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Abstract
Background: COVID-19 is currently a global pandemic, but the response of
human immune system to severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection remains unclear.NoncodingRNAs serve as immune reg-
ulators and thus may play a critical role in disease progression.
Methods: We performed multi-transcriptome sequencing of both noncoding
RNAs andmRNAs isolated from the red blood cell depleted whole blood of mod-
erate and severe COVID-19 patients. The functions of noncoding RNAs were val-
idated by analyses of the expression of downstreammRNAs. We further utilized
the single-cell RNA-seq data of COVID-19 patients from Wilk et al. and Chua
et al. to characterize noncoding RNA functions in different cell types.
Results:We defined four types of microRNAs with different expression tenden-
cies that could serve as biomarkers for COVID-19 progress. We also identified
miR-146a-5p, miR-21-5p, miR-142-3p, andmiR-15b-5p as potential contributors to
the disease pathogenesis, possibly serving as biomarkers of severe COVID-19 and
as candidate therapeutic targets. In addition, the transcriptome profiles consis-
tently suggested hyperactivation of the immune response, loss of T-cell function,
and immune dysregulation in severe patients.

Abbreviations: ACE2, angiotensin I converting enzyme 2; AIM2, absent in melanoma 2; ARDS, acute respiratory distress syndrome; BALF,
bronchoalveolar lavage fluid; CCL20, C-C motif chemokine ligand 20; CLIP, cross-linking and immunoprecipitation; COVID-19, coronavirus disease
2019; DEGs, differentially expressed genes; DElncRs, differentially expressed lncRNAs; DEmiRs, differentially expressed miRNAs; IFN, interferon; IL,
interleukin; IL6ST, interleukin 6 signal transducer; IRAK, interleukin-1 receptor-associated kinase; lncRNAs, long ncRNAs; MALAT1, metastasis
associated lung adenocarcinoma transcript 1; MTI, miRNA-target interaction; MTMR3, myotubularin-related protein 3; ncRNAs, noncoding RNAs;
NEAT1, nuclear paraspeckle assembly transcript 1; NF-κB, nuclear factor-κB; PBMCs, peripheral blood mononuclear cells; SARS-CoV-2, severe acute
respiratory syndrome coronavirus 2; scRNA-seq, single-cell RNA sequencing; TLR, Toll-like receptor; TRAF6, tumor necrosis factor receptor-
associated factor 6
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Conclusions: Collectively, these findings provide a comprehensive view of the
noncoding and coding transcriptional landscape of peripheral immune cells dur-
ing COVID-19, furthering our understanding and offering novel insights into
COVID-19 pathogenesis.
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1 BACKGROUND

The coronavirus disease 2019 (COVID-19) outbreak caused
by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) has soon become a global pandemic resulting
in numerous deaths, and has been declared as a pub-
lic health emergency of international concern.1 Global
researchers are currently making great efforts to under-
stand the pathogenesis of COVID-19. By characterization
of immune cell transcriptomes, several recent studies have
demonstrated that heightened immune responses across
innate and adaptive immune system could contributed a
lot to disease severity.2 The abnormal host responses could
be associated with aberrant immune cell activation includ-
ing T cells, monocytes, and macrophages, as well as dys-
regulated cytokine production.3,4 Despite the significant
efforts by researchers and clinicians, there are still no effec-
tive clinical treatments or specific vaccines for COVID-
19.5–7
Noncoding RNAs (ncRNAs) are a class of RNAs not

involved in protein production and can be subdivided
into small (miRNAs, tRNAs, PIWI-targeting RNAs) and
long ncRNAs (lncRNAs), based upon their size.8 This
class of RNAs not only regulates fundamental biological
processes including immune system development and
regulation, but also plays a critical role in multiple human
diseases. Accumulating evidence has demonstrated that
miRNAs could influence the replication and pathogenesis
of RNA viruses through direct binding to the viral genome
(miR-122 interacts with the hepatitis C virus genome and
inhibits viral RNA degradation9) or by inducing changes
in the host transcriptome (increased miR-146a expression
during dengue virus infection negatively regulated the
host response10).11 Additionally, miRNAs have been
recognized as novel disease markers owing to their tissue
specificity, stability, and association with clinicopatho-
logical parameters.12,13 lncRNAs may act as upstream
regulators of miRNAs, serving as “sponges” that compete
for miRNA binding and reverse the regulatory effect of
miRNAs on target mRNAs.8 Therefore, altered levels of
ncRNAs during progression of COVID-19 could constitute
a critical component of the host response, reflecting

distinct phases of the antiviral immune response from
disease onset to recovery. Given their critical roles in
disease pathogenesis, ncRNAs could serve as biomarkers,
and even as novel therapeutic targets for COVID-19.
However, little is known about the ncRNA transcrip-

tome of red blood cell (RBC) depleted whole blood in
COVID-19 patients and its potential clinical value. A com-
prehensive analysis of COVID-19 ncRNAprofile is urgently
needed to gain a deeper understanding of disease patho-
genesis and to discovermore effective strategies for diagno-
sis and treatment. Here, we collected RBC-depleted whole
blood samples from patients with severe and moderate
COVID-19, and performed multi-transcriptome sequenc-
ing of ncRNAs and mRNAs.

2 METHODS

2.1 Study approval

The study was approved by the Ethics Committee of the
Huo Shen Shan Hospital of Wuhan. All blood samples
for multi-transcriptome sequencing were existing samples
that were collected during standard COVID-19 treatment
process, with no extra burden posed.

