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Cancer cell membrane-coated 
mesoporous silica loaded with 
superparamagnetic ferroferric 
oxide and Paclitaxel for the 
combination of Chemo/
Magnetocaloric therapy on 
MDA-MB-231 cells
Defu Cai1, Likun Liu1, Cuiyan Han2, Xiaoxing Ma2, Jiayi Qian2, Jianwen Zhou1 & Wenquan Zhu   2

To effectively inhibit the growth of breast cancer cells (MDA-MB-231 cells) by the combination method 
of chemotherapy and magnetic hyperthermia, we fabricated a biomimetic drug delivery (CSiFePNs) 
system composed of mesoporous silica nanoparticles (MSNs) containing superparamagnetic ferroferric 
oxide and Paclitaxel (PTX) coated with MDA-MB-231 cell membranes (CMs). In the in vitro cytotoxicity 
tests, the MDA-MB-231 cells incubated with CSiFePNs obtained IC50 value of 0.8 μgL−1, 3.5-fold higher 
than that of SiFePNs. The combination method of chemotherapy and magnetic hyperthermia can 
effectively inhibit the growth of MDA-MB-231 cells.

Breast cancer is a disease that seriously threatens the health of people in the world1–5. In clinic, the chemotherapy 
is still the standard method for breast cancer treatment. Severe side effects and poor delivery efficiency of chemo-
therapy agents severely limit their therapeutic efficacy6–10. With the changes in the understanding of biological 
behaviors of breast cancer and the renewal of treatment concepts, the treatment of cancer has entered the era of 
comprehensive treatment, forming a treatment mode that emphasizes combination therapy of breast cancer, such 
as magnetic hyperthermia and photodynamic therapy11–15.

In recent years, magnetic hyperthermia therapy has been widely used in the cancer treatment in vivo because 
of a few excellent advantages such as heat-induced properties, chemical stability, targeting ability and so on13,16–21. 
The magnetic hyperthermia technique can avoid unnecessary harm to human health while killing tumor cells. It 
is because of that the energy of the alternating magnetic field is absorbed only by paramagnetic particles and is 
absorbed merely by normal human tissues22,23. When paramagnetic particles are exposed to an alternating mag-
netic field, they oscillate with the applied alternating magnetic field. The magnetic field energy are converted into 
heat due to energy dissipation from paramagnetic particles. High temperatures also interfere with the regulation 
of biological processes in tumor cells, such as proliferation and metabolism. Moreover, tumor cells exposed to 
temperatures above 41–46 °C can be induced to necrosis or apoptosis24,25.

Although in situ local tumors can be successfully removed by magnetic nanoparticles, they may induce human 
normal cells to produce immune rejection and easily penetrate and escape from the tumor tissue due to their 
exogenous26,27. Therefore, the ideal magnetic nanoparticles should have immune escape and tumor accumu-
lation abilities for the purpose of treating tumors. In recent years, many studies have been aimed at avoiding 
immune clearance and improving the recognition ability by surface modification with targeting ligands28–30. 
However, active targeting effects are severely affected by the receptor expression density and number of target 
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sites. Surface-modified substances may also activate the immune system and cause the efflux of nanoparticles to 
some extent. Therefore, magnetic hyperthermia technology is often restricted in its application.

