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Abstract: Diabetic kidney disease is the leading worldwide cause of end stage kidney 

disease and a growing public health challenge. The diabetic kidney is exposed to many 

environmental stressors and each cell type has developed intricate signaling systems 

designed to restore optimal cellular function. The unfolded protein response (UPR) is a 

homeostatic pathway that regulates endoplasmic reticulum (ER) membrane structure and 

secretory function. Studies suggest that the UPR is activated in the diabetic kidney to 

restore normal ER function and viability. However, when the cell is continuously stressed 

in an environment that lies outside of its normal physiological range, then the UPR is 

known as the ER stress response. The UPR reduces protein synthesis, augments the ER 

folding capacity and downregulates mRNA expression of genes by multiple pathways. 

Aberrant activation of ER stress can also induce inflammation and cellular apoptosis, and 

modify signaling of protective processes such as autophagy and mTORC activation. The 

following review will discuss our current understanding of ER stress in the diabetic kidney 

and explore novel means of modulating ER stress and its interacting signaling cascades  

with the overall goal of identifying therapeutic strategies that will improve outcomes in  

diabetic nephropathy. 
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1. Introduction 

Diabetic kidney disease (DKD) is the most common worldwide cause of chronic kidney disease and 

a growing public health challenge [1]. The development of diabetic nephropathy is influenced by a 

number of factors including genetic and environmental susceptibility, altered glomerular and tubular 

hemodynamics, epigenetic mechanisms and inflammation. Moreover, the micro- and macro-environment 

in the diabetic individual is greatly perturbed in DKD leading to the dysregulation of many 

homeostatic signaling pathways. 

The endoplasmic reticulum (ER) is the central site for folding, post-translational modifications, and 

transport of secretory, luminal and membrane proteins. The ER is also involved in calcium storage and 

lipid biosynthesis. Over two decades ago investigators observed that the accumulation of misfolded 

proteins in the ER, induced the expression of glucose-regulated proteins (GRPs) including 

GRP78/heavy chain binding protein (BiP) [2,3]. Subsequent work revealed that increases in the load of 

unfolded proteins in the ER, activates a complex signaling pathway—the unfolded protein response 

(UPR). The UPR increases the folding capacity of the ER by upregulating the mRNA translation of ER 

chaperones and inhibiting the translation of most proteins. The coordinated activation of these 

pathways is designed to rapidly reduce the ER load. The UPR is a homeostatic pathway that regulates 

ER membrane structure and secretory protein processing capacity in a dynamic and coordinated  

manner [4,5]. When the cell becomes overwhelmed by misfolded proteins, then it is considered the ER 

stress response. However, it is unclear when cells cross the line between the UPR and ER stress; 

Rutkowski and Hedge have suggested that ER stress occurs when the ER functions in an environment 

that lies outside of its normal physiological range.  

A number of factors activate the UPR including nutrient excess and deprivation, altered protein 

glycosylation, reducing agents, changes in ER calcium content, oxidative stress and TLR signaling. 

The diabetic milieu is associated with aberrant protein folding and activation of the UPR. Bacterial and 

viral infections and bacterial toxins activate the UPR by a variety of mechanisms (reviewed in [6]). 

Additionally, microRNAs (miRNAs) modulate the UPR and may play a role in the switch between the 

homeostatic UPR and ER stress [7–9]. However our understanding of microRNAs and their impact on 

the UPR remains rudimentary. 

2. Mammalian UPR 

In mammalian cells, there are three major arms of the UPR: (1) protein kinase RNA (PKR)-like ER 

kinase (PERK); (2) inositol requiring protein-1α (IRE1α) and (3) activating transcription factor-6 

(ATF6) pathways. The PERK pathway rapidly attenuates protein translation, whereas the ATF6 and 

the IRE1α cascades transcriptionally upregulate ER chaperone genes that promote proper folding and  

ER-associated degradation (ERAD) of proteins, allowing the folding machinery of the ER to catch up 

with the backlog of unfolded proteins. These pathways are designed to relieve the accumulation of 

misfolded ER proteins, however when these pathways are overwhelmed by sustained ER stress, the 

UPR initiates pro-apoptotic pathways [10–14]. The UPR is also associated with adaptive processes 

such as IRE-dependent Decay (RIDD) and MicroRNA-dependent gene silencing [7,8].  
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GRP78/BiP is an ER chaperone protein that activates the UPR. In unstressed cells, GRP78/BiP 

binds to the ER luminal domains of the ER stress sensors: IRE1α, PERK and ATF-6 and maintains 

them in an inactivated state [15,16]. During ER stress, BiP preferentially binds to unfolded and 

misfolded proteins and dissociates from the transmembrane sensors, facilitating their activation. After BiP 

dissociation, it is not clear whether full activation of the UPR requires subsequent binding of unfolded 

proteins to the luminal domains of IRE1α, PERK and ATF-6 (reviewed in [17,18]).  

