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A B S T R A C T

Iron deficiency (ID) is highly prevalent in kidney transplant
recipients (KTRs) and has been independently associated with
an excess mortality risk in this population. Several causes lead
to ID in KTRs, including inflammation, medication and an in-
creased iron need after transplantation. Although many studies
in other populations indicate a pivotal role for iron as a regula-
tor of the immune system, little is known about the impact of
ID on the immune system in KTRs. Moreover, clinical trials in
patients with chronic kidney disease or heart failure have shown
that correction of ID, with or without anaemia, improves exer-
cise capacity and quality of life, and may improve survival. ID
could therefore be a modifiable risk factor to improve graft and
patient outcomes in KTRs; prospective studies are warranted to
substantiate this hypothesis.
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nity, iron, kidney transplantation

I N T R O D U C T I O N

Iron deficiency anaemia (IDA) affects approximately one bil-
lion individuals globally and has a particularly high prevalence
among patients with chronic kidney disease (CKD) and end-
stage renal disease (ESRD) [1], including kidney transplant
recipients (KTRs) [2]. The presence of iron deficiency (ID) after
kidney transplantation is strongly associated with an increased
mortality risk [2, 3]. Interestingly, this association is indepen-
dent of co-existing anaemia, suggesting a specific pathogenic
role for ID in kidney transplantation [2]. Although the potential
mechanisms driving the association between ID and mortality
have not been fully elucidated, ID has been implicated in both
immunological and non-immunological pathological processes.
In this review, we will discuss the definition, prevalence and
clinical impact of ID after kidney transplantation, address po-
tential underlying pathophysiological pathways and propose
areas for future study.

I D I N K T R s — D E F I N I T I O N S , E P I D E M I O L O G Y
A N D A E T I O L O G Y

Definition and prevalence of ID

Although an iron staining of bone marrow is the gold stan-
dard method to assess iron status, a serum ferritin level of
<30 lg/L is a widely accepted alternative definition of ID [4].
However, because ferritin is an acute-phase protein, its concen-
tration is increased in most chronic diseases as a result of in-
flammation, possibly masking co-existing ID. Therefore,
transferrin saturation (TSAT) is more reliable in the context of
chronic disease [4]. Most studies in patients with low-grade in-
flammation, including KTRs, use ID definitions based on the
combination of ferritin concentration and TSAT [2, 5–8]. The
prevalence of ID after kidney transplantation varies depending
on the definition used and the time after kidney transplantation.
In a cohort of 700 stable KTRs who were at least 1 year after
transplantation [median time: 5.4 years, interquartile range
(IQR)¼ 1.9–12.0 years], the prevalence of ID defined as a ferri-
tin concentration <300 lg/L and TSAT <20% was 30% [2].
Other cohort studies, all with a median time after transplanta-
tion of at least 4 years, found prevalences between 6% and 47%
[9–13].

A longitudinal study suggested that patients with pre-
transplant ID remained iron-deficient after transplantation,
and ferritin levels tended to decrease in the first months after
transplantation. Other studies support the observation that fer-
ritin levels and TSAT tend to decrease after transplantation, as
haemoglobin (Hb) rises [8, 14, 15]. The reduction in ferritin lev-
els after transplantation is more prominent when ferritin levels
are initially high [13, 16]. This observation suggests that the de-
crease in ferritin levels is not purely resulting from progressive
ID but from an abatement of inflammation as well.

Potential mechanisms of ID in KTRs. The aetiology of ID
after kidney transplantation is multifactorial, as depicted in
Figure 1.
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Inflammation. Inflammation induces hepcidin expression
in the liver through cytokines including interleukin (IL)-6 and
bone morphogenetic protein (BMP) [17]. In particular, BMP6,
a modulator of the renal response to injury, is a major
hepcidin-inducing factor through stimulation of hepatocellular
Suppressor against Mothers Against Decapentaplegic (SMAD)
production [4]. Hepcidin subsequently degrades the iron-
exporter ferroportin in enterocytes, leading to a decreased ab-
sorption of dietary non-haem iron from the duodenum [18].
Hepcidin also decreases the bioavailability of iron by augment-
ing its storage in macrophages through systemic degradation of
ferroportin. The absorption and handling of iron are compre-
hensively described elsewhere [4]. Although hepcidin is

positively correlated with acute-phase protein ferritin, its corre-
lation with TSAT is inverse in line with the presumed role of in-
flammation driving ID in these patients [19–21].

