoietic cells

(e.g., neutrophils) is fast, taking a matter of weeks. However, the

reconstitution of others, including CD4 T lymphocytes, is slow,
taking months to years, requiring extended patient follow-up
post-HSCT. CD4 T cells are crucial to immune function, and a
recent study in children receiving antithymocyte globulin showed
successful CD4 T-cell reconstitution was associated with
improved survival.1

Identifying patient characteristics associated with slow recon-
stitution and predicting individual reconstitution trajectories will
prove useful in both designing new studies of conditioning proto-
cols and in clinical management post-HSCT. Predicting T-cell
reconstitution in children is complex, however, because the time
scales of reconstitution are similar to that of immune system
development.2 Furthermore, children receive HSCT for a variety
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of reasons and at different ages, so collating large datasets will
result in heterogeneity in patient characteristics.
To date, studies have tended to use small homogeneous groups of

patients and assessed reconstitution by either taking the concentra-
tion of lymphocyte subsets at certain predetermined time points
after HSCT,3–6 or measuring the time taken to reach predetermined
concentrations.1,7–9 These approaches do not study the entire popu-
lation receiving HSCT, and through summarizing available data,
only evaluate the rate or extent of the reconstitution, not both.
A mathematical model of all available data can give both the

rate and extent of reconstitution by deriving a trajectory for CD4
concentration with time. Mixed-effects modeling make it possible
to fit mathematical models to the sparse, uneven, and heteroge-
neous data available, while removing bias by accounting for corre-
lations in subjects’ data through parameter-level interindividual
variability.10 Such models can be used for the design and analysis
of clinical trials. Recently, it has been shown that using a mecha-
nistic model fitted to all data points, rather than comparative sta-
tistical test at a single time point, can increase the power to
detect drug effects by up to 10-fold.11 Future clinical trials on
new agents for conditioning using mechanistically modeled CD4
response as an outcome could, therefore, be conducted with sub-
stantially fewer patients than a traditional study design.
In this article, we present a novel mechanistic mathematical

model for CD4 T-cell reconstitution after pediatric HSCT. To
delineate age-related effects from other important covariates, we
used a priori scaling of production and loss terms in the model.
This was based on previous models taking T-cell receptor exci-
sion circle (TREC) and Ki67 expression to infer changes in thy-
mic output, proliferation, and loss with age.12,13 We first used
the model to identify the factors significantly associated with
reconstitution, and, second, to make individualized predictions
for long-term reconstitution using these covariates and CD4 T-
cell counts from the first 6 months post-HSCT.

RESULTS
Mechanistic model building
The raw data (CD4 T-cell concentrations in blood) from chil-
dren after HSCT are given in Figure 1. A one-compartment

turnover model was used whereby new cells enter the compart-
ment from the thymus, and cells may then proliferate or die (Fig-
ure 2). Functions were included to account for the underlying
biology of the system. The homeostatic mechanisms, and, in par-
ticular, competition for resources, such as cytokines and self-
peptide major histocompatibility complex, were represented by
dependence of both proliferation and loss on cell concentra-
tions.14–17 Age dependence of proliferation and loss were includ-
ed in the model to account for the dynamics of the system
known to slow with age.12,13,18 Thymic output was also modeled
as age dependent as the thymus involutes with age and T-cell pro-
duction decreases. Finally, the model accounts for the delay to
production of T cells by the thymus after HSCT shown by analy-
sis of previous data for TRECs and recent thymic emi-
grants.3,19,20 The mathematical functions used are described in
the Methods section.
Parameter estimates for the model-building dataset are given in

Table 1. The typical CD4 T-cell concentration returned to 90%
of the expected value for age, and then followed the expected tra-
jectory of a healthy child. On average, it took 22 months for a
typical child of median age at the time of HSCT to reconstitute
to this CD4 concentration for age, varying from 17 months for a
1-year-old to 33 months for a 10-year-old. The mean delay for
thymic output to recover to 50% production was found to be 5
months. Thymic output recovery was fast, with the time taken to
recover from 10–90% being 3.5 months. After the thymic output
recovered, the thymic output for a typical child of median age
was found to peak at 200 cells/day, in the region expected for a
healthy child of that age.12,21 The covariates tested are listed in
Table 2.