3. PERK Pathway 

PERK is a transmembrane protein with an ER luminal stress-sensing domain that binds GRP78/BiP, 

and a cytosolic kinase domain [15]. When ER stress is sensed, PERK multimerizes and phosphorylates 

eukaryotic translation initiation factor 2α (eIF2α) [19]. Phosphorylation of eIF2α initially suppresses 

the translation of 90% of cellular mRNAs by interfering with 5ʹ cap assembly [5,19,20]. However, a 

subset of genes including activating transcription factor-4 (ATF4) [19] and nephrin [21] are 

preferentially translated when eIF2α is phosphorylated (p-eIF2α). ATF4 a transcription factor, then 

binds to promoter/enhancer regions to transcriptionally upregulate expression of specific UPR target 

genes, which include C/EBP homologous protein (CHOP, C/EBPζ, DDIT, growth arrest and DNA 

damage (GADD) 153) [22–24], GADD34 [25], vascular endothelial growth factor (VEGF) A [26], 

TRB3 [27], osteocalcin, bone sialoprotein [28], receptor activator of NF-κB ligand (RANKL),  

E-selectin and genes important in amino acid metabolism [29,30]. Other stress-associated kinase 

signaling pathways converge downstream of p-eIF2α, thus p-eIF2α functions to induce an “integrated 

stress response” [17,29].  

4. IRE1α/X Box Protein-1 (XBP-1) Pathway 

The IRE1α/XBP-1 pathway is the most evolutionarily conserved of the ER stress pathways [31]. 

IRE1α is a membrane-bound serine/threonine kinase with endonuclease activity [32,33]. When ER 

stress is sensed GRP78/BiP dissociates from IRE1α [34] and IRE1α splices a 26 bp intron from XBP-1. 

Splicing of XBP-1 induces a translational frame-shift that generates a 54 kd highly active transcription 

factor, compared with a smaller poorly active unspliced XBP-1 (uXBP) [35,36]. XBP-1 induces the 

transcription of genes involved in ER maintenance, ER expansion and ER associated degradation 

(ERAD) [37,38]. Studies suggest that uXBP may negatively regulate the UPR by binding and 

excluding spliced XBP-1 (sXBP) from the nucleus [39]. However, uXBP is inherently unstable and 

rapidly degraded in cells [40]. IRE1α also activates apoptosis signal-regulating kinase (ASK1), c-Jun 

N-terminal kinase (JNK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB, 

reviewed in [41]), which are involved in apoptotic, autophagy and inflammatory pathways [42–46].  

XBP-1 is member of the basic leucine finger cAMP Response element (CREB)/ATF transcription factor 

family and it is ubiquitously expressed. Not surprisingly, in mice XBP-1 deficiency is an 

embryonically lethal mutation due to liver failure [47]. XBP-1 plays a role in hepatic [48], plasma  

cell [47,49,50], dendritic [51,52] and effector CD8+ T cell [53] development, however its function in 

the kidney is poorly understood. XBP-1 preserves cell survival during the UPR, however after 

prolonged stress the IRE1α/XBP-1 arm of the UPR is attenuated, sensitizing the cells to apoptosis 

mediated by the PERK/CHOP pathway [54,55]. XBP-1 regulates the biogenesis and expansion of the 
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ER and Golgi, is a key modulator of secretory cell function [47,56] and regulates genes involved in 

redox homeostasis and oxidative stress responses including catalase [38,57]. XBP-1 regulates VEGFA 

expression and is directly recruited to the VEGFA promoter under ER stress conditions [58]. VEGFA 

rapidly activates all three ER stress sensors (IRE1α, PERK and ATF6) and promotes endothelial  

survival [59]. XBP-1 also regulates hepatic glucose metabolism and the hexosamine biosynthetic 

pathway [60–62]. In nematodes XBP-1 increases longevity [63] and recent work suggests that XBP-1 

binds to Hypoxia-inducible Factor 1α (HIF1α) to promote the growth of triple negative breast cancer [64]. 