The emergence of cell membrane carriers have opened up a new path for the development of nanotechnol-
ogy31–34. Compared with traditional pharmaceutical carriers, such as liposomes and polymer nanoparticles, cell 
membrane carriers offer some significant advantages. In recent years, red blood cell membranes have been widely 
studied as typical cell membrane carriers. Red blood cell membrane as human endogenous substances can pre-
vent the encapsulated nanoparticles from being cleared by the body’s immune system and increased circulation 
time of nanoparticles in the body35,36. Although the red blood cell membranes exhibit excellent performance 
as a carrier, they cause the nanoparticles to reduce their targeting ability. Excitingly, studies have shown that 
the structure of multiple membranes confers immune escape and homotypic binding characteristics on cancer 
cells37. Mesoporous silica is often used as a carrier for chemotherapeutic drugs, such as doxorubicin or paclitaxel. 
In recent years, more and more research have focused on the application of mesoporous silica to chemotherapy 
in combination with other treatments to treat cancer, such as magnetothermal therapy, photothermal therapy 
and radiation therapy. For example, Zhengfang Tian, et al., developed a potential chemo- and magnetic hyper-
thermia therapeutic mesoporous silica nanoparticles, which showed a synergistic effect hyperthermia that com-
bined chemotherapy and magnetic hyperthermia therapy38. Cuilian Tao, et al., prepared DNA-capped Fe3O4/
SiO2 magnetic mesoporous silica nanoparticles for controlling drug Release by regulating the temperature and 
perform magnetic hyperthermia39. Many scholars use mesoporous silica as a carrier to treat tumors by combining 
chemotherapy with magnetocaloric therapy40,41. Inspired by the homotypic binding characteristics of cancer cells 
membranes during the contact of the tumor cell membrane, we expect to establish a breast cancer cell-specific 
accumulation preparation with bionic properties, using the breast cancer cell membrane as a carrier, which can 
load superparamagnetic ferroferric oxide nanoparticles and drugs into target breast cancer cells and eliminate 
them by the combination method of magnetic hyperthermia and chemotherapy.

Herein, we designed a cancer cell membrane-coated mesoporous silica nanoparticles with homotypic target-
ing ability and magnetic hyperthermia properties. Firstly, PTX and superparamagnetic ferroferric oxide were 
both loaded into mesoporous silica nanoparticles (SiFePNs). Secondly, MDA-MB-231 cell membranes were 
extracted from MDA-MB-231 cells. At last, SiFePNs were coated with the CMs by extrusion method (CSiFePNs). 
It was hypothesized that CSiFePNs could selectively accumulate in homologous tumor cells, it generated heat 
under the action of an alternating magnetic field and promoted tumor cell apoptosis together with chemothera-
peutic drugs. It was expected that the combination method of chemotherapy and magnetic hyperthermia could 
be used to enhance the inhibition of growth for MDA-MB-231 cells.

Experimental
Materials.  Superparamagnetic ferroferric oxide (Fe3O4, 10–20 nm) were obtained from XFNano Co., LTD 
(Nanjing, China). Pluronic block co-polymer F127 was kindly donated by BASF. Tetraethyl orthosilicate (TEOS), 
Hexadecyl trimethyl ammonium Bromide(CTAB), hydrochloric acid, ethanol and MgCl2 were purchased from 
Kaitong chemical Reagent Co. Ltd. (Tianjin, China). Paclitaxel (PTX) was obtained from ycgcphar Co. Ltd 
(Wuhan, China). PBS buffer, Tris, EDTA-free protease inhibitor, formazan, dimethyl-sulfoxide (DMSO), Nile red 
and Hoechst 33342 was obtained from Sigma-Aldrich (St. Louis, MO, USA). All chemicals were in accordance 
with the requirements of analytical/spectroscopic/HPLC grade. Deionized water was obtained by ion exchange.