The type of conditioning affects the reconstitution
Parameter estimates for T-cell concentration at the time of
HSCT were lower with two of the conditioning drugs, alemtuzu-
mab and antithymocyte globulin (ATG). For patients having nei-
ther of these drugs (n 5 151), the model parameter estimate for
the mean initial CD4 concentration was 178 cells/lL, whereas
for those who had alemtuzumab (n 5 158), the estimated mean
was decreased by 83% to 30.6 cells/lL (P < 0.001), and for those
who had ATG (n 5 10), it was decreased by 95% to 8.4 cells/lL
(P < 0.001). This resulted in a delayed reconstitution (Figure 3).
Although the estimated initial mean number of cells in

patients who received no conditioning (n 5 41) was unaffected,
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Figure 1 Data for CD4 T-cell reconstitution after pediatric hematopoietic
stem cell transplantation (HSCT; n 5 319). These data were used in the
model development and covariate analysis. Each colored line is the data
for an individual transplant. The thick black line gives a local regression
curve for the data.

Figure 2 Schematic of the model. The compartment X(t) represents CD4
T-cell concentration in the peripheral blood with time t after hematopoietic
stem cell transplantation (HSCT). New cells output by the thymus enter
the compartment at zero-order rate k and cells proliferate into two cells or
die at first-order rates p and d, respectively. Scaling for age was added to
k, p, and d and a function causing a time delay in the recovery of k after
transplant was used.
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reconstitution was found to result in a lower long-term concen-
tration, below that expected of a healthy child (Figure 3).

Patients with leukemia have higher CD4 concentrations
Patients with leukemia (n 5 95) were estimated to have a higher
long-term CD4 concentration after HSCT than those with other
conditions (P < 0.001; Figure 3). Both patients with lympho-
blastic leukemia (n 5 45) and patients with myeloid leukemia
(n 5 50) were found to have significantly higher long-term CD4
concentrations, although there was no significant difference
between them (P 5 0.23).

Having acute graft-vs.-host disease is associated with a
higher initial CD4 concentration
The estimated mean initial CD4 concentration for patients who
had acute graft-vs.-host disease (GvHD; n 5 102) was 28%
higher than those for whom there was no reported GvHD (P <
0.001; Figure 3). Model diagnostics from the full covariate model
are given in Figure 4.

Bayesian predictions of reconstitution trajectories
A separate validation dataset that had not been used for model
building was used to assess the predictive ability of the model. To
illustrate the model’s potential usefulness, individual parameter
estimates were generated using CD4 concentrations measured in
the 6 months post-HSCT and the individual’s relevant covari-
ates. These individual parameter estimates were used to produce
a predicted reconstitution trajectory, which was compared with

actual post 6-month measurements not used in the model for up
to 3 years post-HSCT.
In 81% of the patients (n 5 61), the model gave a good predic-

tion, with over 75% of the observed data within the model confi-
dence intervals, and the correct trend of CD4 reconstitution
identified. Examples of good predictions in nine patients are
highlighted in Figure 5), whereas predictions for all patients are
in Supplementary Figure S3 online. The highlighted patients
were chosen to have ages from across the spectrum of the data
and a spread of the covariates used in the model. Patients 102
and 120 were chosen to demonstrate that two individuals with
similar age and the same covariates could have substantially dif-
ferent reconstitution pathways predicted by the model, which
was guided by early CD4 concentrations. Also of note is patient
130, who from early measurements could be thought to be at risk
of poor recovery, but the model showed normal expected long-
term recovery, as confirmed by later observations.