2.2 Sample collection

Whole blood was obtained from six severe and six mod-
erate COVID-19 patients at Huo Shen Shan Hospital of
Wuhan during standard diagnostic tests. Sample collec-
tion criteria included age ≥18 years and admission to
Huo Shen Shan Hospital (wards and ICU) with a posi-
tive result in SARS-CoV-2 nasopharyngeal swab RT-PCR
test. For controls, blood was collected from four unin-
fected adult donors with a negative nasopharyngeal swab.
The classification of COVID-19 severity was based on
WHO guidelines. The classification of acute respiratory
distress syndrome (ARDS) was based on the Berlin crite-
ria (acute onset of hypoxemic respiratory failure with a
PaO2/FiO2 < 300 on at least 5 cm of positive end-expiratory
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pressure, bilateral infiltrates on chest X-ray). Ages were
shown as ranges to protect the privacy of patients and
healthy controls. All donors were asked for consent for
genetic research.

2.3 mRNA and miRNA isolation and
purification

Erythrocytes were removed from humanwhole bloodwith
Erythrocyte lysis buffer (Cat. No.: AR1118, BOSTER). Small
RNAs (<200 nt) and large RNAs (>200 nt) were iso-
lated using the NucleoSpin miRNA kit (Macherey-Nagel,
Düren, Germany) following the manufacturer’s instruc-
tions. RNA purity was checked using the NanoPhotome-
ter spectrophotometer (IMPLEN, CA). RNA concentration
was measured using Qubit RNA Assay Kit in Qubit 2.0
Flurometer (Life Technologies, CA). RNA integrity was
assessed using the RNA Nano 6000 Assay Kit of the Bio-
analyzer 2100 system (Agilent Technologies, CA).

2.4 Library construction and
sequencing

For rRNA-depletedRNA-seq sample preparations,weused
3 μg RNA per sample. Sequencing libraries were generated
using the rRNA-depleted RNA by NEBNext Ultra Direc-
tional RNA Library Prep Kit for Illumina (NEB) following
manufacturer’s instructions. The libraries were sequenced
on an Illumina Hiseq 4000 platform and 150 bp paired-end
reads were generated.
For miRNA-seq, we used 1 μg RNA per sample for

small RNA library construction. Sequencing libraries were
generated using NEBNext Multiplex Small RNA Library
Prep Set for Illumina (NEB) following manufacturer’s
instructions. To acquire sufficient sequencing coverage,
four samples were combined into one lane and two techni-
cal replicates were ran for each library using multiplexing.
T cluster generation was performed on a Flow Cell v3
(TruSeq SR Cluster Kit v3; Illumina) using cBOT. The
library preparations were sequenced on an Illumina Hiseq
2500 platform and 50 bp single-end reads were generated.

2.5 Data processing

Quality control processes consisted of adapter trim-
ming, low-quality reads removal with cutadapt software
(version 2.10; https://cutadapt.readthedocs.io/en/stable/),
and rRNA and tRNA removal. The total rRNA pro-
portion indicated the quality of our samples with all
samples (small and large RNA) containing rRNA less

than 5%. All clean large RNA data were mapped to
the human genome GRCh38 using HISAT2 (version
2.2.0; http://daehwankimlab.github.io/hisat2/). miRNA
dataweremapped to themiRBase (version 22; http://www.
mirbase.org/) with Bowtie software (version 1.2.3; www.
sourceforge.net/projects/bowtie-bio/files/bowtie), allow-
ing 0 mismatch and mapping with the proximity of
mature miRNAs. Bam files were sorted by Samtools
(version 1.9; http://samtools.sourceforge.net/index.shtml).
Gene counts were generated using the featureCounts pro-
gram, part of the Subread package (version 2.0.0; http:
//subread.sourceforge.net/). miRNA counts were sum-
marized with perl scripts written by authors of this
paper.
The quality control of raw read data was done by FastQC

(version 0.11.9) and multiQC (version v1.8). For rRNA-
depleted RNA-seq data, the average number of reads per
sample is about and the quality score for each sample
is between 33 and 37, indicating good raw data quality.
For miRNA-seq data, two peaks at 22 nt and 33 nt were
observed in read length distribution, with the first peak
greater than the second peak. All RNA sequencing data
exhibited rRNA alignment rates smaller than 5%. Sequenc-
ing data are available in theNational GenomicData Center
(NGDC) (primary accession number HRA000238).

2.6 miRNA-mRNA and lncRNA-miRNA
network construction

Both miRNA-mRNA and lncRNA-miRNA networks
were constructed with Cytoscape (version 3.7.2;
https://cytoscape.org/) based on their interaction. The
R package “multimiR” (version 2.3; http://multimir.org)
were used to identify miRNA-mRNA interaction. We fil-
tered every miRNA-mRNA pair using the most stringent
criteria, including validation by luciferase experiments
and functional miRNA-target interaction (MTI) tests.
Database ENCORI (version; http://starbase.sysu.edu.cn/)
were used to identify lncRNA-miRNA interaction
validated by cross-linking and immunoprecipitation
(CLIP)-sEquation (≥5).