Preparation of CSiFePNs.  First, the mesoporous silica nanoparticles (MSN) contained Fe3O4 nanoparti-
cles were prepared by the published method42. 2.0 g of Fe3O4 nanoparticles, 3.0 g of CTAB, 20 mL of ethanol and 
80 mL distilled water were mixed under gently stirring for 20 min at 25 °C. Then, 3.5 mL of TEOS was added drop 
by drop to the mixture under stirring. After the solution was stirred for 1.5 h, Finally, the obtained mixture was 
centrifuged to remove the supernatant. The recipitate was washed with distilled water and ethanol for three times. 
The solid white substance was dried under vacuum for 24 h. The products were labeled as SiFeNs. Secondly, PTX 
was incorporated into SiFeNs by a solvent deposition method43. In detail, PTX was dissolved in methanol to 
obtain a concentrated solution (2 mg/mL), and then 100 mg of SiFeNs was added into the drug solution to obtain 
a mixture. The mixture was still gently stirring for 48 h at room temperature in a closed container to complete 
the adsorption equilibrium operation. Finally, the products were dried at 40 °C to remove organic solvent. The 
drug-loaded samples were labeled SiFePNs. Thirdly, the MDA-MB-231 cell membrane vesicles (CMs) as the outer 
shells were prepared[38]. In brief, the MDA-MB-231 cells were washed with PBS for three times and suspended 
in buffer the hypertonic Tris buffer (10 mM Tris, 10 mM MgCl2 and 1 x EDTA-free protease inhibitor, pH = 7.4) 
at 4 °C for 1 h. Then, the cell suspension was homogenized in a tissue homogenizer for 1 min and centrifuged at 
500 rmp for 10 min. The supernatants were centrifuged at 10000 rmp for 10 min and 35000 rmp for 1 h (Hitachi 
CR22G, Japan) to get the cell pellets. After the supernatants were removed, the cell membranes deposited at 
the bottom was resuspended in PBS solution and sonicated for 5 s by a sonic cell pulverizer (Biosafer 900–92, 
China). Finally, the obtained pellets was extruded through 400 nm polycarbonate membranes for about 11 times 
by a extruder (Morgec LE-15, China). The resulting CMs were collected. To obtain nanoparticles encapsulated 
by MDA-MB-231 cell membrane, the CMs were sequentially extruded through a 400 nm and a 200 nm poly-
carbonate membrane for 15 times. Afterwards, the SiFePNs were co-extruding with CMs at mass ratio of 2.0 
(SiFePNs: CMs) for 12 times. At last the resulting nanoparticles were collected to obtain CSiFePNs.

Characterization Techniques
TEM study.  The internal structure of the samples was evaluated by TEM (CSIS EM-208S, USA). The minute 
quantities of samples were fixed on the copper network to be characterized.
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Particle size and potential analysis.  The zeta potential and particle size of MFeNs, SiFePNs and 
CSiFePNs were studied by DLS analyzer (Malvern Zetasizer, UK).

Nitrogen adsorption-desorption measurement.  Nitrogen adsorption-desorption analysis was carried 
out by an adsorption analyzer (VSorb 2800 P, China). The physically adsorbed water of samples was volatilized in 
the oven at 55 °C for 24 h. Then, the samples were placed in liquid nitrogen. At last, the specific surface area and 
the pore volume of the samples were measured by a surface area analyzer.

Magnetization study.  Magnetization curves were drawn and analyzed by a vibrating magnetometer (Lake 
Shore 7410, USA) at 300 K. The hysteresis of magnetization was produced by regulating H from + 10,000 Oe to 
−10,000 Oe.

FT-IR study.  The FT-IR spectrometer (Thermo Nicolet 380, USA) was used to examine the chemical bonding 
and functional groups of samples. The FT-IR measurement was carried out by using the potassium bromide (KBr) 
tableting method. KBr was thoroughly ground in an agate mortar in advance, and then dried in an oven at 110–
150 °C for about 48 hours. The obtained KBr was placed in a desiccator for storage. Before tableting, 200–300 mg 
of KBr from the desiccator and 1–1.5 mg of stone samples were thoroughly ground in an agate mortar. Then 
both of them were put in an oven at 100 °C for 5 minutes. At last the samples were continuously ground for about 
30 seconds, with the spectral resolution of 4 cm−1. The samples were mixed with potassium bromide according to 
a certain ratio of 1–2:200, and then the mixture was pressed into a round cake and characterized in the scanning 
range of 400 cm−1–3500 cm−1.

Raman spectra analysis.  To further study the surface material of the sample, the Raman Imaging 
Microscope (Thermo U-LH100L-3, USA) was used to study functional groups of samples. After the slide was 
wrapped in tin foil, the samples were coated in foil and characterized in the scanning range of 50 cm−1–3300 cm−1. 
The scanning was completed by the mode of area sweep. The laser wavelength was set to 780 nm. The spectral 
resolution was 5 cm−1. The excitation power was 24 mW. The integration time was 0.2 s. The number of scans was 
20 times. The detector was a TE-cooled electron-multiplying CCD (EMCCD). A 10 × long working distance 
microscope objective and a 50 μm confocal pinhole DXR780 full range grating (400line/mm) were both used.