DISCUSSION
A novel mechanistic model of CD4 T-cell reconstitution after
HSCT in children has been developed. HSCTs are performed in
heterogeneous groups of patients each requiring a stratified
approach to conditioning and follow-up treatment. Prolonged
CD4 T-cell count after HSCT leaves patients at risk of mortality
and morbidity due to opportunistic infection, so understanding
factors associated with reconstitution is vital. Our model now has
the potential to be used in a clinical trial setting11 or in multivari-
able analysis of cohort studies1 to tease out studied treatment
effects from other important covariates. Furthermore, the model

Table 1 Typical model parameter estimates with SDs, and random effect variances with SDs

Structural model

Parameter Estimate SD X SD

k0 Proportion of theoretical thymic output13 (cells/day) 0.216 0.0711 1.57 0.55

d0 Proportion of expected loss (/day) 0.477 0.0959 1.62 0.386

p0 Proportion of expected proliferation (/day) 0.207 0.0239 0.251 0.0960

X0 Initial concentration of T cells (cells/lL) 168 21.5 1.31 0.206

kh Time to recovery in thymic output (days) 133 20.3 1.27 0.247

kr Rate of recovery in thymic output 9.66 1.36 1.22 0.431

r Variance of the residual error 0.219 0.0167 — —

Covariate model

Parameter Covariate Effect size SD P value

X0 Alemtuzumab -0.842 0.029 <0.001

X0 ATG -0.939 0.052 <0.001

X0 Acute GvHD 0.283 0.196 <0.001

k0 Leukemia 1.32 0.442 <0.001

p0 No conditioning -0.844 0.025 <0.001

ATG, antithymocyte globulin; GvHD, graft-vs.-host disease.
Parameter estimates and the random effect variances (Xs) were estimated from the model-building dataset. The SDs for both the parameter means and for the variances
of the random effects were found through 200 bootstrap samples using PsN version 3.5.3.44 The significant categorical covariates were included through multiplication of
the parameter by (11Effectsize), testing the null hypothesis that the effect size is zero.
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has the ability to predict reconstitution on an individual basis. A
major part of the clinical management of patients post-transplant
is in immunosuppressant dosing to limit GvHD, whereas pre-
venting graft failure, carried out alongside managing infective and
other complications with other (potentially interacting) drug and
cell therapies. Monitoring CD4 counts forms an important guide
to this process, and Bayesian predictions from our model
reported alongside CD4 counts will aid clinicians in making
treatment decisions in the post-transplant period.
Predictions were made from the model for individual patients

in another dataset, using only their covariates and data up to 6
months post-HSCT. Predictions were then validated for up to 3
years after the HSCT, with accurate predictions in 81% of
patients tested. Using the individual patient’s variance-covariance

matrix, we were able to provide confidence intervals on the pre-
dicted trajectory, the size of which being a reflection of the
amount of information available on that patient. Predictions
were formed using data from the first 6 months. Earlier predic-
tions could be made, but the accuracy of the resulting predic-
tions decreased as the confidence intervals of the predictions
increased. Similarly, as new measurements of CD4 concentra-
tions were taken, the predictions could be updated; with each
additional data point, the parameter estimates improve and the
confidence intervals decrease. With the validating dataset in this
study, using data from the first 3 months rather than 6 months
increased the size of the confidence intervals by a mean of 10%,
whereas using data from the first 12 months decreased confi-
dence intervals by 12%.

Table 2 Percentage breakdown of the demographics and the drugs used for the patients in the datasets, all of which were tested as
covariates