Medication. Medication, including anticoagulants, proton
pump inhibitors (PPIs) and immunosuppressive drugs, form
another major factor influencing iron status in KTRs.
Anticoagulant use frequently causes chronic (microscopic)
gastro-intestinal blood loss, resulting in ID. The use of PPIs has
also been associated with an increased risk of ID in several pop-
ulations, including KTRs [22, 23]. Mechanistically, it has been
suggested that PPIs reduce iron absorption by increasing the
gastric pH, thereby inhibiting the reduction of ferric iron
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FIGURE 1: Causes of ID in KTRs. In KTRs, low-grade inflammation and mTOR inhibitors promote hepcidin upregulation. Hepcidin sup-
presses iron uptake from the gut by inhibiting iron exporter ferroportin on enterocytes. Hepcidin also reduces available iron by inhibiting iron
export from monocytes. Meanwhile, iron usage/consumption is increased in KTRs: renewed EPO production promotes erythropoiesis. Usage
of anticoagulant medication, frequent blood sampling and in some cases gastro-intestinal and urogenital malignancies result in blood loss.
Female KTRs of reproductive age often have a return of their menstrual cycle, another cause of blood loss. Finally, PPIs decrease dietary iron
uptake.
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[Fe(III)] to ferrous iron [Fe(II)], in turn precluding absorption
by enterocytes. The effects of immunosuppressive medication
on iron status are not fully understood. Mammalian target of
rapamycin inhibitors (mTORis) seem to promote ID. In mice,
the mTORi sirolimus and the calcineurin inhibitor (CNI) tacro-
limus stimulated hepcidin expression [24]. In humans, mTORi
use has been associated with both anaemia and functional ID
[25]. Prospective studies showed that a switch from a ciclo-
sporin- to a sirolimus-based immunosuppressive regimen led
to a decline in TSAT, while in patients with a ciclosporin dose
reduction in TSAT remained stable [26]. In a study where
KTRs were switched from a CNI and/or mycophenolic acid
(MPA)-based regimen to an everolimus-based immunosup-
pressive regimen, TSAT also decreased significantly [27].

Malignancies. KTRs are at increased risk of gastro-intestinal
cancers, such as colon carcinoma or intestinal post-transplant
lymphoproliferative disorder, which may manifest as ID [28].
Thus, each patient with ID should be verified for the presence
of alarm symptoms such as weight loss or rectal blood loss.
Also, deep ID accompanied by low mean corpuscular volume
or co-existing anaemia should trigger gastro-intestinal work-
up. The isolated presence of ID without alarm symptoms,
microcytosis or anaemia, which occurs in a considerable group
of patients, seems insufficient to justify gastro-intestinal screen-
ing [29]. Urinary tract malignancies such as renal cell carci-
noma have a much higher prevalence in KTRs as well, and may
induce ID through erythrocyturia [28].

Other factors. Blood loss during transplant surgery and fre-
quent blood sampling after transplantation may contribute to
ID, especially in the early post-transplant phase [30]. Return of
the menstruation cycle after successful transplantation could be

another contributor to progressive ID [31]. Finally, the increase
of serum erythropoietin (EPO) concentrations after kidney
transplantation may cause a relative shortage of iron. Use of
EPO-stimulating agents before kidney transplantation is associ-
ated with a less pronounced ferritin decrease after transplanta-
tion [14].

I D I N K T R s — D E F I N I T I O N S , E P I D E M I O L O G Y
A N D A E T I O L O G Y

In KTRs, ID has been strongly and independently associated
with a higher mortality risk in two studies of KTRs with rela-
tively good graft function [estimated glomerular filtration rate
(eGFR) 52 6 20 mL/min and 53 6 19 mL/min, respectively;
Table 1] [2, 3]. Some but not all studies suggest that iron status
may also influence kidney damage and graft outcomes [3, 34].
Recently, studies in non-transplant populations suggested that
peri-operative ID is an important prognostic factor, and that it
might be beneficial to correct non-anaemic ID prior to surgery
[36–39]. Whether this also applies to KTRs has not been stud-
ied so far. Although the aetiologies that may underlie the ob-
served adverse outcomes have not been elucidated, several
mechanisms could be involved.

