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Ovarian cancer is one of the most common gynecological malignancies in women, with a
poor prognosis and high mortality. With the expansion of single-cell RNA sequencing
technologies, the inner biological mechanism involved in tumor recurrence should be
explored at the single-cell level, and novel prognostic signatures derived from recurrence
events were urgently identified. In this study, we identified recurrence-related genes for
ovarian cancer by integrating two Gene Expression Omnibus datasets, including an
ovarian cancer single-cell RNA sequencing dataset (GSE146026) and a bulk
expression dataset (GSE44104). Based on these recurrence genes, we further utilized
the merged expression dataset containing a total of 524 ovarian cancer samples to identify
prognostic signatures and constructed a 13-gene risk model, named RMGS (recurrence
marker gene signature). Based on the RMGS score, the samples were stratified into high-
risk and low-risk groups, and these two groups displayed significant survival difference in
two independent validation cohorts including The Cancer Genome Atlas (TCGA). Also, the
RMGS score remained significantly independent in multivariate analysis after adjusting for
clinical factors, including the tumor grade and stage. Furthermore, there existed close
associations between the RMGS score and immune characterizations, including
checkpoint inhibition, EMT signature, and T-cell infiltration. Finally, the associations
between RMGS scores and molecular subtypes revealed that samples with
mesenchymal subtypes displayed higher RMGS scores. In the meanwhile, the
genomics characterization from these two risk groups was also identified. In
conclusion, the recurrence-related RMGS model we identified could provide a new
understanding of ovarian cancer prognosis at the single-cell level and offer a reference
for therapy decisions for patient treatment.
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INTRODUCTION

Ovarian cancer is one of the most common gynecological
malignancies in women, with a poor prognosis and high
mortality (Momenimovahed et al., 2019). Globally,
approximately 300, 000 new cases and 185, 000 deaths are
reported each year (Bray et al., 2018). Since the early stage is
mostly asymptomatic, ovarian cancer is usually diagnosed at an
advanced stage, which accounts for a 5-year survival rate of 30%
(Croft et al., 2021). Surgical resection and systemic adjuvant
chemotherapy remain the mainstay of ovarian cancer treatment;
however, chemo-resistance develops in up to 75% of patients. In
addition, most patients present with chronic recurrences, and
approximately 75% of those patients are incurable among women
with advanced OC (Lheureux et al., 2019). Moreover, the patients
with recurrence tumors usually displayed poor prognosis.
Currently, early detection strategies, treatments, and
monitoring to improve survival and quality of life are also
inadequate (Alexandrova et al., 2020). Therefore, there is an
urgent need to explore the biological mechanism of ovarian
cancer recurrence and identify the novel signature model as an
effective predictor of ovarian cancer patients.

Recently, previous studies have identified kinds of single genes
and multiple genes as the ovarian cancer prognosis signatures.
For example, it was revealed that forkhead box M1 (FOXM1)
regulated cell proliferation, invasion and metastasis, chemo-
resistance, and finally promoted poor prognosis in ovarian
cancer patients (Liu et al., 2021). Mitochondrial ribosomal
protein L15 (MRPL15) is observed highly expressed in
epithelial ovarian cancer and is also associated with poor
patient overall survival (Xu et al., 2021). The high expression
of DOT1-like histone lysine methyltransferase (DOT1L) could
promote ovarian cancer cell growth by regulating apoptotic and
metabolic pathways, affecting patient prognosis (Chava et al.,
2021). In a clinical cohort, flap structure-specific endonuclease 1
(FEN1) is identified as a key molecule in DNA repair, and FEN1
overexpression is associated with poor survival after platinum
chemotherapy of ovarian cancer patients (Mesquita et al., 2021).
Furthermore, multiple gene-based signatures were also identified
for predicting patient survival. Zhang et al. (2021)constructed a
glycolysis-related gene signature for ovarian cancer survival
prediction, which included nine genes. In another study, the
differentially expressed genes between primary tumor and
metastatic tumor samples were identified, and weighed gene
correlation network analysis and module analysis were
performed to further identify metastasis-specific genes for
ovarian cancer (Gu and Zhang, 2021). However, most of these
studies focused on the bulk tissue expression profiles for
identifying prognostic or metastatic signatures, with the
limitation of tumor purity or immune cell infiltration analysis.