M V M V M V

% % Diagnosis % % HSCT % %

Age at HSCT, years

0!1 16 19 Immunodeficiencies 43 40 1st 85 88

1!2 21 16 SCID 26 24 2nd 13 11

2!5 23 21 Wiskott-Aldrich 4 7 3rd 1 1

5!10 24 31 CGD 4 8 GvHD

10! 16 13 Leukemia 30 23 Reported 32 60

Sex ALL 14 11 I 12 33

Male 37 32 AML 11 11 II 12 20

Female 63 68 HLH 11 7 III 6 5

Stem cells Anemia 7 0 IV 2 1

Bone marrow 47 36 Autoimmune 3 0 Conditioning

Peripheral blood 38 37 Lymphomas 2 0 Fludarabine 21 73

Cord blood 15 27 Viruses Cyclophosphamide 44 16

Combinations 1 0 Cytomegalovirus Melphalan 30 23

Donor type Positive 32 16 Busulphan 24 41

Matched 63 52 Negative 67 81 Treosulphan 21 24

Sibling 27 19 Unknown 1 3 Alemtuzumab 50 40

Family 5 7 Epstein-Barr virus ATG 3 16

Unrelated 31 27 Positive 26 16 Anti-CD45 4 3

Mismatched 32 37 Negative 38 64 Total body irradiation 14 8

Sibling 1 0 Unknown 37 3 None 13 5

Family 2 1 Adenovirus Prophylaxis

Unrelated 29 36 Positive 33 – Cyclosporine 88 88

Haploidentical 4 3 Negative 67 – Methotrexate 21 16

Autologous 1 8 Mycophenolate 50 68

ALL, acute lymphoblastic leukemia; AML, acute myeloblastic leukemia; ATG, antithymocyte globulin; CGD, chronic granulomatous disease; GvHD, graft-vs.-host disease;
HLH, hemophagocytic lymphohistiocytosis; SCT, stem cell transplantation; M, model-building dataset (n 5 319), used for model building and covariate analysis; SCID,
severe combined immunodeficiency syndrome; V, validation dataset (n 5 75), used for assessing the predictive ability of the model.
Positive for cytomegalovirus, Epstein-Barr virus, or adenovirus was defined as detectable virus post-transplant.
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Previous studies have reported a median CD4 count in the
range of 100–150 cells/lL at 3 months post-HSCT3–5,22 and
500–1000 cells/lL at 1 year post-HSCT,3,5,9 which agrees well
with the our model output for a typical child aged 37 months of
105 cells/lL at 3 months and 984 cells/lL at 1 year. Similarly,
the time taken to reach 500 cells/lL was around 10.1 months

(range, 1.1–55.3 months) in a previous study7; whereas our mod-
el predicts 7.5 months for a median-aged child varying from 5.3
months for a 1-year-old to 14.3 months for a 10-year-old child.
Hence, the model-based approach we present builds on previous
work by simultaneously analyzing the rate and extent of reconsti-
tution. Furthermore, the model seems to give realistic estimates
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Figure 3 The effects of the significant covariates (P < 0.005, based on a likelihood ratio test) on the CD4 reconstitution of patients of 6 months, 12
months, 37 months (median age), and 5-years-old at the time of hematopoietic stem cell transplantation (HSCT). A typical individual is one who is not in
each of the covariate groups listed. The expected curve of a healthy child uses the function for N(s) given in the Methods section.2 Each other trajectory
gives the effects of the significant covariates, included through the stepwise covariate model procedure. Conditioning drugs alemtuzumab (n 5 158) and
antithymocyte globulin (n 5 10), and acute graft-vs.-host disease (n 5 102) affect initial number of cells, whereas leukemia (n 5 95) and having no condi-
tioning (n 5 41) affect long-term reconstitution.

Figure 4 Diagnostic plots for the model. (a and b) give population and individual predictions vs. observations; (c and d) give conditional weighted resid-
uals (CWRES) against time and population prediction, respectively; (e) gives a visual predictive check: dots give the observed data, the solid black line
the observed median, and the dashed black lines the observed 95% prediction intervals. The gray shaded areas give the 95% confidence intervals for the
predicted median and for the predicted 95% prediction intervals.
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of mean CD4 T-cell lifespan of 130, 300, and 550 days for a 1,
10, and 18-year-old, respectively. These agree with recent analyses
of labeling studies with estimates between 222 and 611 days
(range, 167–1245 days).21,23

In searching for significant covariates associated with recovery,
we first sought to delineate the effect of age, which is a potential
confounder because normal CD4 count changes radically with age,
and children of different ages will receive HSCTs for different rea-
sons. Rather than correcting each data point for an age-expected
value, as has previously been done,24 we chose to scale the model
parameters to age-expected values using biological prior informa-
tion on thymic output and markers for competition and loss.
Thymic output for age was predicted from a previous study.13