Cardiac effects of ID

Given the associations of ID with all-cause mortality in
KTRs (Table 1), and since cardiovascular disease is the most
common cause of death in KTRs, it seems plausible that ID has
adverse effects on the cardiovascular system in KTRs, as shown
in other populations. No studies have so far directly assessed
the association between ID and fatal or non-fatal cardiovascular
outcomes in KTRs. However, it has been shown that ferritin
and EPO are inversely correlated, possibly because ID promotes
resistance to endogenous EPO, and that a higher EPO level is

Table 1. Overview of studies addressing the relationship of ID and supplementation with clinical outcomes in KTRs

References PMID N Design Primary findings

Cardiovascular disease/all-cause mortality
Eisenga et al. [2] 27516242 700 Cohort study Independent association of ID with all-cause mortality (fully adjusted

HR ¼ 1.77, 95% CI 1.13–2.78; P¼ 0.01)
Higher NTproBNP concentrations in patients with non-anaemic ID

[350 (IQR ¼ 127–1069) pg/mL] than in patients without ID [159
(IQR ¼ 72–393) pg/mL]

Winkelmayer et al. [3] 15575912 438 Cohort study Independent association of %HRBC, an indicator of iron status and
metabolic iron utilization, >10% with all-cause mortality (fully ad-
justed HR ¼ 1.20, 95% CI 1.12–3.79; P¼ 0.02).

Infectious diseases
Mudge et al. [32] 22290270 102 RCT Single-dose IV iron polymaltose versus daily oral ferrous sulphate. No

difference in infection risk (20% in IV arm versus 24% in oral arm;
P¼ 0.62)

Fernandez-Ruiz et al. [33] 24011120 228 Cohort study Post-transplant ferritin >500 lg/L associated with any infection
(P¼ 0.006) or bacterial infection (P¼ 0.02) during the first year

No association between TSAT and infection risk during the first year
Vaugier et al. [34] 28784700 169 Cohort study No difference in BK virus infection between high- (>600 lg/L) and low

(<600 lg/L) ferritin groups (10% versus 15%, respectively, in the
high quartile; Chi-squared test; P¼ 0.40)

Fernández-Ruiz et al. [35] 29120522 91 Cohort study Independent association of high hepcidin-25 (�72.5 ng/mL) with over-
all (HR ¼ 3.86, 95% CI 1.49–9.96; P¼ 0.005) and opportunistic infec-
tion (HR ¼ 4.32, 95% CI 1.18–15.75; P¼ 0.027).
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associated with a higher risk of both cardiovascular and all-
cause mortality in KTRs [40]. Moreover, ID might contribute to
the development of heart failure (HF), a major cause of morbid-
ity and mortality in KTRs [41]. Although systolic heart function
usually improves after transplantation, diastolic dysfunction
(HF with preserved ejection fraction) tends to remain [42].
There is also an elevated incidence of incident HF in KTRs [43],
which is strongly associated with anaemia both in KTRs and in
the general population [43, 44]. To our knowledge, it is un-
known whether ID is associated with incident HF in KTRs, al-
though it has been described that N-terminal prohormone of
brain natriuretic peptide (NTproBNP) levels are much higher
in KTRs with ID compared with iron-sufficient KTRs (Table 1)
[2].

Bound to Hb and myoglobin, respectively, iron has a pivotal
role in oxygen transport through the body and oxygen storage
in myocytes. Iron is also directly involved in various steps of cel-
lular energy metabolism. It is an essential component of aconi-
tase and succinate dehydrogenase, catalyst enzymes of the
Krebs cycle [4]. In ID, decreased intracellular oxygen availabil-
ity and impaired function of the Krebs cycle force the cell to-
wards anaerobic glycolysis. Since muscle tissue is highly
dependent on aerobic glucose metabolism, it is likely that ID
compromises cardiac and skeletal muscle cell function. In vitro,
ID impairs mitochondrial respiration and cardiomyocyte con-
tractility [45, 46]. In animal models, a low-iron diet caused
structural cardiac defects, cardiomyocyte hypertrophy and re-
duced left ventricular ejection fraction (LVEF) [47, 48].