In vitro magnetic hyperthermia study.  The alternating magnetic field generator (Litian CT-100, China) 
was used to study the heating capacity of CSiFePNs in AMF. The CSiFePNs solutions with a range of concen-
trations (20, 40, 60, 80 and 100 mg/ml) were placed in an alternating magnetic field generator, respectively. The 
temperature data were obtained by a thermometer at the fixed time points (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 
and 60 min). Moreover, different current intensities (100 W, 200 W and 300 W) were also regulated to study the 
impact of current intensity on the heating capacity of CSiFePNs in AMF. In order to assess the release behavior of 
drugs in AMF, the solution of PTX, SiFePNs and CSiFePNs (5 mL, at [PTX] = 1.6 mg/mL) was placed in dialysis 
bags (molecular weight 100–500), which was immersed in 50 mL of PBS. The added samples were gently stirred 
at 25 °C and performed for 1 h in AMF (60 Gs). The drug release profiles were obtained at fixed intervals (5, 10, 
15, 20, 30, 45 and 60 min).

In vitro cytotoxicity assay.  The in vitro cytotoxicity of MFeNs, SiFePNs, and CSiFePNs in MDA-MB-231 
cells was measured by an MTT assay. The MDA-MB-231 cells were seeded in 96-well plates at a density of 5 × 103 
cells per well and incubated in medium (100 mL) for 24 hours to complete cell attachment. Sample solutions 
(MFeNs, SiFePNs or CSiFePNs) with a final concentration of 0.60 mg Fe/mL per well were added to replace 
the original medium, respectively. Subsequently, cells in the experimental group were placed in an alternating 
magnetic field and the cells in the control group were placed out of AMF. After 24 hours of incubation, 50 mL of 
MTT (1 mg/mL) was added into the well and the cells were continued to be incubated for 4 hours. Formazan was 
extracted by DMSO and a microplate reader (ThermoFisher Multiskan Spectrum, USA) was used to measure the 
absorbance at 540 nm. To study the safety of MSN and Fe3O4 on cells, the same in vitro cytotoxicity test as above 
was carried out. MSN and Fe3O4 with a series of concentrations were incubated with cells for 24 hours. The cell 
viability was also measured by the MTT assay.

Cellular uptake.  Flow cytometry was used to quantitatively analyze the uptake of PTX by MDA-MB-231 
cells. The cells were evenly spread in 6-well plates at 2.0 × 105 cells per well. After 24 hours of culture, the medi-
ums containing PTX, SiFePNs or CSiFePNs (PTXs were all stained with Nile red) were added, respectively. After 
1, 2, 4 hours of incubation, cells were washed with the PBS solution. Then, the cells were digested by trypsin and 
centrifuged at 1000 rpm for 5 min to separate cells from the supernatant. An appropriate amount of PBS solution 
was added to suspend cells. Finally, 200 μL of PBS solution was added to blow the cells into a cell suspension, 
which was detected and analyzed using a flow cytometer. The average fluorescence intensity of 2.0 × 105 cell was 
measured using a flow cytometer.