The absolute value of the prediction was uncertain due to a con-
stant for Ki67 expression duration, and more recent work has indi-
cated that thymic output could be as little as 10% of that
predicted.21 As such, we used a scaling factor, thereby retaining the
shape of the expected thymic output with age while allowing its
magnitude to be informed by the data. Our estimate of 22%, which
was previously predicted,13 agrees with these later analyses.21 In
addition, parameters describing thymic recovery post-HSCT were
added, and the model predicting 90% production for age taking
around 7 months, matched well the experimental evidence of
recovery between 5 and 10 months from both TREC analysis19,20

and measures of recent thymic emigrants using CD31 expression.3

The covariates listed in Table 2 were tested. Alemtuzumab
and ATG are given as pretransplantation conditioning to deplete
circulating lymphocytes and have long terminal half-lives (15–21
days for alemtuzumab25 and 29.8 days for ATG.26) The finding
that these drugs were associated with reduced initial CD4 counts
was, therefore, unsurprising. Alemtuzumab and ATG decreased

the initial number of cells by 84% and 94%, respectively, which is
in line with other studies, in which alemtuzumab and ATG were
associated with later and slower reconstitution in both children
and adults.22,26,27 A previous study also found that alemtuzumab
caused a significantly longer delay to reconstitution than ATG,28

which was not observed in the analysis described here, perhaps
because our data included very few patients who received ATG.
Those patients who had no pretransplantation conditioning had

a reduced mean long-term CD4 concentration, which differs from
studies showing that reduced conditioning was associated with
increased CD4 concentrations.22,26,27,29 One possible explanation
is that pretransplantation conditioning creates T-cell space allow-
ing donor T cells to expand more efficiently. Similarly, the finding
of increased long-term CD4 concentration for patients with leuke-
mia could be due to these patients receiving full myeloablative con-
ditioning, leaving more space for donor T-cell expansion.
Our model also predicted that a raised initial CD4 concentra-

tion was associated with incidence of acute GvHD. This agrees
with previous studies that found T-cell depleted grafts to be asso-
ciated with decreased incidence of acute GvHD.30–33 The associ-
ation was significant in addition to the changes in the initial
mean CD4 concentration caused by alemtuzumab, which was
received by 53% of the patients with acute GvHD.
In the covariate analysis, cord blood transplantation (CBT)

was not found to be a significant covariate, in agreement with
Fernandes et al.34 In the observed data, patients who have had a
CBT (n 5 48), as opposed to peripheral blood or bone marrow
transplants, had a faster reconstitution in the months after the
transplant. In the covariate analysis, however, these differences
were explained by a combination of the effects of age and pre-
transplantation conditioning. Patients who underwent CBT

Figure 5 Examples of predicted reconstitution (9 patients of the 75 that were modeled) in which the model achieved a good prediction, listed in age
order. The circles are the data points that were used to make the predictions, and the crosses are the data not used in forming predictions for comparison
to the predictions. The line is the median prediction, with the green shaded area giving the 90% confidence intervals. The blue line and shaded area are
the median and 90% confidence intervals of the expected CD4 concentration of a healthy child of this age. GvHD, graft-vs.-host disease; HSCT, hemato-
poietic stem cell transplantation.

ARTICLES

354 VOLUME 102 NUMBER 2 | AUGUST 2017 | www.cpt-journal.com

http://www.cpt-journal.com


were younger, with 60% of the patients under 2-years-old (n 5

29) at the time of HSCT in comparison to 37% of the rest of
the model-building dataset and with a median age at HSCT of
1.5 years in comparison to 3.6 years. They were also less likely to
have had alemtuzumab or ATG, with 83% (n 5 40) having nei-
ther, in comparison to 41% of the rest of the transplants. This
agrees with other studies, which have found that age7 and the
omission of ATG35 can explain the differences observed in the
reconstitution of patients after CBT.
In conclusion, a mechanistic model was developed that pre-

dicted on an individual basis the long-term immune reconstitu-
tion of CD4 T cells after HSCT. For the first time, the model
brought together many aspects of the immune system after an
HSCT, including homeostatic mechanisms, changes to thymic
output, loss and proliferation with age, and impaired thymic pro-
duction of T cells in the months after HSCT. By using this bio-
logical prior knowledge in the model, parameter estimates were
able to delineate expected age effects from disease and treatment-
specific covariates, in addition to separating CD4 production
from loss. These predictions allow for a more informed assess-
ment of the potential long-term position of the patient and could
be used to inform clinicians of the necessity of a change in regi-
men for that particular patient.
To our knowledge, this was the first time a mechanistic model has

been used to predict long-term reconstitution after HSCT in chil-
dren. As we enter an era of electronic hospital records, there is the
potential to use these data directly to provide predicted reconstitu-
tion trajectories automatically for children after HSCT, creating a
useful tool to inform on the clinical management of these patients.