Multiple studies have reported strong associations between
ID and decreased exercise tolerance in patients with chronic
heart failure (CHF) with either reduced or preserved left LVEF,
which occur independently of Hb concentrations [49, 50].

Since 2007, six randomized controlled trials (RCTs) have
addressed the effects of intravenous (IV) iron supplementation
in iron-deficient patients with CHF; most of them also had
mildly to moderately impaired kidney function (Table 2). IV
iron supplementation resulted in an improved quality of life
and exercise capacity and reduced the incidence of acute HF
compared with placebo or standard treatment. Interestingly, ID
correction also had significant effects in non-anaemic patients
in most trials. In a meta-analysis of four RCTs, IV administra-
tion of ferric(III)carboxymaltose (FCM) significantly reduced
cardiovascular mortality [51]. Evaluation of iron status and cor-
rection of ID are now integrated with the management of CHF
patients according to guidelines of the European Society of
Cardiology [52]. Meanwhile, several large trials in acute and
chronic HF are ongoing to clarify the effects of ID correction on
clinical outcomes [53]. Given the high prevalence and impact of
HF in KTRs, the role of ID and the therapeutic value of iron
supplementation in this population should be elucidated.

ID, fibroblast growth factor 23 and mortality risk

Emerging data, both in the general population and in KTRs,
show that ID is associated with elevated fibroblast growth factor
23 (FGF23) levels and suggest that the association between ID
and increased mortality in KTRs is at least partly mediated by
FGF23 [54, 55].

FGF23 is a phosphaturic hormone secreted by osteocytes.
FGF23 reduces phosphate reabsorption from the proximal tu-
bule of the kidney and suppresses 1,25-dihydroxyvitamin D lev-
els [56]. In CKD, FGF23 increases progressively and there may
be a 1000-fold increase in ESRD. After kidney transplantation,
FGF23 levels decrease but often remain elevated during the first
weeks to months, and sometimes even years after transplanta-
tion, contributing to a tendency to hypophosphataemia [57–59].

FGF23 has been independently associated with an increased
risk of cardiovascular and all-cause mortality and allograft loss
in KTRs [60, 61]. It is likely that off-target effects of high FGF23
levels underlie these associations, as several animal studies have
shown that intact FGF23 causes left ventricular hypertrophy
[62]. Further mechanisms by which FGF23 may lead to adverse
outcomes include over-stimulation of the renin–angiotensin–
aldosterone system, volume overload via effects on renal so-
dium handling [63–65] and promotion of inflammation [66].
Although studies report inconsistent effects of FGF23 on vascu-
lar calcification in other populations, FGF23 was an indepen-
dent predictor of vascular stiffness in KTRs [67].

More studies are needed to elucidate the role of FGF23 as in-
termediate between ID and adverse outcomes, particularly in
the KTR population.

Iron and infection

Bacteria need iron to thrive, and compete to acquire it [68].
Some pathogenic bacteria, including Enterobacteria,
Pseudomonas and Neisseria species, have adapted to iron scar-
city and can express siderophores, compounds with a high
affinity for iron, to obtain iron from the environment [68, 69].
At the same time, ID may directly affect the immune system, as
discussed in more detail below [70]. In KTRs, this is of particu-
lar relevance because in these patients the balance between sup-
pression of the allo-immune response and the risk of infection
resulting from immunosuppressive therapy is narrow. An over-
view of studies addressing the association between ID and infec-
tion or the effect of iron therapy on incidence of infections in
KTRs is provided in Table 1.

Clinical studies confirm that ID can protect against bacterial
and parasitic infections [71], and that iron overload is associ-
ated with worse prognosis in patients suffering from bacterae-
mia, sepsis, tuberculosis and Human Immunodeficiency Virus
(HIV) [72–74]. In KTRs, a ferritin concentration of >500 lg/L
in the first weeks after transplantation has been associated with
a higher risk of infection (26% versus 41%) [33]. In the same
study, TSAT was not associated with the risk of infection, which
suggests that inflammation rather than ID may have been the
driving factor for higher ferritin levels [35].