5. Regulated IRE1-Dependent Decay (RIDD) 

A subset of ER-localized mRNAs encoding secreted and transmembrane ER proteins are cleaved 

directly by the endonuclease activity of IRE1α. The cleaved mRNAs are then rapidly degraded in a 

process called regulated IRE1-dependent decay (RIDD) [65–67]. This process may assist the PERK 

arm of the UPR to reduce the accumulation of misfolded proteins in the ER. RIDD activity may also 

induce the rapid clearance of microRNAs (miRNA-17, -34a, -96 and -125b) that repress translation of 

caspase-2, to enhance expression of this pro-apoptotic protein [68]. RIDD activity also activates the 

Nod-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome and promotes 

inflammation and programmed cell death [69]. However, the relevance of RIDD activity in the kidney 

is unknown.  

6. ATF6 

ATF6 is the third ER stress sensor that is bound as an inactive precursor in the ER membrane.  

During ER stress ATF6 is transported to the Golgi and cleaved by site 1 protease (S1P) and site 2 

protease (S2P). Cleavage of ATF6 releases its cytoplasmic bZIP domain [70], which translocates to the 

nucleus and activates the transcription of target genes which include GRP78/BiP, XBP-1, GRP94, 

oxygen-regulated protein 150 (ORP150), ER oxidoreductin β (ERO1β), p58IPK and degradation in ER 

protein 3 (Derlin 3) [16,36,71–76]. Interestingly, the Golgi localized proteases S1P and S2P also 

catalyze the proteolytic activation of a group of transcription factors, the sterol regulatory binding 

proteins (SREBPs), linking the ER stress response with lipid and cholesterol synthesis [77,78]. However, 

it remains unclear whether the UPR and SREBP pathways function in an antagonistic or synergistic 

manner [17].  

7. ER Stress in the Kidney 

Investigating the ER stress response in the kidney provides a number of challenges. The kidney has 

many diverse cell types [79] and the UPR functions in a very cell-type and context-dependent manner 

modulating different downstream pathways to restore tissue homeostasis [6]. However, the UPR likely 

plays a more significant role in secretory cells such as podocytes, which secrete many factors  

including VEGF, cytokines, chemokines and factors that promote glomerular basement membrane  

integrity [80,81]. Many seminal UPR studies have been performed in undifferentiated murine embryonic 

fibroblasts (MEFs), which likely do not model function in fully differentiated renal cells. Another 

challenge is regarding the complexity of the UPR with three known signaling pathways each with its 
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own dynamic expression, oscillations and function [5,81]. Questions also remain regarding whether 

investigators should measure mRNA or protein expression of ER-relevant molecules when 

investigating the UPR, though it seems prudent to investigate both mRNA and protein expression. 

Finally, certain paradigms in the field have emerged, that are not consistent. An example is that 

expression of the transcription factor CHOP inexorably leads to cell death. However CHOP does not 

promote apoptosis in all cell types [82] and CHOP’s biological effects may be dependent on CHOP’s 

binding partner [83] or on the phosphorylation status eIF2α [84]. 

8. Renal Cell Systems 

In murine podocytes hyperglycemia, advanced glycation end products (AGE) and free fatty acids 

(FFA) induce ER stress and apoptosis, and this can be inhibited by exogenous ER chaperones [82,85–87]. 

AGE increase intracellular calcium concentrations by releasing ER stores, and by increasing calcium 

influx of extracellular calcium [85]. FFAs induce GRP78/BiP and CHOP expression. CHOP can 

mediate apoptosis (depending on the phosphorylation status of eIF2α [84]) or transcriptionally activate 

downstream ER stress-associated genes including TRB3 [82,87]. In human proximal tubular cells  

(HK-2) palmitic acid (a FFA) induces ER stress and this can be blocked with a cannabinoid receptor 

antagonist [88]. In a human renal tubular cell line (HKC), high glucose conditions increase splicing of 

XBP-1 and transfection of spliced XBP-1 increases expression of fatty acid synthase and acetyl-CoA 

carboxlase to promote lipid synthesis [89]. In contrast, in mesangial cells, high glucose conditions 

reduce spliced XBP-1 expression. Transfection of adenoviral XBP-1 reverses high glucose-induced 

reactive oxygen species (ROS) production and extracellular matrix (ECM) expression. Whereas, 

knockdown of intrinsic XBP-1 increases ROS and ECM [90], supporting the renoprotective effects of 

XBP-1. These contrasting effects of high glucose conditions on XBP-1 splicing further illustrate the 

variable nature of ER stress responses and their strict dependence on cell type and cellular conditions. 