2.7 Single-cell RNA-seq computational
pipelines and analysis

The R package Seurat (version 3.0; https://satijalab.org/
seurat/) was used for single-cell analysis including nor-
malization, scaling, dimensionality reduction, clustering,
transcriptome analysis, and visualization. Peripheral blood
mononuclear cells (PBMCs) single-cell RNA sequencing
(scRNA-seq) data (count matrix) from Wilk et al and

https://cutadapt.readthedocs.io/en/stable/
http://daehwankimlab.github.io/hisat2/
http://www.mirbase.org/
http://www.mirbase.org/
http://www.sourceforge.net/projects/bowtie-bio/files/bowtie
http://www.sourceforge.net/projects/bowtie-bio/files/bowtie
http://samtools.sourceforge.net/index.shtml
http://subread.sourceforge.net/
http://subread.sourceforge.net/
https://cytoscape.org/
http://multimir.org
http://starbase.sysu.edu.cn/
https://satijalab.org/seurat/
https://satijalab.org/seurat/
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F IGURE 1 Identification of biomarker miRNAs by small RNA-sEquation. (A) Research experimental design. We collected red
blood cell-depleted whole blood from moderate, severe COVID-19 patients and healthy donors. Small RNA-seq and rRNA depleted-seq were
performed. Biomarker and therapeutic target miRNAs were identified and validated with co-analysis of mRNAs and lncRNAs and combina-
tion of scRNA-seq data. Transcriptome during viral infection was studied. (B) UpSet plot shows the number of DEmiRs with eight different
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nasopharynx scRNA-seq data (Seurat object) from Chua
et al were obtained from the provided available data
sources for co-analysis. PBMC data scaling, integration,
clustering, and dimensionality reduction were performed
following the R scripts provided by Wilk et al. Seurat’s
implementation of the Wilcoxon rank-sum test (Find-
Markers()) was used to determine differentially expressed
genes (DEGs) for each cluster of both datasets. Cellular
identity was determined based on marker gene expres-
sion presented in Supporting Information figures during
re-clustering.

2.8 Statistic

The power calculation was performed with the
RNAseqPS tool14 (https://cqs-vumc.shinyapps.io/
rnaseqsamplesizeweb/). The number of patients offer
sufficient power to detect twofold changes in gene expres-
sion based on depth and coverage of our sequencing
data. The total quantity of each RNA was used to cal-
culate the number of mapped reads per kilobase per
million reads (RPKM). differentially expressed miRNAs
(DEmiRs), DEGs, and differentially expressed lncRNAs
(DElncRs) were reported using an adjusted P value
threshold of .05, and a minimum fold change (FC) of 2.
The adjusted P values were obtained from Independent
Hypothesis Weighting as implemented in the DESeq2
package. The P-values shown in each box plot figures are
exact two-sided by one-way ANOVA with post hoc com-
parisons by Tukey’s test using GraphPad Prism 8. Exact
two-sided P-values and the 95%CI by Pearson correlation
coefficients for each correlation are shown in scatter plots
by GraphPad Prism 8.

3 RESULTS

3.1 Sample collection and
transcriptome sequencing

RBC-depleted whole blood samples were obtained from
laboratory-confirmedmoderate (n= 6) and severe COVID-
19 patients (n = 6), as well as healthy controls (n = 4)

(Figure 1A). Table 1 shows the detailed clinical characteris-
tics of patients. Notably, the three groups exhibited no sta-
tistically significant difference in age between each other
(Figure S2B).
We applied small RNA-seq and rRNA-depletedRNA-seq

on each blood sample. After quality control, reads were
mapped to miRbase and GRCh38 genome, respectively.
The count matrixes derived from the latter were further
separated into protein-coding mRNAs and lncRNAs.
We identified differentially expressed miRNAs

(DEmiRs), DEGs, and DElncRs from comparisons
between moderate-healthy (M-H), severe-healthy (S-
H), and severe-moderate (S-M) (Figure S1). The list of
DEmiRs, DEGs, and DElncRs was determined using
adjusted P values (q-value < 0.05) and FC ratios (|log2FC|
≥ 1) (Table S1-S3).
Considering the total number of identified mRNAs and

ncRNAs, miRNAs had the most evident alterations, sup-
porting their high sensitivity as potential biomarkers (Fig-
ure S2A).

3.2 Identification of biomarker miRNAs
by small RNA-seq

The DEmiRs of each group are depicted in the heatmap
(Figure S2B) and subdivided into different types based
on their expression tendencies (Figure 1B). Four types
of miRNAs were defined as candidate miRNA biomark-
ers (Figure 1C): (a) miRNAs consistently downregulated,
including miR-146a-5p, miR-21-5p, and miR-142-3p (Fig-
ure 1D); (b) miRNAs consistently upregulated, including
miR-3605-3p (Figure 1E); (c) miRNAs upregulated only in
patients with severe COVID-19 with no statistically signifi-
cant difference in M-H comparison, including miR-15b-5p,
miR-486-3p, and miR-486-5p (Figure 1F); and (d) miRNAs
downregulated only in severe cases, including miR-181a-2-
3p, miR-31-5p, and miR-99a-5p (Figure 1G).
Functional enrichment analysis of the predicted target

genes for several representative biomarker miRNAs
showed high correlation with inflammation and antiviral
immune responses (Figure 1H). Processes including
“virus binding,” “virus process,” and “defense response
to virus” implied miRNA engagement in viral infection.

expression tendencies. The box and line charts show the tendency of each group. The arrows point out the position of biomarker miRNAs.
(C) The heatmap shows the expression levels of the biomarker miRNAs in four specific DEmiR expression tendency. (D-G) Expression of
biomarker miRNAs in each sample. Each plot is colored by donor of origin. The X axes accord with the COVID-19 status of each donor: M
(n = 6), S (n = 6), and H (n = 4). The P-values are exact two-sided generated by one-way ANOVA with post hoc comparisons by Tukey’s test.
Boxplot features: minimumwhisker, the smallest value within; minimum box, 25th percentile; center, median; maximum box, 75th percentile;
maximum whisker, the largest value within. (D) miRNAs consistently downregulated. (E) miRNAs consistently upregulated. (F) miRNAs
only upregulated in severe COVID-19 patients. (G) miRNAs only downregulated in severe patients. (H) GO-term functional enrichment by
biological progress for the predicted target genes of three representative miRNAs

https://cqs-vumc.shinyapps.io/rnaseqsamplesizeweb/
https://cqs-vumc.shinyapps.io/rnaseqsamplesizeweb/
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TABLE 1 Sample characteristics and clinical features of patients with COVID-19