Transcriptome studies of single-cell RNA sequencing for
ovarian cancer have revealed the cell-level heterogeneity of the
tumor microenvironment, improving our understanding of the
biological mechanisms of cancer initiation, recurrence, and drug
resistance (Hoffman et al., 2020; Izar et al., 2020). Utilization of a
single-cell RNA sequencing dataset to identify potential drivers
and therapeutic targets for ovarian cancer can help predict patient

prognosis or explore the recurrence mechanism (Hao et al.,
2021). Wang et al., 2022performed the integrated analysis of
bulk RNA-seq samples and single-cell RNA sequencing dataset
for identifying survival-related markers, and the stem cell
population involved in ovarian cancer cells and potential
treatment recommendations were explored. To characterize
tumor cell heterogeneity and the infiltration of M2 tumor-
associated macrophages (TAMs) in the ovarian cancer TME,
Liu et al., 2022performed the computational analysis by
integrating single-cell RNA sequencing with bulk RNA-seq
datasets, and four M2 TAM-associated genes correlated with
survival were identified. Moreover, the biological mechanism
involved in ovarian cancer recurrence at the single-cell level,
and the associations between recurrence cell markers and patient
prognosis were urgently explored.

In this study, we systematically explored the functional
difference of ovarian cancer recurrence by integrating one
single-cell RNA sequencing dataset and one bulk expression
dataset from the Gene Expression Omnibus (GEO) database.
Based on the recurrence-related genes and merged expression
profiles with patient survival derived from seven GEO datasets,
we constructed a novel risk model, named RMGS (recurrence
marker gene signature), using lasso cox analysis. Based on the
RMGS score, the ovarian cancer samples could be divided into
two risk groups in an independent cohort, including The Cancer
Genome Atlas (TCGA) dataset and another GEO dataset. The
biological functions involved in two RMGS groups were revealed,
and the difference in the immune checkpoint expression was also
observed. Finally, we explored the associations between the
RMGS score and ovarian cancer molecular subtypes and
genomics mutation features.

MATERIALS AND METHODS

Data Source and Acquisition
We searched available single-cell RNA sequencing datasets with
ovarian cancer recurrence information from the GEO database.
Also, one dataset GSE146026 containing 12 ovarian cancer
samples from two technologies (six from 10X and six from
smartseq2) was obtained in the form of RSEM normalized
counts. All these 12 samples belonged to the high-grade serous
carcinoma. The following analyses were performed for single-cell
RNA sequencing datasets with two platforms respectively. Also,
we further obtained one bulk expression dataset (GSE44104) with
recurrent information from the GEO database, which contained a
total of 60 ovarian cancer samples (Wu et al., 2014). For
prognostic model construction, a total of seven ovarian cancer
expression datasets with survival information were obtained from
the GEO database, including GSE14764 (n = 80) (Denkert et al.,
2009), GSE19829 (n = 28) (Konstantinopoulos et al., 2010),
GSE23554 (n = 28) (Marchion et al., 2011), GSE26193 (n =
107) (Gentric et al., 2019), GSE26712 (n = 185) (Bonome et al.,
2008), GSE30161 (n = 58) (Ferriss et al., 2012), and GSE63885 (n
= 101) (Lisowska et al., 2016). The platform of all these datasets
was Affymetrix Human Genome Array (GPL96, U133A and
GPL570, and U133 Plus 2.0). The samples without available
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survival time or corresponding survival time of less than 30 days
were removed, and a total of 524 samples were considered as the
training samples. To validate the ability of the prognostic model,
the individual patient survival information and mRNA
expression dataset from the TCGA database were downloaded.
The samples with a survival time of less than 30 days were
removed, and a total of 370 ovarian cancer samples with high-
grade serous type were obtained. Another GEO dataset
(GSE140082, n = 380) (Kommoss et al., 2017) whose platform
was Illumina HumanHT-12 beadchip was also obtained for
prognostic validation analysis.

Identification of Recurrence-Related
Marker Genes
The ovarian cancer single-cell RNA sequencing dataset was
analyzed by using the “Seurat” package for two technologies,
respectively (Aran et al., 2019). First, we removed the cells with
more than 5% of mitochondrial genes. Similarly, the cells with
number of genes mapped less than 200 and samples with cell
counts less than five were moved. We then performed principal
component analysis (PCA) using the most 1500 variable genes in
order to visualize transcriptional variability over the complete
single-cell RNA sequencing dataset. T-distributed Stochastic
Neighbor Embedding (t-SNE) was used for further
dimensional reduction of the significant principal components
(Hoffman et al., 2020). Second, we annotated the cell types for
two datasets using the “SingleR” package, and the transcriptome
profiles of malignant epithelial cells were obtained for the
following analysis. Finally, we identified the recurrence-related
genes involved in epithelial cells. The genes that exhibited a |log2
(fold change)| > 1 and adjusted p-value < 0.05 of the epithelial
cells between recurrence samples and primary samples were
identified from the single-cell dataset. For the bulk expression
dataset, the differentially expressed analysis was performed
between recurrence and primary samples using the “limma”
package. Also, the genes that exhibited a |log2 (fold change)| >
1 and p-value < 0.05 were considered as the recurrence genes
from the bulk dataset.