In contrast, other studies suggest that ID can increase sus-
ceptibility to bacterial infection. In a general population cohort
of 61 852 people, a lower TSAT was associated with a higher
risk of bacteraemia, even after correction for chronic diseases
[75]. Less is known about the effect of ID on viruses.
Cytomegalovirus (CMV) replication in vascular endothelial
cells is reduced after iron chelation in vitro, which may be rele-
vant to KTRs as primo CMV infection and CMV reactivation
are common in these patients [76].

ID after kidney transplantation 1979
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I R O N A N D A L L O G R A F T O U T C O M E S

Patient data on iron status in relation to kidney allograft out-
comes are scarce. A retrospective cohort study in 169 KTRs
showed that a higher ferritin concentration was associated with
better graft function and graft survival [34]. In contrast, a co-
hort study in 438 KTRs found no association between the per-
centage of hypochromic red blood cells (HRBCs) and graft
failure, although there was a trend towards greater graft survival
among KTR who received iron therapy at baseline [hazard ratio
(HR) ¼ 0.51, 95% confidence interval (CI) 0.24–1.09; P¼ 0.08]
[3]. In a mouse heart transplant model, ID decreased allograft
survival due to more severe rejection [77]. In contrast, a pro-
longed pancreatic islet or heart allograft survival was observed
in rodents following either anti-transferrin receptor (TfR) anti-
body treatment or iron chelation therapy [78–80]. While clini-
cal data on the effect of ID on kidney allograft outcomes are
limited, more is known on the impact of iron (deficiency) on
the immune system in general.

I R O N A N D T H E I M M U N E S Y S T E M

Cellular immunity

Acute cellular rejection, mainly orchestrated by T-lympho-
cytes, is one of the major threats for kidney allograft survival.
Although data on the role of iron in kidney transplantation spe-
cifically are scarce, iron seems to play an important role in im-
mune cell function. T-cell activation leads to increased cytokine
production and IL-2 receptor stimulation; both processes de-
pend on iron [70, 81–83]. The T-cell receptor is co-expressed
with both CD28 and the TfR [70], a transmembrane protein
that facilitates the uptake of transferrin-bound iron from the
circulation into the T cell. In addition to reducing TfR stimula-
tion, ID also decreased the expression of the co-stimulatory
molecule CD28 on thymocytes and splenocytes in mice [84].

ID affects T-cell proliferation as well, since iron is an essen-
tial cofactor in various steps in DNA synthesis [82, 85]. Both
TfR upregulation and iron abundance have been associated
with increased cell cycle progression, while ID decreased lym-
phocyte proliferation in mice and humans [86–89]. T-cell dif-
ferentiation and maturation also require iron [89–91].
Decreased T-lymphocyte counts, CD4þ concentrations and
CD4þ/CD8þ ratios have been observed in some, but not all
studies in iron-deficient patients [89, 90, 92–94].

ID may impair T-cell function through decreased produc-
tion of IL-2, interferon-c, tumour necrosis factor (TNF)-a, IL-
10, IL-6 or IL-4, as observed in the majority of studies in mice
and humans with ID [83, 88, 92, 95, 96]. In the context of acute
vascular rejection, ID may also affect the influx of T cells in
the endothelium by influencing the expression of endothelial
adhesion molecules such as endothelial–leucocyte adhesion
molecule-1 and intercellular adhesion molecule-1 [76].

Overall, most studies seem to indicate that iron is important
for T-cell proliferation and function. This underlines the rele-
vance of future studies addressing the clinical impact of ID
and iron supplementation on cellular immunity in kidney
transplantation.

Humoral immunity

T-helper cells may activate B-lymphocytes, triggering the
production of immunoglobulins against Humane Leukocyte
Antigen (HLA) molecules, endothelial cell antigens and ABO
blood group antigens that may in turn activate the complement
system and drive antibody-mediated rejection [97]. Until re-
cently, there was little evidence of any impact of ID on B-lym-
phocytes [98, 99]. Yet, a very recent study revealed an
important role for iron in T-cell independent B-cell activation
and in B-cell proliferation, and documented impaired antibody
responses during ID in mice and humans [100]. Although pre-
vious studies showed conflicting data on the association be-
tween iron status and immunoglobin concentrations, the recent
work suggests that ID influences not only T-cell- but also B-
cell-mediated immunity [100].