ID Gender Age (years) Disease Virus (sequencing) Clinical/laboratory results PaO2/FIO2 ARDS ICU
M1 Male 50-59 COVID-19 SARS-CoV-2 SARS-CoV-2 – N N
M2 Female 70-79 COVID-19 SARS-CoV-2 SARS-CoV-2 – N N
M3 Male 50-59 COVID-19 SARS-CoV-2 SARS-CoV-2 – N N
M4 Female 80-89 COVID-19 SARS-CoV-2 SARS-CoV-2 – N N
M5 Male 20-29 COVID-19 SARS-CoV-2 SARS-CoV-2 – N N
M6 Male 70-79 COVID-19 SARS-CoV-2 SARS-CoV-2 – N N
S1 Female 70-79 COVID-19 SARS-CoV-2 SARS-CoV-2 99 Y Y
S2 Male 70-79 COVID-19 SARS-CoV-2 SARS-CoV-2 160 Y Y
S3 Male 60-69 COVID-19 SARS-CoV-2 SARS-CoV-2 124 Y Y
S4 Male 80-89 COVID-19 SARS-CoV-2 SARS-CoV-2 134 Y N
S5 Male 60-69 COVID-19 SARS-CoV-2 SARS-CoV-2 84 Y Y
S6 Male 70-79 COVID-19 SARS-CoV-2 SARS-CoV-2 131 Y Y
H1 Female 50-59 Healthy NA Negative – NA NA
H2 Male 60-69 Healthy NA Negative – NA NA
H3 Female 50-59 Healthy NA Negative – NA NA
H4 Male 60-69 Healthy NA Negative – NA NA

These miRNAs were also associated with several Toll-like
receptor (TLR) signaling pathways, as well as production
of and response to interferon.

3.3 Bulk RNA-seq suggests biomarker
miRNAs as potential therapeutic targets

To better understand the function of biomarker miR-
NAs, we retrieved their validated downstream mRNAs,
analyzed the miRNA-mRNA correlation, and constructed
an integrated miRNA-mRNA regulatory network with
“multimiR” package (Figure 2A). Of note, we filtered
every miRNA-mRNA pair with the most stringent criteria,
including validation by luciferase experiments and func-
tional MTI tests.
Consistent downregulation of miR-146a-5p, miR-21-

5p, and miR-142-3p promotes inflammatoty process.15–17
The miR-146a-5p negatively correlated with downstream
target mRNAs interleukin-1 receptor-associated kinase
1 (IRAK1), IRAK2, and tumor necrosis factor receptor-
associated factor 6 (TRAF6), which participate in the
nuclear factor-κB (NF-κB) pro-inflammatory signaling
pathway18–20 (Figure 2B). miR-21-5p may directly tar-
get IRAK1 and chemokine C-C motif chemokine ligand
20 (CCL20), which was upregulated in inflamed airway
epithelium21 (Figure 2C). Decreased miR-142-3p induces
production of glycoprotein 130 (gp130), an activator of
JAK/STAT signaling pathway, by binding to interleukin 6
signal transducer (IL6ST) mRNA22 (Figure 2D).
miRNAs that were up- or downregulated only in severe

cases may contribute to COVID-19 deterioration. Upregu-

lated miR-15b-5p seemed to play dual roles. First, it nega-
tively correlated with IFNG and CD69 that were involved
in T-cell function and activation23,24 (Figure 2E). More-
over, miRNAs can promote RNA virus replication by
binding to and stabilizing the viral genome. A recent
research identified miR-15b-5p as the most likely candi-
date to target SARS-CoV-2 genome with the highest tar-
get score and binding sites25 (Figure S2C). Upregulation of
miR-15b-5p could accelerate intracellular viral replication,
promote cell-to-cell dissemination, mediate virus-induced
transcriptome changes, and ultimately intensify the sever-
ity of COVID-19.
Other upregulated candidate miRNAs also contributed

to COVID-19 pathogenesis. miR-486-5p not only targets
neuropilin 2 (NRP2) encoding inflammatory inhibitor
neuropilin-2, but also represses OTUD7B to induce exces-
sive inflammation in lung26–28 (Figure 2F). Another
miRNA miR-486-3p directly targets MAF, and down-
regulation of MAF may result in immune response
dysregulation29,30 (Figure 2G).
Among the miRNAs downregulated in severe cases was

miR-181a-2-3p, a serum biomarker of chronic obstructive
pulmonary disease.31 Downregulation of miR-181a-2-
3p is also associated with enhanced TLR4 and CXCL8
expression32,33 (Figure 2H). Another downregulated
miRNA was miR-99a-5p targeting the proinflammatory
genes, insulin like growth factor 1 receptor (IGF1R)34,35
and myotubularin-related protein 3 (MTMR3), which
were reported to induce weaker antiviral immunity36,37
(Figure 2I).
Overall, the results of our detailed functional miRNA-

mRNA analysis suggest that the candidate biomarker
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F IGURE 2 Validation of therapeutic target miRNAs by mRNAs. (A) An integrated miRNA-mRNA regulatory network. Only pairs
mentioned in the text were labeled. (B-D) Expression of consistently downregulated miRNAs and target mRNAs in moderate and severe
groups compared to healthy controls. The left and right Y axes correspond to the log2FC of miRNAs and mRNAs, respectively. (B) Expression
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miRNAs identified may contribute to COVID-19 patho-
genesis and serve as therapeutic targets.