Construction of the Recurrence Marker
Gene Risk Model (RMGS)
Based on the recurrence-related genes obtained from single-cell
RNA sequencing and bulk dataset, we further constructed a
prognostic model using seven expression profiles from the
GEO database. First, we constructed a merged expression
matrix based on these seven expression datasets which
contained available survival information. The combat
algorithm was utilized for removing the batch effect of
different datasets. Then, for the common recurrence genes
between single-cell RNA sequencing and bulk expression
datasets, the lasso cox regression model was performed by
using the “glmnet” package, with the optimal lambda value
determined by 10-fold cross-validation (Goeman, 2010). Also,
these resulting genes were further included in the recurrence

marker gene signature (RMGS). The RMGS contained 11 genes,
and the risk formula was provided as follows:

EMGS � ∑
11

i�1
Coef i × Expi,

where Coefi is the lasso coefficient value for the ith recurrence
markers, and Expi is the expression value.

Statistical Analysis
According to the RMGS score, all ovarian cancer samples from
the training and validation set were divided into two groups.
Then, the Kaplan–Meier (KM) curve and survival p-value
calculated by the log-rank test were performed using the
“survminer” package. The Lasso cox regression model analysis
was performed for the RMGS model construction by using the
“glmnet” package. Univariate and multivariate Cox regression
model analyses were performed for evaluating RMGS
performance by using “survival” and “survminer” packages.
Wilcoxon test was used to determine statistical differences of
categorical variables between two RMGS groups. The Pearson
correlation coefficient with |r|>0.3 and p-value < 0.05 were
defined as a significantly correlated association. All figure
construction in this study was conducted by R package
software (version 4.0.3).

RESULTS

Identification and Analysis of Marker Genes
Associated With Recurrence
To explore the biological mechanism involved in ovarian cancer
recurrence at the single-cell level, we obtained a single-cell RNA
sequencing dataset, GSE146026, for identifying recurrence-
related genes. Also, the two expression matrices obtained from
10X and smartseq2 technologies were, respectively, analyzed (see
Materials and Methods). First, we reduced the dimensionality of
the data by PCA by using the 1500 variable genes. We then
assigned cell-type identities by cross-referencing differentially
expressed genes in each cluster with previously reported cell-
type-specific marker genes using the Seurat package. A total of
eight cell clusters were identified from the 10x dataset, including
macrophages, monocytes, smooth muscle cells, epithelial cells,
fibroblasts, B cells, NK cells, and DC (Figure 1A). Moreover,
three cell clusters were identified from the smartseq2 dataset,
including macrophages, epithelial cells, and smooth muscle cells
(Figure 1B). As a result, the epithelial cells displayed
heterogeneity among ovarian cancer patients for both 10x and
smartseq2 datasets. In the meanwhile, the difference between
epithelial cells from primary and recurrent samples was also
apparent.

To identify the gene signatures expressed by malignant cells
between recurrence and primary samples, we performed the
differential expression analysis for epithelial cells between
these two groups. By a strict cutoff, we identified 286
upregulated and 101 downregulated genes from GSE46026
(10X) and 342 upregulated and 54 downregulated genes from
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GSE46026 (smartseq2). Then, Gene Ontology (GO) Biological
Process (BP) enrichment analysis was performed to explore the
biological function of these recurrence genes using the
clusterProfiler package (Yu et al., 2012). As shown in
Figure 1C,D, some common functions such as wound
response and epithelial cell proliferation were both identified
by upregulated genes. Also, the immune response function was
identified by the downregulated genes fromGSE46026 (10X), and
the BMP signaling pathway was identified by the downregulated
genes from GSE46026 (smartseq2). Therefore, the union of these
two dysregulated genes was regarded as the recurrence-related
genes from the single-cell dataset. Furthermore, the detailed
function enrichment results for GSE46026 (10X) and
GSE46026 (smartseq2) are shown in Supplementary Tables
S1, S2. Meanwhile, we identified the recurrence-related genes
from the bulk expression dataset, GSE44104 (see Materials and
Methods). Also, 133 upregulated and 100 downregulated genes
were identified, and the corresponding biological functions were
also explored (see Supplementary Figure S1 and Supplementary
Table S3). Finally, the 39 common genes shared by single-cell and
bulk expression datasets were regarded as the recurrence genes.