Laser confocal microscopy study.  Microscope slides in 24-well plates (5 × 104 cells per well) were used to 
culture MDA-MB-231 cells for 24 hours. MDA-MB-231 cells all adhering to the slides were used for subsequent 
experiments. Then the SiFePNs and CSiFePNs at a Coumarin-6 concentration of 100 ng/mL were added on the 
MDA-MB-231 cells. The culture medium was removed after 2 h of cultivation and ice-cold PBS was used to wash 
the MDA-MB-231 cells for three times. All the MDA-MB-231 cells were fixed with 4% paraformaldehyde solu-
tion for 25 min, followed by cell nuclei staining by Hoechst 33258 (10 ug/ml) for 20 min. The stained cells were 
washed with PBS for 3 times. Finally, a LSM710 laser confocal microscope (Zeiss, Germany) was used to capture 
the fluorescent images of the cells.
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Results and Discussion
Preparation and characterization of CSiFePNs.  CMs@MSN/Fe3O4/PTX nanoparticles (CSiFePNs) 
were thus synthesized by the following procedure. Firstly, MSN/Fe3O4 was synthesized by a self-assembly method, 
in which Fe3O4 was located in the core of MSN. In addition, the shell portion of MSN was used to load PTX. As 
can be seen from Fig. 1A, MSN shows a clear core-shell structure and spherical morphology with mesoporous 
channels. In addition, SiFePNs were also prepared by loading Fe3O4 and PTX into MSN. MSN demonstrates 
excellent mesoporous framework and drug loading capacity. Secondly, SiFePNs were coated with CMs, which 
were extracted from MDA-MB-231 cells’ membrane. As shown in Fig. 1D, the cell membranes were successfully 
coated around SiFePNs. As seen in Fig. 2, after membrane coating, the average size of CSiFePNs increases from 
164 nm (PDI 0.04) to 220 nm (PDI 0.07), which may be due to the thickness of CMs. Moreover, the surface charge 
of CSiFePNs (−20.88 ± 0.4 mV) is the negative, the same as that of CMs. This further demonstrates that the 
CSiFePNs encapsulated by CMs exhibit the same properties as the cell membrane surface. The average size and 
zeta-potential both demonstrate that SiFePNs were successfully coated by CMs. As can be seen from Fig. S1, the 
H2 hysteresis loops of MSN belongs to the IV isotherms of the IUPAC classification, confirming the typical mes-
oporous structure of MSN. After Fe3O4 and PTX were loaded into MSN, the adsorption curve and the desorption 
curve of the isotherm are almost coincident, indicating that the pores of MSNs are filled with Fe3O4 and PTX. The 
pore volume (Vt) and surface area (SBET) data are shown in Table 1. The pore volume (0.25 cm3/g) and surface area 
(218.34 m2/g) of SiFePNs are significantly reduced compared with those (1.19 cm3/g and 845.93 m2/g) of MSN. 
This may be because the pore space is occupied by the drugs and Fe3O4. Fig. S2 shows the magnetization curve 
of CSiFePNs. CSiFePNs exhibit superparamagnetism with negligible hysteresis loops in low field, indicating the 
magnetic property of CSiFePNs loaded with Fe3O4.

FT-IR study.  FT-IR spectra were performed to confirm the process for preparing CSiFePNs. The FT-IR spec-
tra of samples (CMs, SiFePNs and CSiFePNs) are shown in Fig. 3A. The SiFePNs show wide adsorption bands in 
the range of 3750 cm−1–3000 cm−1 due to the silanol groups. After SiFePNs were internalized in MDA-MB-231 
cell membranes, the characteristic peaks of embedded particles are all weakened or disappeared. For example, the 
strong absorption peak (1088 cm−1) of SiFePNs is weakened. Moreover, the FT-IR spectra of CSiFePNs are signif-
icantly similar to that of the cell membrane for CMs. Two weaker absorption peaks (1244 cm−1 and 1083 cm−1) 
of CMs still exist in the FT-IR spectra of CSiFePNs (1241 cm−1 and 1095 cm−1). The FTIR spectral variation 
between CSiFePNs and SiFePNs at 2950 cm−1 in Fig. 3A can be clearly seen. CSiFePNs have an absorption peak 

Figure 1.  TEM images of (A) MSN, (B) SiFePNs, (C) CMs and (D) CSiFePNs.
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at 2950 cm−1, whereas SiFePNs do not have this absorption peak. This absorption peak may be caused by the C-H 
bands’ stretching vibration of the methyl group in the cell membrane phospholipid. This result illustrates the 
presence of cell membranes on the surface of CSiFePNs. Thus, FT-IR spectra results show that MDA-MB-231 cell 
membranes successfully covered on the surface of SiFePNs.