3.4 Validation of miRNAs as
therapeutic targets by single cell RNA-seq

To further validate the function of candidate miRNAs, we
used the scRNA-seq data from Wilk et al, pertaining to
the sequencing of PBMCs from severe cases and healthy
controls.3 The samples from Wilk et al study could result
in different DEGs with ours because of the absence of
neutrophils.We successfully identified 13major peripheral
blood cell clusters (Figure 3A). Monocytes appeared to be
the most remodeled cells (Figure S3A). The major groups
of immune cells were re-clustered for further analysis (Fig-
ure S3B).
We first focused on consistently downregulated miR-

NAs. Our analysis revealed broad upregulation of STAT1
targeted by miR-146a-5p that encodes a key element of
the JAK/STAT pathway38,39 (Figure 3B). As for miR-21-5p,
MYC, a T-cell activation marker, displayed upregulation
specifically in naïve T cells40,41 (Figure 3C and D). IL6ST,
a target of miR-142-3p, was upregulated mainly in naïve T
cells, suggesting increased sensitivity to interleukin (IL)-6
signaling42 (Figure 3E). Upregulation of STAT1,MYC, and
IL6ST was also observed in our bulk RNA-seq data with
smaller fold changes and larger adjusted P value (Figure
S3C).
It was improper to use the scRNA-seq data byWilk et al.

that only addressed the S-H comparison to validate the
function of miRNAs differentially expressed in the S-M
comparison. Neutrophils were also excluded from PBMC
samples. Thus, we used the scRNA-seq data of Chua et al
obtained in cells of the nasopharyngeal area of severe and
moderate COVID-19 patients, and healthy controls.4 We
focused on cells transported from the peripheral blood to
the nasopharyngeal area, whose transcriptome tended to
be regulated by blood biomarker miRNAs (Figure 3F). The
targets of miR-15b-5p, IFNG, and CD69 were downregu-
lated in nasopharyngeal CD8+ T cells in S-M compari-
son. We also observed the upregulation of miR-99a-5p tar-
get, MTMR3 as well as miR-181a-2-3p targets, TLR4 and
CXCL8, in neutrophils in the context of severe disease (Fig-
ure S3D and E).

Re-examining miR-146a-5p, miR-21-5p, and miR-142-3p
targets with Chua et al data successfully identified upregu-
lation of IRAK1 and IRAK2 along with other targets mainly
expressed in neutrophils43 (Figure S4).
Overall, the combined analysis of our miRNA data and

two published scRNA-seq datasets further validated these
candidate biomarker miRNAs as potential therapeutic tar-
gets in specific cell types.

3.5 lncRNAs could be the upstream
“sponges” inhibiting miRNA function

lncRNAs may act as miRNA sponges that bind to spe-
cific miRNA sites, reduce miRNA-mRNA interaction, and
inhibit the regulatory function of miRNAs.8 To provide
a comprehensive overview of the upstream regulator of
our potential therapeutic target miRNAs, we established a
lncRNA-miRNA network based on lncRNA-miRNA CLIP
results.
DElncRs in each groupwere shown in the heatmap (Fig-

ure S5A). We explored lncRNA-miRNA interactions using
the StarBase database, set up filter criteria (CLIP ≥ 5),
and applied it to our lncRNA data (Figure 4A). Nuclear
paraspeckle assembly transcript 1 (NEAT1) seemed to dom-
inate the networks with four associated miRNAs, imply-
ing its critical role in COVID-19 pathogenesis. Corre-
spondingly, NEAT1 showed increased expression across
S-M and S-H comparisons, with no significant change
in the M-H comparison (Figure 4B). Moreover, NEAT1
might increase the production of inflammatory cytokines,
IL-6 and CXCL8, which confirmed its critical role in
inflammation44,45 (Figure 4C).
We identified several lncRNA-miRNA pairs with oppo-

site expression tendencies and biological functions. Both
miR-146a-5p and miR-142-3p were negatively correlated
with a canonical inflammatory inhibitor, metastasis asso-
ciated lung adenocarcinoma transcript 1 (MALAT1)46
(Figure 4D).MALAT1 could absorb miR-146a-5p and miR-
142-3p to repress their anti-inflammatory function.47,48
miR-15b-5p could be targeted bymultiple lncRNAs, among
which inflammatory inhibitors, long intergenic nonpro-
tein coding RNA 649 (LINC00649) and small nucleolar
RNA host gene 1 (SNHG1), showed opposite expression
patterns49 (Figure 4E).