Construction of the Recurrence Marker
Gene Signature (RMGS) for Ovarian Cancer
Prognosis
Next, we utilized the gene expression data on ovarian cancer
samples with survival data from a total of seven datasets to further
identify prognostic signatures based on recurrence genes (see
Materials andMethods). As a result, 11 of the 39 recurrence genes
were identified from the 524 ovarian cancer samples as the
training samples, which included BIRC3, CDH2, CDH6,
DDIT4, GAS1, IFIT1, IGF2, ISLR, MUC16, RSAD2, and
DIRAS3. Considering the lasso coefficient of these genes, we
further constructed a prognostic model named RMGS,
recurrence marker gene signature. In detail, the formula for
calculating the RMGS score was displayed as follows: RMGS
score = BIRC3 expression X (−0.005) + CDH2 expression X
(−0.044) + CDH6 expression X (0.026) + DDIT4 expression X
(0.046) + GAS1 expression X (0.009) + IFIT1 expression X
(0.013) + IGF2 expression X (0.042) + ISLR expression X
(0.068) + MUC16 expression X (−0.048) + RSAD2 expression
X (0.008) + DIRAS3 expression X (−0.041).

FIGURE 1 | tSNE plot of all cells collected by GSE146026, color by cell type, patients, and tumor type in the (A) 10X platform and (B) smartseq2 platform. The gene
ontology (GO)–biological process (BP) terms were identified from dysregulated genes for (C) 10X platform and (D) smartseq2 datasets.
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The predictive ability of RMGS was further validated in two
large-scale independent validation datasets, including TCGA (n =
370) and GSE140082 (n = 380). With the RMGS model, the
corresponding patients from TCGA dataset were also divided
into two distinct risk groups with significantly different OS
(p-value = 0.0039; see Figure 2A). In the univariate Cox
proportional hazards regression analysis, the hazard ratio (HR)
of a high RMGS score compared with a low RMGS score for OS
was 1.684 in the TCGA dataset (p-value = 0.004; 95% confidence
interval (CI), 1.578–2.409) (see Table 1), indicating that RMGS
was significantly correlated with ovarian cancer OS. To evaluate
the robustness and versatility, the predictive power of RMGS was
further validated in an independent GEO dataset (GSE140082)
(see Materials andMethods). As shown in Figure 2B, the patients
in GSE140082 were stratified into the high-risk and low-risk
groups, and the patients in the high-risk group had a significantly
poor outcome compared with those in the low-risk group
(p-value = 0.0027; log-rank test). In the univariate analysis, the

RMGS score was also shown to be significantly associated with
patient OS (HR = 2.020, 95% CI, 1.263–3.230, and p-value =
0.003) (see Table 1).

To further examine whether the RMGS is an independent
prognostic factor, multivariate Cox regression analysis was
conducted, including the RMGS score and other conventional
clinical factors as covariables. The results from TCGA dataset
showed that the RMGS (HR = 1.633, 95% CI 1.136–2.348, p-value
= 0.008) is an independent prognostic factor for OS after
adjusting the clinical characteristics. However, the stage factor
(HR = 1.321, 95% CI 0.983–1.777, p-value = 0.064) does not show
survival significance (see Table 1). In the GSE140082 dataset, the
RMGS still maintained a significant correlation with OS in the
multivariate analysis (HR = 1.889, 95% CI 1.181–3.025, p-value =
0.008). These results demonstrated that the RMGS is independent
of other conventional clinical factors for OS prediction.

Functional and Immune Infiltration
Associations With the RMGS
To explore the functional implication of the RMGS signature, the
correlation between the mRNA expression and RMGS score was
computed, and the top 1%was selected as RMGS-relatedmRNAs.
GO and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis of these mRNAs demonstrated that
the RMGS is highly associated with many key GO terms,
including extracellular matrix organization, positive regulation
of cytokine production, and positive regulation of cell adhesion.
At the KEGG pathway aspects, the RMGS was associated with
many tumor-related pathways, such as the ECM receptor
interaction, cell adhesion molecules, cytokine–cytokine
receptor interaction, and TNF signaling pathway (see
Supplementary Figure S2). To test whether there exist

FIGURE 2 | Kaplan–Meier survival curves of OS between the high- and low-risk groups stratified by the RMGS score in TCGA dataset (A) and GSE140082 (B).