METHODS
Data
The dataset used for model building and covariate analysis was collected dur-
ing routine clinical practice between 2005 and 2011 by the Blood and Mar-
row Transplant Unit at the Great Ormond Street Hospital for Children
NHS Trust. The validation dataset was collected in the same manner
between 2010 and 2014. The study was approved by the Great Ormond
Street Hospital Institutional Review Board and the parents of the patients
provided written informed consent for their data to be used in the database
according to the Declaration of Helsinki. The data comprised CD4 T-cell
concentrations taken at regular intervals for up to 7 years after HSCT.
In the modeling dataset, there were 288 patients who had 319 transplants

among them. There were 2,928 CD4 concentrations in total with a median
of 8 samples (range, 1–43 samples) taken post-transplantation. In this data-
set, 24% of the patients died within the 1–6 year follow-up period; of which
36% died from infection, 35% from disease relapse, and 15% from acute
GvHD. In the validation dataset, there were 75 patients. A breakdown of
the demographics of both datasets is given in Table 2.

Model building
The rate of change in X(t) (the CD4 T-cell concentration with time t
after the HSCT) is:

d
dt
X5k2dX1pX (1)

where k zero-order thymic output of T cells; d first-order cell loss rate;
and p first-order proliferation rate. Biological prior knowledge was then
incorporated into the model.

Homeostatic mechanisms and age affect
proliferation and loss
T-cell populations are maintained through proliferation and loss. To sur-
vive and proliferate, CD4 T cells require interactions with resources,
such as cytokines14,36 and self-peptide major histocompatibility complex
class II complexes.37 Homeostasis is then maintained through competi-
tion for these resources15,16 with proliferation and loss of concentration
dependence. To model this, we simplify a previous model for the compe-
tition effects in T-cell homeostasis.17 The resulting exponential depen-
dence on concentration represents the simplest non-negative functions,
whereas adding the fewest parameters to the model. Furthermore, the
rate of turnover of T cells decreases with age13,18; we use the decrease in
Ki67 with age as a marker for proliferation to inform the timescales for
these changes,12 giving:

p5p0yðsÞe
cp 12

XðtÞ
NðsÞ

� �

d5d0yðsÞe
cd

XðtÞ
NðsÞ21

� �
;

(2)

where NðsÞ592412354eð20:001012sÞ is the expected total CD4 con-
centration in cells/lL for a healthy child of age s days,2 and yðsÞ5
0:02eð20:00027sÞ is the proportion of CD4 cells expressing Ki67 with
age.13

Thymic output changes with age
The thymus reaches full size at 1 year, after which thymic output
decreases rapidly as thymic epithelial space involutes by 70% over the
next 20 years.13,38 This change in production was characterized mathe-
matically12 using TREC dynamics and removing dilution from prolifera-
tion, leaving the following function describing the thymic output as a
function of age s:

kageðsÞ5
yðsÞNnðsÞg
0:02hðc2gÞ ; (3)

where NnðsÞ5496:512074eð20:000869sÞ is the expected na€ıve CD4 con-
centration in cells/lL for a healthy child of age s days,2 h 5 0.52 days is
the duration of Ki67 expression, and c 5 0.25 and g 5 0.08 give the
average TREC content of na€ıve T cells as they leave the thymus and of
the na€ıve T-cell pool, respectively.

Thymic output is altered by the hematopoietic stem cell
transplantation
Evidence suggests that, after HSCT, thymic output of T cells takes
between 6 and 10 months to recover.3,19,20,39 We used a sigmoidal func-
tion to model this:

DHSCT ðtÞ5
12exp

22t
kh

� �

11exp½krð12t=kh�
(4)

where kh gives the time after HSCT that thymic output increases, and
kr gives the rate of this increase. A sigmoidal function of this form was
used because it was found during model development that models in
which thymic output could be zero immediately post-transplant fitted
the data much better. The rate parameter for a standard logistic function
was, therefore, increased in order to make the curves much steeper so
that thymic output immediately post-HSCT would be zero or close to
zero. This made model fitting unstable and gave unrealistic estimates for
the recovery rate of thymic output post-HSCT, based on evidence from
TREC analysis. Similarly, this function fitted the data better than a Hill
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function. Supplementary Figure S2 online demonstrates the effects of
the parameters kh and kr .

