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ABSTRACT

Cytosine residues in mammalian DNA occur in at
least three forms, cytosine (C), 5-methylcytosine
(M; 5mC) and 5-hydroxymethylcytosine (H; 5hmC).
During semi-conservative DNA replication, hemi-
methylated (M/C) and hemi-hydroxymethylated
(H/C) CpG dinucleotides are transiently generated,
where only the parental strand is modified and the
daughter strand contains native cytosine. Here,
we explore the role of DNA methyltransferases
(DNMT) and ten eleven translocation (Tet) proteins
in perpetuating these states after replication,
and the molecular basis of their recognition by
methyl-CpG-binding domain (MBD) proteins. Using
recombinant proteins and modified double-stranded
deoxyoligonucleotides, we show that DNMT1
prefers a hemi-methylated (M/C) substrate (by a
factor of >60) over hemi-hydroxymethylated (H/C)
and unmodified (C/C) sites, whereas both DNMT3A
and DNMT3B have approximately equal activity on
all three substrates (C/C, M/C and H/C). Binding
of MBD proteins to methylated DNA inhibited
Tet1 activity, suggesting that MBD binding may
also play a role in regulating the levels of 5hmC.
All five MBD proteins generally have reduced
binding affinity for 5hmC relative to 5mC in the
fully modified context (H/M versus M/M), though
their relative abilities to distinguish the two varied
considerably. We further show that the deamination
product of 5hmC could be excised by thymine DNA
glycosylase and MBD4 glycosylases regardless of
context.

INTRODUCTION

5-hydroxymethylcytosine (5hmC) is a constituent of
nuclear DNA, present in many tissues and cell types (1),
but relatively enriched in embryonic stem cells (2) and
Purkinje neurons (3). 5hmC in the mammalian genome
depends on pre-existing 5-methylcytosine (5mC) (4).
There are three mammalian ten eleven translocation
(Tet) proteins that convert 5mC to 5hmC (2). In
non-CpG context (CpA or CpT), 5mC is asymmetrical
and 5hmC occurs largely DNA strand-specific (4). In the
context of the palindromic CpG dinucleotide, 5hmC pre-
sumably exists as fully hydroxymethylated (H/H) form
in cells and persists through cell division (5,6). However,
the question remains how these H/H sites are maintained
after semi-conservative DNA replication.
5hmC has also been proposed as a potential inter-

mediate in active DNA demethylation via the base
excision repair pathway (7,8). Methyl-CpG-binding
domain 4 (MBD4) contains both an N-terminal MBD
and a C-terminal thymine glycosylase domain that acts
on G:T and G:U mismatches (9). Of particular interest
is a recent report indicating that, in zebrafish, the
activation-induced cytidine deaminase (AID) and MBD4
cooperate to demethylate DNA (10). Consistent with
a role in DNA demethylation in mammals, AID is
required to demethylate pluripotency genes during
reprogramming of the somatic genome in embryonic
stem cell fusions (11), and AID-deficient animals are less
efficient in erasure of DNA methylation in primordial
germ cells (12). It is noteworthy that AID promotes
5mC deamination, resulting in thymine (10,13), as well
as 5hmC deamination, which would produce
5-hydroxymethyluracil (5hmU or hU) (8). Here, using
in vitro biochemical methods, we investigated whether
hydroxymethylation is maintained after DNA replication,
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whether methyl-DNA binding proteins inhibit Tet1
activity, and whether the deamination product of
hydroxymetylcytosine could be excised by the glycosylase
activities of MBD4 and thymine DNA glycosylase (TDG).

MATERIALS AND METHODS

Protein expression and purification

The expression constructs used to generate recombin-
ant proteins in this study are listed in Supplementary
Table S1 and detailed purification schemes are provided
in Supplementary Methods. All constructs (except
hDNMT1 full length) were expressed in Escherichia coli
BL21 (DE3) Codon-plus RIL (Stratagene) harboring the
RIL-Codon plus plasmid. 6�His-SUMO-tagged and
non-cleavable 6�His-tagged proteins were expressed
using modified pET28b vectors pETHisSumo (14) or
pET6H (15), respectively. Glutathione S-transferase-
(GST-) tagged proteins were expressed in pGEX-2T (GE
healthcare) or a modified pET21d with GST inserted
between BamHI and EcoRI restriction sites.
In general, cells were cultured in Luria–Bertani (LB)