In human renal tubular cells (HK-2), ER stress increases oxidative stress and reduces anti-oxidant 

enzymes by reducing micro-RNA (miR)-205 expression [91]. Likewise in rat renal tubular cells 

(NRK-52E) Dehydroxymethylepoxyquinomicin (DHMEQ, an NF-κB inhibitor), increases ROS, which 

rapidly induce all three arms of the UPR [92]. Thus ROS activate the UPR [82,92] and depending on 

the cellular context and conditions the UPR can either negatively [90] or positively regulate generation 

of ROS [91]. 

9. ER Stress in the Diabetic Rodent Kidney 

Mice with constitutive mutations in ER stress proteins develop diabetes, defects in glucose  

handling [93–96] and ER Stress induces β-cell failure [97–99]. Thus studies investigating the 

functional relevance of these proteins in DKD will need to employ conditional knockout or transgenic 

expression of key ER stress proteins (PERK, IRE1α, XBP-1, eIF2α etc.). Akita mice (Ins2+/C96y), used in 

studies of Type 1 DKD, have a missense mutation in the insulin gene, which causes accumulation of 

misfolded insulin, activation of ER Stress and subsequent pancreatic β cell failure [100–103]. Mice with a 

heterozygous constitutive knock-in of a mutant GRP78/BiP have evidence of ER Stress in the kidney, 

associated with age-related renal tubular atrophy, interstitial fibrosis and glomerulosclerosis [104]. 
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A number of groups, including ours have documented activation of the ER stress response in the 

diabetic kidney [82]. Liu and colleagues were the first to evaluate the ER stress response in a 

mammalian model of diabetes. In STZ-treated rats (65 mg/kg STZ IP once), they demonstrated 

increased expression of GRP78/BiP in glomerular and tubular cells and enhanced kidney cell 

apoptosis, CHOP, JNK and caspase-12 expression [105]. In older STZ-treated mice (50 μg/g STZ for 

5–8 injections), GRP78/BiP, CHOP, phosphorylated-PERK and p-eIF2α were increased in 22 month-old 

diabetic mice, compared with 9 month-old diabetic and non-diabetic mice. Diabetic CHOP knockout mice 

also had less proteinuria [106]. These studies consistently observed activation of ER stress in the 

diabetic kidney, but they did not elucidate whether it was protective or destructive. TRB3 is an ER  

stress-associated protein that is upregulated by free fatty acids and ROS through the PERK/CHOP UPR 

pathway [82]. We recently demonstrated that constitutive knockout of TRB3 worsens albuminuria, 

cytokine and chemokine expression in murine Type 1 diabetic kidney disease [107], supporting the 

protective effects of ER stress. Further studies in mice with transgenic and conditional knockouts of 

key ER stress-associated molecules will likely clarify the roles that these complex pathways play in the 

diabetic kidney. 

Spliced XBP-1 is reduced in the renal cortices 8 weeks after STZ treatment in rats (65 mg/kg once) [90] 

and the authors hypothesize that this increases ROS (through nicotinamide adenine dinucleotide 

phosphate (NADPH) oxidase) and ECM. Our group has also observed lower XBP-1 mRNA expression 

in diabetic mouse kidneys (STZ and db/db, unpublished observations), though Chen observed higher 

spliced XBP-1 protein in renal cortices of db/db mice [108]. Interestingly, in hippocampuses of db/db 

mice microarray screening showed lower spliced and unspliced XBP-1 [109]. Variable findings of 

XBP-1 in the kidneys could be related to poor specificity of commercially available antibodies for 

XBP-1, highlighting the importance of verifying XBP-1 expression by real-time PCR. It is not clear 

why XBP-1 expression is downregulated in the diabetic kidney. However ER stress has distinct 

temporal patterns [107]. XBP-1 preserves cell survival during the UPR, and prolonged stress attenuates 

the IRE1α/XBP-1 arm of the UPR, sensitizing cells to apoptosis [54,55]. Thus strategies that augment the 

IRE1α/XBP-1 pathway may slow or prevent the progression of DKD.  