Innate immunity

The innate immune system can escalate organ graft rejection
through activation of T-lymphocytes and by acting directly on
the kidney transplant. Activated by foreign proteins through
Toll-like receptors, macrophages promote rejection [97].
Macrophages have an important role in iron storage and recy-
cling as well [4]. However, iron-overload in macrophages
attenuates their anti-pathogenic and pro-inflammatory func-
tions [34, 72]. Importantly, macrophage function also depends
on iron and iron-containing haemoproteins [81, 101, 102]. Iron
is involved in macrophage activation and differentiation, as well
as prostaglandin synthesis and killing capacity [101]. Finally,
ID decreases the expression of Major Histocompatibility
Complex (MHC) Class I molecules and thereby may enhance
recognition and activation of Natural Killer (NK) cells by mac-
rophages [103]. Hence, alterations in iron metabolism may af-
fect all these facets of macrophage biology. This is supported by
the observation that monocyte and macrophage phagocytic ca-
pacity and oxidative burst activity, or release of reactive oxygen
species after activation, is impaired in children with IDA [92].
Iron-depleted macrophages had a reduced expression of IL-1b
and TNF-a in response to a pro-inflammatory stimulus [102].
After induction of toxic nephritis, characterized by macrophage
infiltration, iron-deficient rats showed less proteinuria and bet-
ter kidney function [102].

Ischaemia and reperfusion during kidney transplantation
lead to a sterile inflammatory response driving renal fibrosis: is-
chaemia–reperfusion injury (IRI). Granulocytes and neutro-
phils in particular are involved in IRI but also attract T-
lymphocytes, promoting cellular rejection [104]. In granulo-
cytes, IDA impairs the oxidative burst and pathogen killing ca-
pacity [89, 92]. Together, these findings point towards an
important role for iron in innate immunity, and suggest that ID
could impair the inflammatory response.

IRI and iron homoeostasis are closely linked. In a mouse
model, renal IRI results in an iron shift from the liver and mac-
rophages towards the kidneys and circulation, through the in-
duction of the iron exporter ferroportin [105]. Hepcidin
treatment, decreasing iron availability, reduced IRI, oxidative
stress, renal epithelial cell apoptosis, acute tubular necrosis,
neutrophil infiltration and inflammation, and improved renal
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function [105]. These results suggest that low iron concentra-
tions may protect against IRI. This is supported by the observa-
tion that iron chelation during organ preservation reduces IRI
in several animal models of heart, kidney or liver allograft trans-
plantation [106–108].

In contrast, a protective effect of high iron concentrations
has been proposed by others [34, 109]. Increased intra-renal
iron concentrations in ferroportin knock-out mice provided
protection against IRI [109]. Vaugier et al. also found a protec-
tive effect of iron against IRI [34]. Mice with iron overload
(hfe�/�) were less susceptible to IRI compared with wild-type
mice. This protective effect of iron was attributed to a decreased
recruitment of inflammatory macrophages, together with im-
paired macrophage responsiveness to stimulation by Toll-like
receptor agonists and increased activation of the antioxidant re-
sponse [34].

In conclusion, iron is pivotal for the proliferation, activation
and function of T- and B-lymphocytes and macrophages. In the
context of organ preservation before transplantation, ID and
iron overload both appear to reduce IRI. How these observa-
tions ultimately impact clinical outcomes after kidney trans-
plantation remain unclear, since only observational data on
clinical outcomes are available.