TABLE 1 | Univariable and multivariable analysis results of the RMGS in TCGA and
GEO validation sets.

Univariable analysis Multivariable analysis

HR 95% Cl p-value HR 95% Cl p-value

TCGA
RMGS 1.684 1.578–2.409 0.004 1.633 1.136–2.348 0.008
Grade 1.286 0.965–1.714 0.085 1.030 0.770–1.377 0.841
Stage 1.111 0.827–1.493 0.483 1.321 0.983–1.777 0.064
Age 1.019 1.007–1.031 0.001 1.020 1.007–1.032 0.001

GSE140082
RMGS 2.020 1.263–3.230 0.003 1.889 1.181–3.025 0.008
Age 1.035 1.013–1.058 0.001 1.033 1.011–1.056 0.002
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associations between the RMGS score and immune infiltration
level, we further utilized the single-sample GSEA method to
calculate the infiltration score of 19 immune subpopulations
based on corresponding marker genes (Subramanian et al.,
2005). As shown in Figure 3A, some immune characterization
displayed significant associations with the RMGS score. Also, the
CAF, macrophages, and T-cell immune functions were
significantly enriched in the high RMGS group. These results
demonstrated that the RMGS signature is not only associated
with patient prognosis but is also an indicator of the immune
dysregulation condition in ovarian cancer.

We further investigated the correlation of intrinsic immune
escape mechanisms with RMGS using TCGA dataset. Some
potential factors that determine tumor immunogenicity were
compared between the high- and low-RMGS groups. Leukocyte
fraction, nonsilent mutation rate, and SNV neoantigens were
significantly higher in the high RMGS group than in the low
RMGS group (see Supplementary Figure S3). Another
potentially important intrinsic immune escape mechanism is the
expression of immune checkpoint molecules after immune
stimulation. Figure 3B illustrated that the expression levels of
some immune checkpoint molecules were significant between the
high- and low-RMGS groups. This result indicated that tumor
samples with a high RMGS score expressed immune checkpoint
molecules to evade immune killing after immune stimulation,
including TGFB1, Il10, CD28, BTLA, and BTN3A2.

Involvement of RMGS in ovarian cancer
molecular subtypes, immune subtypes, and
therapeutic benefits
We then investigated the difference and distribution of
intrinsic molecular subtypes within two RMGS groups. As
illustrated in Figure 4A, the mesenchymal subtype had a
significantly higher RMGS score than other molecular
subtypes. A significant difference was found among four
molecular subtypes according to the Kruskal–Wallis test
(p-value = 6.51E-15). For the TCGA dataset, an imbalance
in terms of differentiated molecular subtype was noticed
(Figure 4B). For the ovarian cancer immune subtypes, the
samples with high RMGS scores displayed more C2 subtypes;
however, the samples with low RMGS scores displayed the C3
subtype which was not included in another group (Figure 4C).
By analyzing the available response after clinical treatment
information based on samples from TCGA database, the
association between the response results and RMGS groups
was tested. The waterfall plots illustrated the correlation of the
RMGS scores with clinical response status (Figure 4D).
Furthermore, we observed these two RMGS groups shared
many common genes of the top 10 mutation genes, such as
TP53, TTN, and MUC16. Also, the specific genes within
samples with high RMGS might be the drivers of the
prognostic performance (Figure 4E).

FIGURE 3 | (A) Boxplots of the RMGS score between the high- and low-risk immune type groups (B) Comparison of the mean expression with expressions at the
tumor sites relative to the high- and low-RMGS score in the immune checkpoint molecules. Statistical significance at the level of p <0.05, pp <0.01, and ppp <0.001.
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DISCUSSION

In this study, we performed a bioinformatics analysis by
integrating single-cell RNA sequencing and bulk expression
profiles of ovarian cancer and found recurrence markers
between recurrence samples and primary samples. The
functions of these markers are enriched in epithelial cell
differentiation, wound response, and regulation of cell growth.
Then, we further constructed RMGS, a recurrence marker–based
risk model, based on expression profiles of ovarian cancer in the
merged database from GEO and validated the RMGS with TCGA
dataset. RMGS served as an independent prognostic factor of OS
in ovarian cancer patients when considering stage and grade
factors. In addition, the RMGS score is closely related to the
functional activities of macrophages, EMT signatures, and T cells,
showing its relevance with immune infiltration. Finally, we
observed the associations of RMGS scores with molecular
subtypes and immune subtypes and specific drivers involved
in high- and low-RMGS groups.