Raman spectra study.  To further confirm the process for preparing CSiFePNs, Raman spectra method 
was used to characterize the structure of the samples (CMs, SiFePNs and CSiFePNs). As shown in Fig. 3B, there 
is a relatively blunt peak with a maximum at 1703 cm−1 for SiFePNs, which is the characteristic peak of SiFePNs. 
However, CMs show two sharp peaks at 1159 cm−1 and 1523 cm−1, respectively. CMs show strong peaks at 
2935 cm−1, but SiFePNs do not have any peaks at this corresponding position. This indicates that the character-
istic absorption peak of CMs is different from that of SiFePNs. The following reasons can be used to explain this 
phenomenon. The main components of CMs are phospholipids and cholesterol44. Conversely, the surface com-
ponents of SiFePNs are mainly silica. Furthermore, the two sharp peaks at 1159 cm−1 and 1527 cm−1 also exist in 
the Raman spectra of CSiFePNs. The absorption peak of SiFePNs is covered by that of CMs. Moreover, CSiFePNs 
show the same peak as CMs at 2935 cm−1. This is a powerful proof that SiFePNs were completely internalized by 
CMs. Raman spectra results also show that CSiFePNs were successfully prepared.

In vitro magnetocaloric characteristics study.  In vitro magnetothermal conversion tests were used to 
evaluate the impact of magnetic field strength and solution particle concentration on the magnetocaloric effect. As 
shown in Fig. 4A, the temperature of CSiFePNs with different concentrations of 20 mg/ml, 40 mg/ml, 60 mg/ml, 
80 mg/ml and 100 mg/ml in AMF within 60 min reaches 49 °C, 60 °C, 61 °C, 62 °C and 67 °C, respectively. Hence, 
it is concluded that magnetothermal conversion efficiency is influenced by the concentrations of CSiFePNs. This 
can be explained as follows. The superparamagnetic particles undergo a physical effect of converting magnetic 
energy into thermal energy under the action in AMF. The number of superparamagnetic particles determines the 
level of thermal energy. Additionally, the alternating magnetic field strength also has a certain influence on the 
magneto-thermal conversion effect. The temperatures of CSiFePNs solutions in AMF within 60 min follow the 
sequence: 60 °C(300 W) > 55 °C(200 W) > 51 °C(100 W). It can be concluded that the alternating magnetic field 
current intensity and the concentrations of CSiFePNs both have significant impacts on temperature changes. 
Furthermore, the process of magnetocaloric conversion can be controlled by regulating these above two factors.

Cellular uptake of CSiFePNs.  Cellular uptake test was used to evaluate the cellular uptake behaviors of 
CSiFePNs. As shown in Fig. 5, the fluorescence intensity of CSiFePNs is time-dependent. The fluorescence inten-
sity of CSiFePNs in AMF after incubation for 4 hours is about 3.76-fold higher than that of PTX. Moreover, the 
fluorescence intensity of CSiFePNs is much higher than that of SiFePNs, indicating that the cell membrane coat-
ing significantly enhanced cellular uptake of SiFePNs. This is because the homotypic targeting ability produced 
by the retained cell membrane surface proteins makes them more easily be taken up by homologous cells. CMs 
can reduce the immunophagocytosis of nanoparticles by other tissues, which is due to the CD47 membrane 

Figure 2.  Particle size and zeta potential of the CMs, SiFePNs, and CSiFePNs.

Samples SBET (m2/g) Vt (cm3/g)

MSN 845.93 1.19

SiFePNs 218.34 0.25

Table 1.  Results of nitrogen adsorption study.
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protein45,46. CD47, a transmembrane protein on the surface of cell membranes, regulates immunity. Studies have 
shown that attaching CD47 to the surface of nanoparticles can significantly reduce their phagocytosis by mac-
rophages47. The cell membrane completely encapsulates SiFePNs, and the CD47 protein abundantly expressed on 
the membrane can be recognized by macrophages from being phagocytized, which reduces the immune-related 
response of the body48. In addition, the fluorescence intensity of cells cultivated with CSiFePNs under the stimu-
lation of AMF is obviously higher than that of CSiFePNs without induction of AMF (Fig. 5B). This is because the 
magnetocaloric effect of CSiFePNs induced by AMF leads to an increase in temperature, which destroys the flu-
idity of the cell membrane and accelerates the fusion of cells and CSiFePNs. In summary, the MDA-MB-231 cell 
membranes coated with SiFePNs increase the uptake of SiFePNs by homologous cells. The above results together 
indicate that CSiFePNs achieve the purpose of enhancing the cellular uptake ability of PTX by cell membranes 
coating.