The complete model
The complete model is then:

d
dt
Xðt; sÞ5kðt; sÞ2dðX ; t; sÞXðt; sÞ1pðX ; t; sÞXðt; sÞ; (5)

where

kðt; sÞ5k0kageDHSCT ðtÞ (6)

pðX ; t; sÞ5yðsÞp0e
cp 12

XðtÞ
NðsÞ

� �
(7)

dðX ; t; sÞ5yðsÞd0e
cd

XðtÞ
NðsÞ21

� �
(8)

with X(0,s) the estimated parameter X0.

Model fitting
Identifiability analysis using the FME package40 in R version 2.15.1,41

demonstrated that the effects of the parameters for the strength of com-
petition for resources, cp and cd, on the curve of the reconstitution could
be absorbed into other parameters. As such, they were fixed to one. All
other parameters were estimated with both fixed and random effects,
with a full variance-covariance matrix estimated for the random effects.
All model parameters were lognormally distributed and the additive
residual error model was applied to log-transformed CD4 counts.
Nonlinear mixed effects modeling with NONMEM version 7.342 was

used. The Importance Sampling expectation-maximization algorithm43

was used. Quality of fit was assessed using diagnostic plots (Figure 4).
Conditional weighted residuals were approximately normally distributed
with mean 0 and variance 1 and independent of time and population
prediction. Model misspecification was assessed with a visual predictive
check, whereby for each data point in the observed data, 600 data points
were simulated from the model using the parameter estimates and
variance-covariance matrix. Having ascertained that the model fit the
observed data, this ascertained that model-simulated data matched the
observed data albeit with some deviations at later time points. The visual
predictive check was produced using PsN version 3.5.3.44

Covariate model building
A total of 34 covariates were chosen that could potentially influence
CD4 reconstitution. These fell into the following categories: diagnosis,
pretransplantation conditioning, stem cell source, post-transplant immu-
nosuppressant regimen, and post-transplant outcomes (e.g., GvHD, graft
failure, and presence of viral infection). All covariates were dichotomous
and entered the model as follows: typical parameter value 3ð11 ucovÞ,
where ucov was the proportional change in typical parameter value in the
presence of the covariate. Further details are given in the Supplementary
Materials online. These were included using stepwise covariate model
building,46 whereby, during the forward search, covariates were tested on
each parameter, with the one yielding the best fit retained for the next
step until no more covariates led to significant improvement in fit. Dur-
ing backward elimination, covariates from the forward search are exclud-
ed in a stepwise manner with stricter significance criteria. Because models
are nested, a likelihood ratio test at each step with the difference in 22ln
(likelihood) asymptotically v2

n distributed (where n is the difference in
the number of nested parameters). In the forward search, we used an
inclusion criterion of P < 0.01 and in the backward elimination P <
0.005, and stepwise covariate model was implemented using PsN version
3.5.3.44

Predicting reconstitution from early data and individual
covariates
The population parameter means and variances found from the initial
model fitting were used as the priors. The posterior individual-level
parameter values using data from the first 6 months post-transplant were
then found through expectation-only importance sampling steps using
the covariate model and parameter estimates from the model-building
dataset. In this process, the conditional (posterior) mean and variance of
individual parameters were evaluated by Monte Carlo sampling, and the
likelihood of these individual parameters was maximized given the fixed
population means and variances and the individual’s observed data.43

Predicted trajectories were then formed from these individual parame-
ters: 500 sample parameter sets were simulated from the parameter
means and their variance-covariance matrix. From these sample curves,
the median and confidence intervals were found for the trajectory of
that individual’s CD4 T-cell reconstitution.

Code availability
An R script is included in the Supplementary Materials online that pro-
duces predictions for an individual child. It formats data, runs the
NONMEM script with the model, also in the Supplementary Materials
online, and finally produces a graphical output of the prediction for that
patient.

Additional Supporting Information may be found in the online version of
this article.
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