medium (supplemented with 1mM MgCl2 and 1mM
ZnCl2, and either 50mgml�1 kanamycin or 100mgml�1

ampicillin) at 37�C until OD600 of �0.5–1.0 before shifting
the temperature down to 14–24�C. After 2–3 h, 0.2–
0.4mM isopropyl b-D-thiogalactoside was supplied to
induce protein expression and cells were cultured
overnight (�12–16 h). For MBD1, the induction time
was 2 h. For UHRF1 (residues 124–628), expression
cultures were grown overnight at 25�C in auto-induction
medium (16). Cells were harvested and lysed as a 20%
(v/v) suspension in 20mM sodium phosphate, pH 7.4
(or 20mM HEPES–NaOH, pH 7.0), 300–500mM NaCl,
5% (v/v) glycerol, 0.5mM tris(2-carboxyethyl)phosphine
(TCEP) and 2mM phenylmethylsulfonyl fluoride by two
passes through an ice-cold French pressure cell press or
by sonication (6min total, 1 s on for 3 s off) for DNMT3
proteins. The lysate was clarified by centrifugation at
50 000g (or twice at 38 000g) for 50–60min and filtered
with cellulose nitrate membrane (Whatman).
The following chromatographic columns (all from GE

Healthcare) were used for purification: nickel-charged
HisTrap-HP, HiTrap-Q, HiTrap-SP, HiTrap-Heparin,
Sephacryl-300 (16/60), Superdex-200 (16/60), Superdex-
75 (16/60), GSTrap.
The 6�His-SUMO tag was cleaved by Ulp1 protease

at 25Uml�1 in room temperature for 2 h, whereas GST
tag was cleaved by thrombin during dialysis in 20mM
Tris–HCl, pH 8.5, 150mM NaCl, 5% glycerol and
0.5mM TCEP for 6 h at 4�C or by PreScission protease
(for GST-p66b).

Overexpression of human DNMT1 in Pichia pastoris

Human DNMT1 full-length (residues 1–1616) is
overexpressed in P. pastoris using the Multicopy Pichia
Expression pPIC3.5K (Invitrogen) modified to include a
His-tag at the N-terminus of expressed proteins. An NdeI
site was added so that the dnmt1 gene can be inserted into
the vector. A 6L-scale fermentation resulted in �500ml of

the induced cell pellets, which were divided into 32 tubes.
The amount of soluble full-length DNMT1 was estimated
to be around 9mg per 15ml cell pellets.

Pichia expressed His6-tagged DNMT1 was purified with
Ni-column, HiTrap-SP and Sephacryl-300 in the buffer of
20mM HEPES–NaOH, pH 7.0, 300mM NaCl, 5%
glycerol and 1mM dithiothreitol (DTT) and further
purified from associated nucleic acid through Q column,
eluting at �250mM NaCl in the same buffer with 0.5mM
TCEP, instead of DTT.

Methyl transfer assays using oligonucleotides

Methyl transfer activity assays were performed in 50mM
Tris–HCl pH 7.5, 1mM ethylenediaminetetraacetic acid
(EDTA) (for DNMT1) or in 50mM Tris–HCl pH 7.5,
2.5% glycerol and 0.5mM TCEP (for DNMT3A2/
DNMT3L and DNMT3B2/DNMT3L). The reaction
mixture (20ml total volume) contained 5.5mM
[methyl-3H] AdoMet (10.0Ci/mmol; Perkin Elmer) and
1.0 mM oligonucleotides (see below), and enzymes
(20 nM DNMT1 N-terminal deletions �600, �644 and
�728, or 200 nM DNMT1 FL and �350 or 300 nM
DNMT3a2/3L and DNMT3B2/3L). All enzymes were
pre-incubated with AdoMet for 10min at 37�C before
the addition of DNA.

The reaction times for DNMT1 were 0–15min,
and terminated by the addition of 1.5mM unlabeled
S-adenosyl-L-homocysteine (AdoHcy). The reactions
for DNMT3A2/DNMT3L, DNMT3B2/DNMT3L and
DNMT3A-C/DNMT3L-C complex were carried out at
37�C for 0–60min, and terminated by the addition of
1% sodium dodecyl sulfate and 1mgml�1 of protease K
and heated at 50�C for 15min. The reaction mixtures were
spotted on DE81 paper circles (Whatman), washed twice
with 5ml of cold 0.2M NH4HCO3, twice with 5ml
of deionized water and once with 5ml of ethanol.
The dried circles were subjected to liquid-scintillation
counting with Cytoscint scintillant. Each reaction was
performed in duplicate.