10. ER Stress in Human Diabetic Kidney Disease 

Few studies have investigated the ER stress response in the human diabetic kidney. Lindenmeyer  

and colleagues demonstrated that mRNA expression of GRP78/BiP, ORP150/HYOU1, S1P 

(MBTPS1), calnexin and XBP-1 increase in the kidneys of patients with established diabetes, 

compared with mild diabetes [110]. In human kidney transplant biopsies performed before 

implantation, GRP78/BiP was co-expressed with the inflammatory transcription factor NF-κB 

p65/RelA, suggesting that ER stress (induced by cold ischemia) activates tubular inflammation in 

human renal allografts [111]. Further studies investigating the impact and role of ER stress in human 

diabetic kidneys are needed. Wolcott-Rallison disease is caused by autosomal recessive mutations in 

PERK [112]. In this inherited defect of the UPR, children develop skeletal abnormalities and infantile 

diabetes. There are reports of renal insufficiency including proteinuria, which could indicate podocyte or 

tubular epithelial cell dysfunction or prerenal azotemia [113,114].  
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11. The UPR Interacts with a Number of Signaling Cascades 

11.1. Inflammation and Immunity 

Studies have demonstrated close links between ER stress activation and inflammation [115,116]. 

Moreover, enhanced inflammation plays a pathophysiological role in the diabetic kidney [117]. NF-κB 

drives the transcription of a number of cytokines and inflammatory molecules and all three arms of the 

UPR modulate NF-κB activity [118–122]. However the IRE1α/XBP-1 pathway seems to exert the 

most effect on inflammation and immunity to pathogens, by regulating the development of many 

inflammatory cell types [49–53] (reviewed in [6]). The IRE1α/XBP-1 pathway promotes immune 

tolerance in the gut [123], and may “protect against ER toxicity caused by innate inflammatory 

pathways” [124]. ER stress generates ROS, which activate cytokines/chemokines to drive many 

inflammatory responses. In human renal cortical tubular cells glucose deprivation activates the UPR, 

which promotes the transcription of interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-α, regulated 

on activation, normal T cell expressed and secreted (RANTES) and monocyte chemokine protein 

(MCP)-1 via NF-κB in an IRE1α-dependent manner [111]. In type 2 diabetic (db/db) mice ER stress 

triggers the expression of MCP-1 by XBP-1-mediated induction of SET7/9 (a histone lysine 

methyltransferase), which increases histone 3 lysine 4 methylation of MCP-1 promoters in renal 

cortices of diabetic kidneys [108]. 

The inflammasome is an oligomer of proteins that activate pro-apoptotic caspases and  

inflammatory cytokines, and it plays a key role in the innate immune response [125]. During ER stress 

the IRE1α and PERK pathways induce thioredoxin-interacting protein (TXNIP), to activate the 

NLRP3 inflammasome [69,126]. In human biopsies of proteinuric renal disease (IgA nephropathy, 

minimal change disease, membranous nephropathy, and DKD), inflammasome-related proteins such as 

caspase 1, IL-1β and IL-18 were expressed in the distal and proximal tubules and expression positively 

correlated with the degree of proteinuria [127]. In a tubular cellular model (NRK-52E), bovine serum 

albumin (BSA) induces expression of inflammatory cytokines, NLRP3, GRP78/BiP and 

phosphorylation of eIF2α. Indeed, use of a chemical chaperone to reduce ER stress attenuates 

inflammasome activation induced by albuminuria in a murine model of STZ-induced diabetic 

nephropathy, suggesting that ER stress also activates inflammation and kidney injury [127].  

As previously discussed the transcription factor CHOP is classically considered to induce cellular 

apoptosis. However CHOP may inhibit inflammatory responses in the kidney, as mice deficient in 

CHOP expression develop more severe septic acute kidney injury (AKI) [128]. In contrast, CHOP’s 

function in chronic kidney disease is not completely understood [106]. Interestingly in human diabetic 

kidneys CHOP expression was not higher [110], though its expression is consistently augmented in 

murine models of diabetic kidney disease [82,105,106]. Future studies of ER stress in diabetic humanized 

rodent models may clarify some of these discrepant findings [129]. 