I R O N S U P P L E M E N T A T I O N I N K T R s

ID can be treated with either oral or IV iron preparations. In
the context of CHF and CKD, IV iron supplementation has a
superior efficacy to correct iron parameters, compared with
oral preparations [5, 110, 111]. A likely explanation for this
phenomenon is that hepcidin, which is increased by inflamma-
tion, prevents intestinal iron absorption. Moreover, oral iron
supplementation is associated with side effects such as abdomi-
nal pain, obstipation or diarrhoea, and compliance is notori-
ously poor [112]. Furthermore, different studies have
demonstrated that oral iron supplements change the gut micro-
biome in favour of Bacteroides and Enterobacteria at the ex-
pense of symbiotic Bifidobacteria and Lactobacilli [68].
Lactobacilli are among the few species that do not rely on iron
availability. Human microbiota have a major interaction with
the immune system and recent studies in kidney transplanta-
tion suggest an important effect of the host microbiota profile
on diarrhoea, graft survival, the incidence of infections and me-
tabolism of immunosuppressive medication [113–115]. Vice
versa, immunosuppression affects the microbiome. In the first
months after kidney transplantation, the microbiota profile
shifts in favour of pathogenic bacteria such as Escherichia,
Salmonella, Yersinia, Campylobacter and Pseudomonas, while
the diversity is significantly reduced [113, 116]. The impact of
iron on the microbiota after transplantation has not been stud-
ied systematically. However, because of overgrowth of the path-
ogenic species that are known to express siderophores and need
iron at the expense of iron-independent Lactobacilli, it could be
speculated that intra-intestinal iron supplementation has a det-
rimental effect on the microbiota in KTRs and that abundance
of intra-intestinal iron increases the risk of enteritis or abdomi-
nal sepsis. In a small RCT assessing the effects of oral iron

supplementation in recently transplanted KTRs, there was no
sign of increased infection risk [117].

The unfavourable effects of oral iron supplements can be
avoided by IV iron administration. Although a single dose of oral
iron sulphate (210 mg daily) may be as effective as a single dose
of 500 mg IV iron polymaltose in patients with anaemia, IV iron
supplementation may be more effective when given repeatedly
[32, 118, 119]. FCM and iron sucrose (ISC) injections have been
shown to be effective and safe in anaemic or iron-deficient KTRs
[118, 120]. IV iron supplementation compared with oral treat-
ment did not increase the risk of infection in a study of 102 KTRs
[32]. There was a non-significant trend towards less gastro-
intestinal side effects in the intravenously treated group [32].

A potential concern with the IV administration of iron in
KTRs is the worsening of hypophosphataemia. Since ID is asso-
ciated with increased FGF23 concentrations, it might be
expected that iron supplementation reduces FGF23 and restores
phosphate homoeostasis. Surprisingly, some IV iron prepara-
tions, such as iron polymaltose and FCM, are known to induce
an acute rise in intact FGF23 and, as a result, a decrease in phos-
phate levels [121–125]. In a small cohort of 23 KTRs who had
received up to 1000 mg FCM, mean serum phosphate concen-
trations decreased by 0.27 mmol/L on average, although only
one patient needed short-term phosphate supplementation
[123]. The relationship between use of different IV iron prepa-
rations and occurrence of hypophosphataemia needs to be de-
lineated in more detail in future studies.

C O N C L U S I O N S A N D F U T U R E D I R E C T I O N S

ID is highly prevalent among KTRs and is an independent risk
factor for premature mortality in this population. Potential
mechanisms include direct effects on cardiac and skeletal mus-
cle metabolism. Iron status also influences the immune system
at various levels, but whether this impacts the risk of infection
or rejection remains unclear. Iron supplementation might influ-
ence phosphate homoeostasis and the microbiome in KTRs,
and therefore studies addressing the efficacy and safety of sup-
plementation are needed. Iron supplementation in iron-
deficient KTRs without overt anaemia is currently not recom-
mended by guidelines, in the absence of supporting evidence.

The established beneficial effects of ID correction in CHF
patients and ESRD patients, as recently demonstrated in the
Proactive IV Iron Therapy in Haemodialysis Patients (PIVOTAL)
trial, warrant prospective studies to demonstrate the clinical effects
of iron supplementation in KTRs [6]. A randomized, controlled
clinical trial to investigate the effect of FCM versus placebo on ex-
ercise capacity and quality of life in KTRs, and to explore its effects
on phosphate metabolism, among others, is currently ongoing
(EFFECT-KTx, ClinicalTrials.gov NCT03769441). More studies
are required to establish which is the optimal ID definition in
KTRs, to further clarify its impact on morbidity and mortality,
and to define optimal ID management strategies in KTRs.
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