Among the RMGS genes, a total of seven genes have previously
been revealed to be related to ovarian cancer formation and
prognosis. It was found that BIRC3 is one of the inhibitors of
apoptosis proteins (IAPs). A lower expression level of BIRC3 is
associated with a better prognosis for ovarian cancer patients, and
BIRC3 knockdown in ovarian cancer cells can recover their
sensitivity to cisplatin (Hu et al., 2019). CDH2 (which encodes

N-cadherin) and CDH6 (Cadherin 6) are significantly
overexpressed in advanced ovarian cancer (Liu et al., 2020;
Bartolomé et al., 2021). The DDIT4 gene encodes a protein
whose main action is to inhibit mTOR under stress
conditions, whilst several in vitro studies indicated that its
expression favors cancer progression (Zhang et al., 2021).
Upregulating IGF2 could enhance the proliferation, migration,
and invasion capacities of ovarian cancer cells (Gao et al., 2019).
Mucin 16 (MUC16) is a glycoprotein that is highly expressed in
ovarian cancer cells. For malignant ovarian cancer, the MUC16
overexpression promoted cell proliferation, migration, and
invasion via the PI3K/AKT signaling pathway (Crawford et al.,
2019). DIRAS3 is an imprinted tumor suppressor gene that
encodes a 26 kD GTPase with homology to RAS that inhibits
cancer cell proliferation and motility. Re-expression of DIRAS3
in ovarian cancer xenografts also induced dormancy and
autophagy. DIRAS3 can bind to Beclin1 forming the
autophagy initiation complex that triggers autophagosome
formation (Sutton et al., 2019).

To further test the association between RMGS scores and
immune checkpoint, the effect of cross-talk between RMGS and
two immune checkpoint genes (PD-1 and PD-L1) on patients’
survival was analyzed. First, TCGA patients were stratified into
four groups based on the combination of RMGS and immune
checkpoint genes, and then, a survival comparison was made
among these four groups. The corresponding results revealed that

FIGURE 4 | (A) Violin plots illustrated the correlation between the RMGS score and molecular subtypes (B) Alluvial diagram for the RMGS groups versus different
intrinsic molecular subtypes (C) Association between the RMGS and the immune subtypes (D)Waterfall plot illustrated the RMGS score with different immunotherapy
responses (E) Oncoplot of top 10 mutation genes in high- and low-RMGS groups.
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the RMGS is able to distinguish the outcomes of patients with the
same or similar levels of immune checkpoint genes (Figure 5).
The patients with low RMGS and a high level of immune
checkpoint genes tended to have significantly better survival
prospects than the other three groups, whereas the patients
with high RMGS and a low level of immune checkpoint genes
tended toward the poorest outcome. The immune checkpoint
inhibitors (ICIs) have opened a new era of cancer
immunotherapy and provided a need for the identification of
predictive biomarkers. The expression of immune checkpoint
genes, including PD-1 and PD-L1, has been widely used as
predictive biomarkers for ICI response (Duffy and Crown,
2019; Havel et al., 2019). PD-1 and PD-L1 have been reported
to fulfill immuno-suppressive roles in tumor progression (Thibult
et al., 2013; Ren et al., 2016). The interactions with immune
checkpoint genes might reveal a candidate therapeutic predictive
effect of RMGS on an ovarian cancer patient.

After adjusting for stage or grade factors, the RMGS remained
an independent prognostic factor, which was capable of
distinguishing worse versus improved survival outcomes in the
validation set. In addition, it is the first model constructed by
considering the epithelial cell markers differentially expressed
between recurrence and primary samples and might reflect novel
epithelial cell characterization involved in tumor recurrence.
Compared with other single-cell RNA sequencing studies, one
of the limitations is that the interaction of epithelial marker genes
with other immune genes was not analyzed. For ovarian cancer
treatment, the epithelial-mesenchymal status was involved in the
patient’s response to cisplatin (Miow et al., 2015), and the
difference between ovarian surface epithelial cells and fallopian

tube secretory epithelial cells has been revealed (Auer et al., 2017).
Therefore, the associations of our 13-gene signatures and
epithelial functions need to be explored by experimental
technology in further studies. Also, currently, although there
exist some limitations, our study has provided a new
understanding of epithelial cell markers in ovarian cancer
patient prognosis and offered immunotherapy practice
instructions for physicians.
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