To convert from counts-per-minute (cpm) to transferred
methyl group concentration, we generated a linear calibra-
tion curve using 200 nM of HhaI methyltransferase to
completely methylate 125, 250, 500 and 1000 nM of a
12-mer single CpG hemi-methylated DNA. After back-
ground subtraction, the resulting cpm’s were plotted
against the DNA concentration.

DNA binding assay

Fluorescence polarization measurements were carried out
at 25�C on a Synergy 4 Microplate Reader (BioTek). A
10 nM of 6-carboxy-fluorescein (FAM)-labeled double
strand DNA [FAM-50-CCATGXGCTGAC-30/50-GTCA
GYGCATGG-30 where X and Y are C, 5mC (M),
5hmC (H), T, U or 5hmU] was incubated for 10min
with increasing amounts of proteins in binding buffer
(20mM Tris–HCl, pH 7.5, 150mM NaCl, 5% glycerol
and 0.5mM TCEP). No change in fluorescence intensity
was observed with the addition of protein. Curves were fit
individually using GraphPad PRISM 5.0d software
(GraphPad Software Inc.). Binding constants (KD) were
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calculated as [mP]= [maximum mP]� [C]/(KD+[C])+
[baseline mP], and saturated [mP] was calculated as
saturation= ([mP]� [baseline mP])/([maximum mP]–
[baseline mP]), where [mP] is milli-Polarization and [C] is
protein concentration. Averaged KD and its standard
error were reported.

DNA glycosylase activity assay

DNA glycosylase activity assay was performed similar to
previously described except FAM labeled DNA oligo-
nucleotides were used instead of radio-labeled DNAs
(15). Purified MBD4 or TDG protein (0.5 mM) and
0.5 mM of double strand FAM labeled 32-mer annealed
DNA (see below) were mixed in 20 ml nick buffer
(10mM Tris–HCl, pH 8.0, 1mM EDTA, 0.1% BSA)
and incubated at 37�C for 1 h. Reactions were stopped
by adding 2 ml of 1N NaOH, and boiled for 10min
before 20 ml of loading buffer (98% formamide, 1mM
EDTA and 1mgml�1 of bromophenol blue and xylene
cyanole) were added and boiled for another 10min.
Samples were immediately put into ice water to cool
down and loaded on a 10� 10 cm2 denaturing PAGE gel
containing 15% acrylamide, 7M urea and 24%
formamide in 1�TBE buffer. The gels were run at
200V for 60min. FAM-labeled single strand DNA was
visualized by UV exposure. The following
olignonucleotides were synthesized at the New England
Biolabs:

(FAM)-50-TCGGATGTTGTGGGTCAGXGCATGATAG
TGTA-30

30-AGCCTACAACACCCAGTCGYGTACTATCACAT-50

where X, Y=C, 5mC (M), 5hmC (H), U, T or 5hmU
(hU).

RESULTS

DNMT3a and DNMT3b have comparable activities on
C/C, M/C and H/C substrates

In mammals, DNA methyltransferases (DNMTs) include
three members, in two families that are structurally and
functionally distinct (17). The DNMT3A and DNMT3B
(18,19), coupled with regulatory factor Dnmt3-Like
(DNMT3L) protein (20,21), establish the initial methyla-
tion pattern de novo, while DNMT1 and its accessory
protein UHRF1 (ubiquitin-like, containing PHD and
RING finger domains 1) (22,23) maintain this pattern
during chromosome replication. We first asked which
Dnmts methylate the newly synthesized cytosine in the
context of hemi-hydroxymethylated CpG site (H/C)
(Figure 1). Using a 32-bp DNA oligonucleotide contain-
ing a single CpG site, either unmodified (C/C),
hemi-methylated (M/C) or hemi-hydroxymethylated (H/
C), we find that whereas the known maintenance
methyltransferase DNMT1 (24) has high intrinsic
activity for the M/C substrate (Kcat=6.6 h�1; Figure 1b
and Supplementary Figure S1), it has measurable but
greatly reduced activity for the H/C substrate
(Kcat� 0.1 h�1) and no detectable activity on C/C