of miR-146a-5p and downstream TRAF6, IRAK1 and IRAK2. (C) Expression of miR-21-5p and downstream CCL20 and IRAK1. (D) Expression
of miR-142-3p and downstream IL6ST. (E-I) Expression and correlation of severe COVID-19-specific miRNAs and target mRNAs. The results
were shown as log2FC comparing S, M groups to healthy controls. Scatter plots show exact two-sided P-values and the 95% confidence interval
(CI) by Pearson correlation coefficients for each correlation. The number of samples: M (n = 6) and S (n = 6). Each plot is colored by sample
of origin. (E) Expression and correlation of miR-15b-5p and downstream CD69 and IFNG. (F) Expression and correlation of miR-486-5p and
downstream NRP2 and OTUD7B. (G) Expression and correlation of miR-486-3p and MAF. (H) Expression and correlation of miR-181a-2-3p
and downstream TLR4 and CXCL8. (I) Expression and correlation of miR-99a-5p and downstreamMTMR3 and IGF1R
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F IGURE 3 Validation of therapeutic target miRNAs by scRNA-sEquation. (A) UMAP plot of dataset by Wilk et al colored by
clusters labeled with cell type annotation. (B) UMAP embedding of PBMCs and violin plot shows STAT1 expression in patients and healthy
controls. (C) UMAP plot of T cells and NK cells colored by clusters labeled with cell type annotation. (D) UAMP and violin plot depictsMYC
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Targeting these lncRNAs could affect the silencing func-
tion of their downstreammiRNAs,which provides another
treatment strategy for COVID-19.

3.6 Cytokines, TLR, and marker gene
profiles

Elevated inflammatory mediators play a crucial role in
fatal pneumonia caused by SARS-CoV-2.2 To better under-
stand the potential effect of each type of cytokines,
we sorted genes into six categories including “inter-
leukin,” “interferon,” “chemokine,” “tumor necrosis fac-
tor,” “other,” and “receptor” of which “interleukin” and
“chemokine” displayed the most evident changes in gene
expression (Figure 5A).
ILs exhibited the largest fold changes (Figure 5B).

Consistent with previous large-scale clinical studies, we
observed significant upregulation of IL10 and IL6 in
COVID-19 patients, suggesting the ongoing hyperactiva-
tion of inflammatory effects.50–52 In addition, we observed
a consistent downregulation of IL4 that limits tissue dam-
age during the immune response.53
We detected consistent upregulation of CXCL2 crit-

ical for recruiting neutrophils into inflamed lungs.54
The expression of another important proinflammatory
cytokine CCL20 was upregulated. We also observed
increased expression of CXCL1 and CXCL6 in S-M com-
parison, indicating an excessive activation of inflammatory
effects in severe cases55,56 (Figure S6).
The downregulation of IFNG and CD69 in severe cases

(probably regulated bymiR-15b-5p) led us to T-cell exhaus-
tion analyses. This downregulation was also observed
in PBMCs, bronchoalveolar lavage fluid (BALF), and
nasopharynx cells from severe COVID-19 patients.2,4,57 T-
cell exhaustion-associated geneswere separated into “Acti-
vation,” “Function,” and “Regulation” categories (Fig-
ure 5C). CD69, IFNG, TNF, IL2, TLR4, GZMB, and PRF1
were downregulated in severe COVID-19 patients com-
pared to moderate cases, suggesting loss of T-cell acti-
vation, cytokine secretion, and cytotoxicity.58,59 More-
over, increased expression of IL10 may induce T-cell
dysfunction.58
Analyses of immune cell markers reflected decrease of

T-cell numbers in severe cases with downregulated CD3,
CD4, andCD8, which was corroborated by large-scale clin-
ical studies50 (Figure 5D). We also observed a significant
upregulation of MZB1, which agrees with a recent study

demonstrating the unique role of plasmablasts in severe
COVID-19.
Because our functional enrichment analysis revealed

an enrichment in miRNAs involved in TLR signaling, we
set out to investigate the expression of TLR genes (Fig-
ure 5E). Most TLR mRNAs, including TLR4, TLR5, and
TLR8 were upregulated in the severe group, consistent
with viral and bacterial co-infection that was common
among severe cases. Interestingly, two antiviral immunity-
associated TLRs, TLR3 and TLR7, showed opposite expres-
sion profiles, which may account for diminished viral
clearance and disease aggravation in severe cases.60

3.7 Global analysis of DEGs during
COVID-19 by bulk RNA-seq

Compared to miRNAs, the expression of mRNAs was
more complex and characterized by less distinct DEG
clusters (Figure S5B). Similar to our miRNA analysis,
we searched for DEGs across the three comparisons (M-
H, S-H, and S-M) and obtained a list of DEGs possibly
associated with disease pathogenesis (Figure 6A). Four
groups of DEGs were identified (Figure 6B): (a) genes
consistently upregulated in COVID-19 patients, includ-
ing the marker of cell proliferation, marker of prolifera-
tion Ki-67 (MKI67),61 and regulator of macrophage func-
tion, forkhead box M 1 (FOXM1)62 (Figure 6C); (b) genes
consistently downregulated, including methyltransferase
like 21C (METTL21C) regulating NF-κB signaling and the
expression of IL1063 (Figure 6D); (c) genes exclusively
upregulated in severe COVID-19 patients, including absent
in melanoma 2 (AIM2), PIM1, and angiotensin I convert-
ing enzyme 2 (ACE2) (Figure 6E); cytoplasmic DNA can
elicit AIM2 expression to induce cell death64 while PIM1
kinase promotes airway inflammation;65 ACE2will be dis-
cussed in detail later; (d) genes exclusively downregu-
lated in severe COVID-19 patients, including CD8+ T-
cell inhibitor CD24866 and cytotoxicity marker, granulysin
(GNLY)67 (Figure 6F).
Functional enrichment analysis identified significant

enrichments in the “response to bacterium” reflecting
bacterial co-infections and processes related to lympho-
cyte activation, proliferation, and regulation (Figure 6G).
KEGG pathway analysis identified the “cytokine and
cytokine receptor interaction” and “viral protein inter-
action with cytokine and cytokine receptor,” suggesting
hypercytokinemia caused by severe infection (Figure 6H).