Toll-like receptors (TLRs) signal the existence of pathogens and activate the UPR to optimize  

ER function to facilitate high levels of secretory protein expression [124,130,131]. Indeed fungi and 

other organisms have used the UPR to provide virulence factors that support their survival in hostile 

environments [132]. Damage-associated molecular patterns (DAMP) are proteins released outside of 

the cell or expressed on the plasma membrane in stressed or damaged cells [133,134]. ER stress and 
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ROS help traffic DAMPS to the plasma membrane, which recruit innate inflammatory cells to mediate 

immunogenic cell death. [135,136]. The relevance or existence of DAMP expression in the diabetic 

kidney has not been established, but it is tempting to speculate that like TLR’s, DAMPS may play a 

pathogenic role in DKD [137]. 

11.2. Mammalian Target of Rapamycin (mTOR) 

mTOR is a conserved serine/threonine kinase modulated by growth factors and cellular energy 

status, and it is a constituent of mTOR complex 1 (mTORC1) and mTORC2. MTORC1 regulates 

growth, autophagy, survival and metabolism, whereas the role of mTORC2 is incompletely understood. 

mTORC1 activation in podocytes promotes the development of diabetic nephropathy [138,139] and it 

is associated with ER stress. The impact of mTORC2 activation in diabetic kidney disease remains 

unknown. However our group has shown that TRB3, an ER stress-associated protein binds to mTOR 

and the rapamycin-insensitive companion of mTOR (RICTOR), a protein specific to mTORC2, and 

inhibits inflammatory cytokine expression [107]. Absence of TRB3 also worsens albuminuria, 

cytokine and chemokine expression in DKD, another example of the salubrious effects of ER stress [107]. 

The interactions between ER stress and mTOR pathways is complex and has recently been carefully 

reviewed [140].  

11.3. Autophagy 

Macroautophagy (referred to as autophagy) is a cellular pathway that preserves homeostasis by 

degrading long-lived proteins and dysfunctional organelles [141,142]. Autophagy exerts both 

cytoprotective and cytocidal effects, and dysregulation of autophagy contributes to podocyte 

dysfunction in diabetic nephropathy [143]. For almost a decade investigators have identified links 

between ER stress and autophagy. Autophagy may be activated during ER stress to supplement  

ERAD [46,144,145]. Autophagy can originate from the ER membrane and be triggered by ER  

stress [44,146–152]. Interestingly in neurons, knockdown of XBP-1 activates autophagy [153], though 

in neuroglioma cells XBP-1 activates autophagy [154], again highlighting the cell specific effects of 

ER stress. 

The link between ER stress and autophagy in renal pathophysiology was first described in renal 

tubular cells [155,156]. Podocytes have high levels of autophagy [157] and in cultured podocytes an 

ER stress inducer tunicamycin (TM), enhances microtubule-associated protein light chain 3 (LC3, a 

key autophagy protein) [158]. Hartleben and colleagues elegantly demonstrated that podocyte-specific 

deletion of autophagy-related 5 (Atg5) leads to glomerulopathy in aging mice and this was associated 

with ER stress, podocyte loss, proteinuria and glomerulosclerosis [143]. mTOR closely regulates 

autophagy, further supporting the tight interconnections among ER stress, mTOR and autophagy 

pathways [159,160].  

12. Modulation of ER Stress 

A number of therapeutic strategies designed to modulate ER stress have been employed in kidney 

diseases. Preconditioning with low doses of ER stress inducers TM and thapsigargin (TG) is protective 
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in mesangioproliferative glomerulonephritis, Heymann’s nephritis and ischemia-reperfusion [161–163]. 

Preconditioning has not been studied in diabetic kidney disease, perhaps due to its chronic nature. 

However, in a model of diabetic retinopathy, the salutary effect of ER stress preconditioning in retinal 

endothelial cells is dependent on XBP-1 expression [164]. 

ER chaperones have been used therapeutically to promote protein folding and to reduce protein 

aggregation in the ER [165–167]. Tauroursodeoxycholic acid (taurine conjugate form of ursodeoxycholic 

acid, TUDCA) is a chemical chaperone that has been used in traditional Chinese medicine for a 

number of indications [168]. In murine podocytes TUDCA reduces AGE-induced expression of 

GRP78/BiP and podocyte apoptosis [85]. TUDCA restores defective autophagy and attenuates 

albuminuria and histopathological changes in diabetic mice, though these changes were associated with 

mild improvements in glucoses [169]. TUDCA also reduces inflammasome activation (suppression of 

caspase-1 activation, IL-1β and IL-18 maturation) in a murine model of DKD [127]. In a clinical study 

4 weeks of TUDCA improves hepatic and muscle insulin sensitivity and signaling but did not change 

markers of ER stress in muscle or adipose tissue [170]. Renal effects were not studied.  