(Figure 1b). Thus, unlike M/C, H/C is not a preferred
substrate of DNMT1 and is unlikely to be methylated
by DNMT1 after replication, in agreement with previous
findings (25). Consistent with this notion, UHRF1, which
is essential for DNMT1 function and selectivity for
hemi-methylated CpG (M/C) sites in vivo (22,23), loses
its intrinsic preference for hemi-methylated DNA when
5mC is replaced by 5hmC. UHRF1 (residues 124–628)
shows a >10-fold reduced binding affinity for H/C DNA
as compared to M/C DNA, that was similar in magnitude
to its affinity for fully methylated (M/M), fully
hydroxymethylated (H/H) and H/M DNA (Figure 2a
and Supplementary Discussion). Therefore, neither
DNMT1 nor UHRF1 are likely to be involved in
post-replicative maintenance of H/C methylation, which,
without the involvement of DNMT3 (see below), would
lead to ‘passive demethylation’ of 5hmC.
De novo DNMT3 family includes two active enzymes,

DNMT3A and DNMT3B (18,19), and one regulatory
factor, DNMT3L protein (20,21). DNMT3L enhances
methylation by both DNMT3A and DNMT3B (26–30)
via direct interaction with the catalytic domain of
DNMT3A and DNMT3B and stabilizing their binding
of AdoMet (31). We purified DNMT3A2 [a shorter
isoform of DNMT3A (32)] in complex with DNMT3L
as well as the complex between DNMT3B�218 (deletion
of N-terminal 218 residues, termed 3B2, approximately
equivalent to DNMT3A2 in size) and DNMT3L
(Supplementary Figure S2). Unlike DNMT1,
DNMT3A2/3L and DNMT3B2/3L have approximately
equal activities on all three (M/C, H/C, C/C) substrates,
with Kcat values of 0.2–0.4 and �0.2 h�1, respectively
(Figure 1c and d), suggesting that DNMT3A and
DNMT3B do not distinguish various modifications in
the hemi-modified context. The very slow catalytic
turnover of DNMT3A and DNMT3B is probably due
to the product binding of methylated DNA, considering
that almost all of the cellular complement of DNMT3A
and DNMT3B, but not DNMT1, is strongly anchored to
nucleosomes containing methylated DNA (33,34).

Recognition of 5hmC by known MBDs

Tet proteins use 5mC as substrate to generate 5hmC (2).
The amount of 5hmC, which inversely correlates with the
amount of 5mC in Purkinje cell DNA and in granule cell
DNA (3), could potentially be regulated by the combined
cellular activities of Tet1-3 enzymes, DNMTs (through the
regulation of the levels of 5mC substrate) and the
methyl-specific DNA binding proteins (by binding and
potentially masking 5mC), such as MeCP2, which is
found in high concentrations in the brain (35). It was
recently found that 5hmC levels in mouse cerebellum are
negatively correlated with MeCP2 gene dosage (36).
Consistent with this idea, we found that MeCP2 binding
to methylated DNA inhibits Tet1 activity in vitro
(Supplementary Figure S3).
To explore the effect of DNA hydroxylation on the

function of MBD proteins, we measured the dissociation
constants (KD) between five MBD proteins and double
stranded oligonucleotides containing a single CpG
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dinucleotide with six different modification states (C/C,
M/C, H/C, M/M, H/M and H/H as shown in Figure 1a)
using fluorescence polarization analysis. MeCP2 (residues
77–205) binds fully methylated DNA (M/M) with a KD

of 10 nM; changing a single methyl group to
hydroxylmethyl on one strand (H/M) increased the KD

to 46 nM (an �5-fold weaker binding) (Figure 2b). Full
hydroxymethylation (H/H) weakened the binding by
another factor of 5 with KD of 0.26mM, a value similar
to that of H/C (0.19 mM) and about half of C/C (0.5 mM)
(Figure 2b), suggesting that the hydroxyl group of 5hmC
disrupted the specific interaction between MeCP2 and
5mC, reducing the binding affinity to that of unmodified
cytosine. In comparison, there was little apparent discrim-
ination in the context of hemi-modification (0.19 mM
for H/C versus 0.13 mM for M/C).