expression in different types of cells in patients and healthy controls. (E) UAMP and violin plot depicts IL6ST expression in different types of
cells in patients and healthy controls comparison. (F)UMAP embedding of immune cells transported from peripheral blood colored by clusters
labeled with manual cell type annotation. (G)UAMP and violin plots show expression of IFNG and CD69 in the nasopharyngeal cells in severe
and moderate patients
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F IGURE 4 Validation of therapeutic target miRNAs by lncRNA. (A) A lncRNA-miRNA regulatory network. (B) Expression of
NEAT1 in each sample. Each plot is colored by sample of origin. The P-values are exact two-sided generated by one-way ANOVA with post hoc
comparisons by Tukey’s test. Boxplot features: minimum whisker, the smallest value within; minimum box, 25th percentile; center, median;
maximum box, 75th percentile; maximum whisker, the largest value within. The number of samples: M (n = 6) and S (n = 6). (C) Expression
and correlation of upstream NEAT1 and downstream CXCL8 and IL-6. The results were shown as log2FC comparing S, M groups to H group.
The number of samples for NEAT1 and CXCL8: M (n = 6) and S (n = 6). The number of samples for NEAT1 and IL-6: M (n = 5) and S (n = 5).
(D-E) Expression and correlation of upstream lncRNAs and downstream miRNAs. The results were shown as log2FC comparing S, M groups
to H group. Scatter plots show exact two-sided P-values and the 95% CI by Pearson correlation coefficients for each correlation. The number
of samples: M (n = 6) and S (n = 6). Each plot is colored by donor of origin. (D) The correlation between lncRNA MALAT1 and downstream
miR-142-3p and miR-146a-5p. (E) The correlation between lncRNA LINC00649 and miR-15b-5p, and lncRNA SNHG1 and miR-15b-5p
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F IGURE 5 Cytokine, TLR, and marker genes profiles. (A) Heatmap of cytokine-related genes expression. (B) Heatmap of selected
cytokine-related genes. Relative expression of each patients compared to healthy controls was shown on the right. (C) Heatmap of genes
participated in the activation, function, and regulation process of T cells. Relative expression of each patients compared to healthy controls was
shown on the right. (D) Heatmap of immune cell marker genes. (E) Heatmap of TLR family

Upregulation of “NF−κB signaling pathway” indicated
the activation of common upstream pathways regulat-
ing cytokine production. The upregulated “IL-17 signaling
pathway” agreedwith elevated levels of Th17 cells observed
in COVID-19 patients.68
Notably, ACE2 was only upregulated in S-M and S-H

comparisons (Figure 6E). ACE2 encodes the angiotensin I
converting enzyme 2, a cell receptor considered vital for the
entry of SARS-CoV-2 in host cells.69 The scientific commu-
nity has proposed that ACE2 expression can be induced by
interferon via STAT1 signaling4 and correspondingly, we
observed the upregulation of IFNL2 (Figure 6I). Interest-
ingly, the fact thatACE2wasmainly upregulated in epithe-

lial cells coincided with the exclusive expression of inter-
feron (IFN)-λ receptor at the surface of epithelial cells.70
This observation may imply that upregulation of ACE2 is
induced by IFN-λ andmediated by STAT1 signaling in lung
tissues.

4 DISCUSSION

Here, we provide a comprehensive analysis of the noncod-
ing and coding transcriptional landscape of the peripheral
immune response in patients with COVID-19. Our main
findings were as follows: (a) miR-146a-5p, miR-21-5p,
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F IGURE 6 Global analysis of DEGs identified by bulk RNA-sEquation. (A) UpSet plot shows the number of DEGs with eight
expression tendencies in M-H and S-M comparisons. The bar and line charts show the tendency of each group. The arrows line out the position
of the candidate mRNA. (B) The heatmap shows the candidate pathogenesis-related mRNA. (C-F) Expression of those mRNAs colored by
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and miR-142-3p are potential biomarkers of COVID-19
severity; (b) miR-146a-5p, miR-21-5p, and miR-142-3p
are novel potential therapeutic targets for COVID-19;
(c) several miRNAs, such as miR-15b-5p, are specific for
severe COVID-19 and may serve as potential biomarkers
and therapeutic targets; and (d) the blood transcriptome
profiles suggest hyperactivation of the immune response,
loss of T-cell function, and immune dysregulation in
patients with severe COVID-19.
Researchers across the globe are pushing the bound-

aries of our understanding of COVID-19 pathogenesis with
multiple transcriptome sequencing technologies. Using
bulk RNA-seq of BALF samples, the immune signatures
of COVID-19 patients have been profiled, demonstrating
robust innate immune responses with marked hypercy-
tokinemia and increased IFN-stimulated gene expression.2
Another recent study identified three different “immuno-
types” associated with SARS-CoV-2 infection. It reported
that patients with robust activation and proliferation of
T cells and relatively exhausted CD8+ T-cell responses
seemed to have worse clinical outcomes.71 The host
responses in the lower and upper respiratory tracts have
also been studied using BALF and nasopharyngeal tis-
sue, respectively. Characterization of BALF immune cells
from patients with varying severity of COVID-19 pointed
toward the roles played by macrophages and CD8+ T
cells in the disease.72 Research on nasopharyngeal tissue
identified airway epithelial cell types and states associ-
ated with vulnerability to severe disease and demonstrated
that macrophage-epithelial cell interactions contribute to
greater inflammation-mediated tissue damage.4 The idea
that critical diseases are associated with hyperinflamma-
tion and heightened immune effects has been systemati-
cally demonstrated. Recently, our team characterized the
transcriptional changes occurring in PBMCs of COVID-
19 patients and demonstrated the presence of sustained
hyperinflammation in recovered patients; our team also
found that aging leads to immune system dysregulation
and may partially account for COVID-19 vulnerability in
the elderly.73,74
In addition tomRNAs, ncRNAs also play critical roles in

several human diseases. To the best of our knowledge, in
this study we describe for the first time an atlas of ncRNA
expression in the RBC-depleted whole blood of patients
with moderate and severe COVID-19.