In a rat model of diabetes 4-phenyl butyric acid (4-PBA, 1 mg/kg), an ER chaperone, attenuates 

manifestations of diabetic nephropathy including markers of renal oxidative stress such as NADPH 

oxidase activity, however the investigators only assessed one marker of ER stress (IRE1α) and 4-PBA 

treatment was associated with improved glycemic control and markers of renal function (BUN and 

creatinine) were unchanged [171]. In STZ-treated rats 4-PBA improves renal hypertrophy, hyperglycemia, 

urinary protein excretion and mesangial matrix expansion, however these changes were not associated 

with improvements in serum creatinine [172]. Nephrin is a large podocyte transmembrane protein that 

plays a key role in slit diaphragm integrity. Nephrin mutations, which cause congenital nephrosis can 

trigger the UPR, and 4-PBA facilitates plasma membrane expression of some nephrin mutants [173]. 

Indeed hyperactivation of mTORC1 (in diabetic nephropathy) is associated with ER stress and 

mislocalization of nephrin in podocytes. 4-PBA treatment of these mice significantly reduces 

GRP78/BiP expression and prevents podocyte loss, but does not normalize nephrin membrane 

localization or proteinuria [138]. In renal tubular epithelial cells 4-PBA decreases expression of 

GRP78/BIP, receptors for AGE (RAGE) and reduces premature senescence in cells pretreated with 

AGEs [174]. These studies demonstrate that ER chaperones modulate DKD, but it is unclear if their 

positive effects are related to improvements in glycemic control or direct modulation of ER stress  

in the kidney. However, they are encouraging and supportive of future human clinical studies in  

diabetic nephropathy.  

Glucagon-like peptide-1 (Glp-1) is a metabolic hormone (incretin) secreted by intestinal cells. 

Liraglutide is a Glp-1 agonist used for the treatment of Type 2 diabetes and obesity. Liraglutide reduces 

ER stress in diabetic models of cardiomyopathy and pancreatic β-cell loss [175–177]. Additionally 

liraglutide is protective in diabetic kidney disease, though it is unclear if it modulates the UPR in the 

kidney [178,179]. Erlotinib, an epidermal growth factor receptor inhibitor slows the progression of murine 

diabetic nephropathy and this is associated with lower tubular and glomerular CHOP and lower 

glomerular GRP78/BiP and PERK expression. The downregulation in ER stress markers was 

associated with increased expression of key autophagy associated proteins including Atg12, beclin and 

LC3-II in renal glomeruli and tubules [180].  
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The XBP-1 arm of the ER stress response is generally cytoprotective, thus generalized downregulation 

of ER stress may not positively affect the progression of DKD. Strategies that augment XBP-1 activity 

may improve glycemic control and microvascular complications of diabetes [60]. A number of groups 

have synthesized small molecules that block IRE-1α activity and splicing of XBP-1 [181–185] for use 

in multiple myeloma and chronic lymphocytic leukemia, however their effect on diabetic nephropathy 

is unpredictable. Rapamycin (an mTOR inhibitor) may also selectively inhibit the IRE1α pathway [186] 

and rapamycin has been successfully used in rodent models of diabetic kidney disease [187–191]. 

However, rapamycin’s impact on the UPR has not been thoroughly evaluated, and its known effects of 

new-onset diabetes after transplantation (NODAT) and proteinuria may preclude its use in diabetics [192]. 

BiP inducer X (1-(3,4-dihydroxyohenyl)-2-thiocyanate-ethanone, BIX) is a small molecule GRP78/BiP 

inducer that also increases GRP94, calreticulin, and CHOP [193]. BIX activates the UPR selectively 

through ATF6, up-regulates renal GRP78/BiP expression and ameliorates renal ischemia-reperfusion 

injury [194]. Salubrinal, an inhibitor of eIF2α phosphatases, was discovered in a screen for drugs that 

prevent ER stress-induced apoptosis. Phosphorylation of eIF2α reduces protein synthesis and 

salubrinal protects cells from ER stress by maintaining high levels of phosphorylated eIF2α [195]. In 

podocytes salubrinal restores defective autophagy and podocin expression [169], though in  

cisplatin-induced nephrotoxicity, salubrinal enhances oxidative stress and renal injury [196]. Although 

BIX and salubrinal may provide benefit, their effects in DKD are unknown. Similar approaches to 

limit protein synthesis in the kidney may be theoretically beneficial in DKD [84]. RIDD activation 

reduces the toxicity of acetaminophen overdose by degrading key hepatic cytochrome enzymes which 

covert acetaminophen to its toxic metabolites [197]. The relevance of RIDD activity in the kidney is still 

not clear, but augmentation of RIDD activity may provide a novel therapeutic approach. 