A similar trend was observed for the MBD domain of
MBD1 (Figure 2c) and MBD2 (Figure 2d): each methyl
group hydroxylation from M/M to H/M to H/H results in
weaker binding (by a factor of 18 and 11 for MBD1 and
10 and 5 for MBD2, respectively). These results are in
general agreement with the finding that MBD domains
have a lower affinity toward sequences containing 5hmC
(37,38). Nevertheless, it is noteworthy that the ability of
the different MBDs to discriminate between these
substrates (M/M versus H/M) varies considerably (from
2- to 18-fold), with MBD3 and MBD4 showing little
discrimination (Figure 2e and f) (summarized in
Figure 2g). Furthermore, although MeCP2 and MBD1
have significantly lower affinity for hemi-methylated
and hemi-hydroxymethylated CpG dinucleotides (H/M)
relative to M/M DNA (5- and 18-fold decreased affinity,

(a)

(b) (c) (d)

Figure 1. DNMT3A and DNMT3B can methylate the cytosine in the context of hemi-hydroxylmethylated CpG site (H/C). (a) Diagram showing the
potential fate of single CpG sites that are either unmodified (C/C), fully methylated (M/M) or fully hydroxymethylated (H/H) at DNA replication.
After strand synthesis, unmodified (C/C), hemi-methylated (M/C) or hemi-hydroxymethylated (H/C) sites are transiently generated. MBD indicates
DNA methyl-binding domain proteins, while Tet refers to ten–eleven translocation proteins. (b–d) Enzymatic activity of recombinant DNMT1,
DNMT3A2/DNMT3L and DNMT3B2/DNMT3L against a 32-bp DNA containing a single unmodified (C/C), hemi-methylated (M/C) or
hemi-hydroxymethylated (H/C) CpG site. Note that DNMT1 (panel b) has robust preference for maintenance methylation at M/C sites over
H/C and C/C sites in naked oligonucleotide DNA, whereas DNMT3A2/3L (c) and DNMT3B2/3L (d) have approximately similar activities on
all three substrates.
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respectively), this substrate is still preferred over
hemi-methylated DNA (M/C) by a factor of �3, and is
bound by MeCP2 and MBD1 with an affinity similar to
that which MBD2 binds fully methylated (M/M) DNA,
and a greater affinity than MBD3 and MBD4, bind
to fully methylated DNA (M/M) (summarized in
Figure 2g). These data suggest that in vivo there may be
additional factors (e.g. relative local concentration,
tissue-specific expression) that determine whether, and to
what degree, 5hmC DNA is bound by MBDs.

Excision of 5hmU by MBD4 and TDG

In the pathway shown in Figure 3a, Tet-mediated produc-
tion of 5hmC becomes the substrate for AID, which
converts 5hmC to 5hmU. We thus tested whether 5hmU
can be excised by MBD4 and TDG glycosylase domains
(15,39). We used the same 32-bp DNA duplexes contain-
ing a G:X mismatch within the CpG sequence context
(where X=5hmU, T or U) as the substrate. The
X-containing strand was FAM labeled, and the excision

(a) (d)

(b) (e)

(c) (f)

(g)

Figure 2. Effect of hydroxymethylation on DNA methylation ‘readers’. Binding affinities of UHRF1 (residues 124–628) (a) and five MBD proteins
(b–f) for a double stranded oligonucleotide containing a single CpG site with one of the six different modification states: unmodified (C/C), fully
modified (M/M, H/H), hemi-(hydroxy)methylated (M/C, H/C) or hemi-methylated/hemi-hydroxymethylated (H/M) CpG site. Binding was assessed
by fluorescence polarization. (a) UHRF1 has a strong preference for binding the hemi-methylated CpG (M/C) site. (b and c) MeCP2 and MBD1
have the strongest binding to fully methylated CpG (M/M). Although there is significantly lower affinity among the MBDs for H/M CpG dinucleo-
tides (5-fold decreased affinity for MeCP2 and 18-fold for MBD1), this substrate is still preferred over hemi-methylated DNA (M/C), and is bound
by MeCP2 and MBD1 with an affinity similar in magnitude to MBD2 (d), and greater affinity than MBD3 (e) and MBD4 (f) bind to fully
methylated DNA (M/M). (g) Summary of relative binding affinities (by factor of x) of five MBD proteins for M/M and H/M substrates (top
two lines). Note that the binding affinities of MeCP2 (and MBD1) for H/M and H/H are in the same order of magnitude as that of MBD2
and MBD4 to M/M substrate, respectively (lines 3 and 4).
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of the mismatched base was monitored by denaturing
gel electrophoresis following NaOH hydrolysis
(Supplementary Figure S4). As expected, no glycosylase
activity was observed on oligonucleotides bearing the
‘natural’ G:C and G:M base pairs, and there was efficient
cleavage of substrates bearing G:T and G:U mismatches
(Figure 3b and c). We extend these findings to show here
that the TDG and MBD4 glycosylases are also inactive on
G:H (which preserves Watson–Crick base-pair hydrogen
bonds; see Figure 3a), but act on G:5hmU mismatched
substrates, and further, that the modification status
(methyl or hydroxymethyl) of the C in the opposite
strand of neighboring G had no impact on the ability to
remove G:T, G:U or G:5hmU mismatches (Figure 3b
and c). Therefore, TDG and MBD4 are capable of
acting on AID-generated 5hmU and completing the
‘demethylation’ of 5hmC.