Generally, miRNAs can influence the propagation of
RNA viruses and disease pathogenesis in two ways—
directly targeting the viral genome or regulating host
immune response.11 One example of the first is miR-122,
which interacts with the genome of the hepatitis C virus,
inhibiting viral RNA degradation in infected human liver
cells. Using machine learning, researchers predicted the
likelihood of miRNAs to target the SARS-CoV-2 genome.
Interestingly, miR-15b-5p scored 99 in this assessment,
suggesting high likelihood of direct binding.25 As to
miRNAs impact on immune regulation, one example
is the upregulation of miR-146a in infections by EV1775
and dengue virus,10 which negatively regulates the host
immune response. The influenza virus can also inhibit
cytokine and chemokine responses in infected cells by
inducing the production of miRNAs.76,77 Here, we found
that miR-146a-5p and miR-21-5p probably play opposite
roles during SARS-Cov-2 infection. Their downregulation
in COVID-19 patients induces production of IRAK1,
IRAK2, and TRAF6 and potentially elicits transcriptomic
alterations leading to hyperactivation of the immune
system and hyperinflammation.15,17,43,78 In agreement
with this hypothesis, the scRNA-seq data indicates that
downregulation of miR-146a-5p promotes STAT1 expres-
sion, consistent with the heightened response to interferon
signaling observed in nearly all cell types.38 miR-21-5pmay
also directly targetCCL20 andMYC, whose overexpression
fosters the inflammatory response and the T-cellmetabolic
reprogramming, respectively.21,40,41,79 The relatively strong
correlation between these two miRNAs and disease sever-
ity indicated that miR-146a-5p andmiR-21-5p might be key
contributors to COVID-19 pathogenesis and serve as hub
regulators of the host immune response. Interestingly,
miR-15b-5p seemed to play a dual role. In addition to bind-
ing directly to SARS-CoV-2 genome, both datasets indicate
that miR-15b-5p potentially induces T-cell exhaustion by
repressing the expression of IFNG and CD69.23,24 These
evidences suggest a key role for miR-15b-5p in COVID-19
pathogenesis and patient deterioration. Researchers have
demonstrated that previously mentioned miR-122, directly
targeting hepatitis C virus (HCV) genome, could also
serve as an antiviral target for HCV infection treatment.80
Taking the potential roles miRNA biomarkers could
play in COVID-19 deterioration into consideration,
these miRNAs might candidate biomarker miRNAs

donor of origin. Shown are P-values generated by one-way ANOVA with multiple comparisons by Tukey’s test. The number of samples: H
(n= 4), M (n= 6), and S (n= 6). Boxplot features: minimumwhisker, the smallest value within; minimum box, 25th percentile; center, median;
maximum box, 75th percentile; maximumwhisker, the largest value within. (C)mRNAs consistently downregulated. (D)mRNAs consistently
upregulated. (E) mRNAs only upregulated in severe COVID-19 patients. (F) mRNAs only downregulated in severe COVID-19 patients. (G)
Dot plot depicts GO-term functional enrichment by biological progress of three comparisons. (H) KEGG pathway enrichment of upregulated
expressed genes of three comparisons. (I) Scatter plots shows the correlation betweenACE2 and IFNL2. The number of samples: M (n= 6) and
S (n = 6)
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identified may as well serve as targets for COVID-19
treatment.
Despite all the exciting potential clinical application of

noncoding RNAs, several existing questions still require
further address. First, several risk factors could influence
the expression of peripheral ncRNAs, consequently con-
founding the accuracy of the biomarker ncRNAs. Previ-
ous research have indicated that almost all risk factors
could potentially result in different expression of certain
miRNAs in peripheral blood, including age,81 obesity,82
type 2 diabetes,83,84 and coronary artery diseases85. Here,
in this study, though we matched one of the most fun-
damental confounders, age, the impact of some other
comorbidities was hard to control because of the com-
plicated healthy condition background of each patients,
especially those with severe COVID-19. The diagnostic
specificity of the noncoding RNA biomarkers is another
consideration. Another problem is about the specificity
of noncoding RNA biomarkers, since our study did not
include non-COVID-19 patients with pneumonia or ARDS
as positive controls for moderate and severe groups.
Further researches including non-COVID-19 pneumonia
and ARDS patients, as well as asymptomatic COVID-19
patients were needed to validate the specificity of these
biomarkers.

5 CONCLUSION

Overall, we provided a comprehensive atlas of the ncR-
NAs of peripheral immune cells in COVID-19 patients. Our
results revealed novel potential biomarkers and contrib-
utors to the pathogenesis and severity of COVID-19. Sev-
eral ncRNAs might participate in the hyperactivation of
the immune response and inflammatory effects, loss of T-
cell function, and immune dysregulation in patients with
severe COVID-19. We believe that these findings will serve
as a foundation for exploring in more depth the unknown
facets of COVID-19’s etiology and a reference for the broad
scientific community interested in expanding our under-
standing of this disease.
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