In vitro cytotoxicity.  The cytotoxicity of nanoparticles was investigated using MTT assay. MSN and Fe3O4 
both show negligible cytotoxicity at the tested concentrations against MDA-MB-231 cells, indicating their good 
biocompatibility (Fig. 6). Before exposure to AMF, the MDA-MB-231 cells incubated with CSiFeNs show almost 
negligible toxicity (Fig. 7A). However, CSiFeNs exhibit the IC50 value of 3.6 μgL−1 after exposure to AMF, indi-
cating that AMF induced the magnetotherapy of CSiFeNs (Fig. 7B). Before and after exposure to AMF, PTX 
shows almost similar cytotoxicity, indicating that AMF has no significant effects on the cytotoxicity of PTX. It is 
exciting that the MDA-MB-231 cells incubated with CSiFePNs show the IC50 value of 0.8 μgL−1, 3.5-fold higher 
than that of SiFePNs. Moreover, the IC50 value of CSiFePNs in AMF is higher than that of CSiFePNs out of AMF. 
This may be attributed to the increased cellular uptake brought out by proteins on the cell membrane surface45. 
In summary, these results all demonstrate that CSiFePNs make an excellently synergistic therapeutic effect on 
the MDA-MB-231 cells in vitro. The antiproliferative effects of CSiFePNs in AMF are stronger than both that 
of CSiFeNs irradiated by AMF and CSiFePNs without any magnetic irradiation. The combination method of 

Figure 3.  FTIR spectra of the CMs, SiFePNs, and CSiFePNs (A) and Raman spectra of the CMs, SiFePNs, and 
CSiFePNs (B).
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magnetotherapy and chemotherapy leads to a significant binding inhibition impact on the MDA-MB-231 cells. 
CSiFePNs can induce cytotoxicity for two reasons. On the one hand, paclitaxel in nanoparticles is one of the 
causes of cell apoptosis due to the killing effect of paclitaxel on tumor cells. On the other hand, the superpara-
magnetic Fe3O4 in the CSiFePNs can perform magnetocaloric transformation under the action of an alternating 
magnetic field. The magnetocaloric reaction causes the rising temperature of the MDA-MB-231 cells, and then 
the apoptosis occurs after exceeding the temperature tolerance range of cells38,49. These two reasons together lead 
to apoptosis of tumor cells. The cytotoxicity of CSiFePNs loaded with the chemotherapeutic drugs paclitaxel 
and Fe3O4 is much higher than the previously reported cytotoxicity of magnetic nanoparticles containing only 
Fe3O4

40.

Figure 4.  (A) In vitro release of PTX from CMs, SiFePNs, and CSiFePNs in ACMF. (B) The heating temperature 
of CSiFePNs under the alternating magnetic field magnetization of different current intensities after 60 min 
incubation. (C) The heating temperature of CSiFePNs with different concentrations under the alternating 
magnetic field magnetization after 60 min incubation. (D) Experimental device picture of alternating magnetic 
field generator.