DISCUSSION

Taken together, we suggest that DNMT3A and DNMT3B
are capable of acting on the hemi-hydroxymethylated
(H/C) CpG sites generated during DNA replication, to
yield hemi-hydroxylated and hemi-methylated (H/M)
CpG sites. Recently, a maintenance methylation function
has been proposed for DNMT3A and DNMT3B (40),
which have been suggested to complete the methylation
of sites missed by or resistant to DNMT1 activity during
DNA replication (e.g. repetitive DNA). Assuming H/M
sites are substrates for modification by Tet proteins
(Supplementary Figure S5), there is the potential for
regenerating a fully modified hydroxymethylated H/H
site, recapitulating the parental DNA state after replica-
tion (Figure 1a). It is interesting to note that while
Dnmt3a (but not Dnmt3b or Dnmt1) expressed in both
paternal and maternal pronuclei of mouse zygotes, Tet3
(but not Tet1 or Tet2) expressed specifically in the male

(a)

(b)

(c)

Figure 3. MBD4 and TDG are capable of excising 5-hydroxymethyluracil in the context of a double-stranded CpG dinucleotide. (a) A putative
pathway of DNA demethylation involving DNA methylation by DNMTs, hydroxylation by Tet proteins, deamination by AID and glycosylation by
MBD4 or TDG linked to base excision repair (BER). Double stranded 32-bp oligonucleotides bearing a single CpG dinucleotide and the indicated
modification status (where M=5mC and H=5hmC) and labeled with FAM on the top strand were incubated with the glycosylase domain of
MBD4 (b) or TDG (c) at 37�C for 1 h. The products of the reaction were separated on a denaturing polyacrylamide gel, and the FAM-labeled
strand was excited by UV and photographed.
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pronucleus (41). The expression patterns of Dnmt3a and
Tet3 coincide with the loss of methylation and occurrence
of 5hmC in the early mouse embryo (5,6).

We also showed that five MBD proteins have markedly
varied abilities to discriminate M/M versus H/M sub-
strates. MeCP2 and MBD1 bind H/M with an affinity
similar to that which MBD2 binds fully methylated
(M/M) DNA (Figure 2). These data suggest that MBD
proteins (particularly MeCP2 and MBD1) may play a
role in regulating the levels of 5hmC in vivo, by inhibiting
Tet activities through their binding to M/M and H/M
substrates. In mammals, all three Tet proteins, Tet1,
Tet2 and Tet3 catalyze similar reactions, converting
5mC to 5hmC (42). One important future question will
be to determine biochemically whether Tet proteins,
like DNMTs, divide the labor among the family
members, with one (or more) establishing the initial
hydroxymethylation pattern de novo (i.e. using M/M as
the substrate), and other(s) maintaining this pattern
during chromosome replication (using H/M as the
substrate). Finally, we demonstrated that MBD4 and
TDG glycosylase domains are both active on
AID-generated 5hmU and are thus capable completing
the ‘active demethylation’ of 5hmC. An important future
question will be to determine whether the two have largely
complementary but context-dependent functions in 5hmC
turnover. It would also be interesting to know whether
Tet1-3 proteins interact with AID complex [including
the damage response factor Gadd45 (10)] and TDG
or MBD4 by some means.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table 1, Supplementary Figures 1–5,
Supplementary Methods, Supplementary Discussion and
Supplementary References [43–67].
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