Angiotensin converting enzyme inhibitors (ACE I) and angiotensin receptor blockers (ARB) are 

currently used to slow the progression of DKD. In murine STZ-induced diabetes high dose irbesartan 

(an ARB) reduces ER stress and apoptosis in tubules [198]. In rat STZ-induced diabetes perindopril 

(an ACE I) reduces markers of ER stress and apoptosis in the tubulo-interstitium [199]. In contrast in 

rodent diabetic kidney disease low dose irbesartan reduces albuminuria and inflammation, but does not 

reduce ER stress (calnexin and GRP78/BiP staining) [200]. Valsartan (an ARB) and aliskiren (direct 

renin inhibitor) also reduce CHOP and XBP-1 expression in rodent diabetic kidneys [201]. Thus the 

beneficial effects of renin-angiotensin system blockade, may be in part related to modulation of  

ER stress.  

Febuxostat is a non-purine inhibitor of xanthine oxidase and is used therapeutically for gout and 

hyperuricemia. In a rat ischemia-reperfusion model febuxostat improves renal function, inflammation 

and apoptosis by inhibiting oxidative and ER stress [202]. In rat STZ-induced diabetes febuxostat 

reduces albuminuria, glomerular macrophage infiltration and inflammation [203], though its effects on 

ER stress have not been reported. Recently Wang and colleagues demonstrated in male obese Zucker 

rats that low dose acetaminophen reduces ER-stress signaling, tubular and glomerular apoptosis and 

albuminuria [204]. Thus, some currently approved and widely-used medications such as ACE I, ARBs, 

febuxostat, liraglutide, rapamycin and low dose acetaminophen may modulate the UPR and attenuate 

the progression of DKD. However these agents may reduce renal injury and indirectly ER stress, thus 

further studies are indicated to evaluate their precise effects on ER stress pathways in the diabetic kidney.  



J. Clin. Med. 2015, 4 725 

 

 

13. Problems with UPR/ER Stress Studies in the Kidney 

Many studies are based on the assumption that high levels of ER stress-related molecules denote 

active ER stress. However Rutkowski and Hedge have postulated that changes in ER stress-associated 

molecules may represent homeostatic fluctuations in the ER in response to rapidly changing environmental 

conditions [4]. Moreover, some studies investigate only one or two ER stress-related molecules and 

assume that the UPR is activated. In these studies more thorough investigative methods are indicated [205]. 

Our understanding of the UPR is also hindered by the difficulty in blocking or activating a single arm 

of the UPR, as the pathways are highly interconnected among themselves and with other downstream 

signaling cascades. It is also clear that ER stress is neither good nor bad for the kidney; one must be 

careful not to correlate downregulation of ER stress (by one or two ER stress markers) as beneficial, 

especially given the cyto-protective effects of XBP-1. 

14. Future Directions and Conclusions 

The UPR is very dynamic with a wide range of inputs and outputs that enable the cell to respond to 

a number of diverse stimuli and cellular conditions. ER stress is activated in the diabetic kidney and 

the UPR restores normal organ function in aberrant physiological conditions. However, chronic 

activation of these pathways likely contributes to chronic renal injury, inflammation and the 

progression of chronic kidney disease. Many questions remain regarding which renal cells are most 

affected by ER stress and whether activation of one pathway constitutes the ER stress response, or 

must all three arms of the UPR be activated? Moreover, few studies evaluate the temporal patterns of 

ER stress activation and it is likely that timing will have a profound effect on outcomes. The 

development of specific ER stress modulators that modify individual arms of the UPR will provide 

therapeutic strategies to treat the development and progression of DKD. Additionally, the ability to 

carefully amplify or reduce UPR activation may also be efficacious. Furthermore, focused studies 

investigating ER stress in humans or humanized rodent models will further our understanding of the 

UPR in the diabetic kidney.  
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