Figure 5.  Fluorescence intensity of PTX, SiFePNs and CSiFePNs measured by flow cytometry after 1, 2, or 4 h 
incubation, respectively.
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On the one hand, the growth inhibition of MDA-MB-231 cells is affected by the accumulation of PTX. 
With the increase of the accumulation of PTX in MDA-MB-231 cells, their growth inhibition is also improved. 
CSiFePNs are more likely to enter into the MDA-MB-231 cells since CSiFePNs have the same cell membrane with 
the MDA-MB-231 cells. Homologous cell membrane enhances the targeting of CSiFePNs to the MDA-MB-231 
cells, which can also be recognized by macrophages from being phagocytized. As the cellular uptake of CSiFePNs 
increases, the drug amounts inside the MDA-MB-231 cells also grow. Thus, the growth inhibition effect of the 
MDA-MB-231 cells are enhanced, which is consistent with the IC50 value of CSiFePNs’ of 0.8 μgL−1, 3.5-fold 
higher than that of SiFePNs. On the other hand, the superparamagnetic ferroferric oxide in CSiFePNs has a mag-
netocaloric effect46. If the paramagnetic and ferromagnetic substances are affected under the action of the exter-
nal magnetic field, the magnetic moment can be changed from clutter to order. Then, the interaction between 
the atomic magnetic moment and the external magnetic field is reduced, so is its magnetic entropy. The pro-
cess of excreting entropy is also a process of exotherm50. Therefore, CSiFePNs generate heat under the action of 
AMF to raise the internal temperature of cells. For temperatures above 40 °C, cancer cells are more sensitive than 
healthy cells. The biological integrity of the cancer cell membrane and cytoskeleton can be damaged and cancer 
cells may become apoptotic51,52. Therefore, CSiFePNs can kill the MDA-MB-231 cells by magnetic hyperthermia 
under the action of AMF. In clinical treatment, high concentration of superparamagnetic ferroferric oxide is often 
required to play a therapeutic role. However, CSiFePNs in this study effectively play an important role in killing 
MDA-MB-231 cells under the combined effects of chemotherapy and magnetic hyperthermia.

Laser confocal microscopy study was used to demonstrate that MDA-MB-231 cell membranes encapsu-
lating nanoparticles could improve the uptake of nanoparticles by the MDA-MB-231 cells. Figure S3 shows 
the confocal microscopy images of MDA-MB-231 cells after 2 h incubation with SiFePNs-Coumarin-6 
and CSiFePNs-Coumarin-6 at 37 °C. The microscopic image showed that the green fluorescence from 
CSiFePNs-Coumarin-6 was more and stronger than that from SiFePNs-Coumarin-6 in the cell cytoplasm. This 

Figure 6.  In vitro cytotoxicity of MSN and Fe3O4 incubated with MDA-MB-231 cells after 48 h incubation.

Figure 7.  (A) In vitro cytotoxicity of PTX, SiFePNs, CSiFeNs and CSiFePNs incubated with MDA-MB-231 cells 
out of alternating magnetic field after 48 h incubation. (B) In vitro cytotoxicity of PTX, SiFePNs, CSiFeNs and 
CSiFePNs incubated with MDA-MB-231 cells in alternating magnetic field after 48 h incubation.
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indicated that MDA-MB-231 cell membrane modification could impove penetration of the mesoporous silica 
nanoparticles into the MDA-MB-231 cells.

Conclusion
In summary, we prepared a biomimetic nanodrug delivery system with cell membranes to inhibit the growth of 
MDA-MB-231 cells by using the combination method of chemotherapy and magnetic hyperthermia. In addition, 
the characterizations of particle size and potential analysis, Nitrogen adsorption-desorption measurement, FT-IR 
study and Raman spectra analysis indicate that CSiFePNs containing superparamagnetic ferroferric oxide and 
Paclitaxel coated with MDA-MB-231 cell membranes were prepared successfully. The in vitro cytotoxicity tests 
show that the MDA-MB-231 cells incubated with CSiFePNs obtained the IC50 value of 0.8 μgL−1, 3.5-fold higher 
than that of SiFePNs. Higher inhibition rate of tumor cell growth indicates that the combination of chemother-
apy and magnetocaloric therapy has great potential application to the treatment of breast cancer. In conclusion, 
CSiFePNs can serve as a promising biomimetic drug delivery with the targeting of homotypic tumor cells and the 
magnetocaloric ability for future breast cancer therapy. We believe that our research will also bring new opportu-
nities for tumor cell membranes as vectors to target homologous cells.
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