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Abstract: Embryo fragmentation represents a phenomenon generally characterized by the presence
of membrane-bound extracellular cytoplasm into the perivitelline space. Recent evidence supports
the cellular and molecular heterogeneity of embryo fragments. In this narrative review, we described
the different embryo fragment-like cellular structures in their morphology, molecular content, and
supposed function and have reported the proposed theories on their origin over the years. We
identified articles related to characterization of embryo fragmentation with a specific literature search
string. The occurrence of embryo fragmentation has been related to various mechanisms, of which the
most studied are apoptotic cell death, membrane compartmentalization of altered DNA, cytoskeletal
disorders, and vesicle formation. These phenomena are thought to result in the extrusion of entire
blastomeres, release of apoptotic bodies and other vesicles, and micronuclei formation. Different
patterns of fragmentation may have different etiologies and effects on embryo competence. Removal
of fragments from the embryo before embryo transfer with the aim to improve implantation potential
should be reconsidered on the basis of the present observations

Keywords: embryo; fragmentation; micronuclei; vesicles; apoptosis

1. Introduction

Embryo fragmentation represents a phenomenon generally characterized by the pres-
ence of membrane-bound extracellular cytoplasm into the perivitelline space. In vitro,
human embryo fragmentation has been reported since the 1980s [1], but it has been de-
scribed also in human embryos conceived in vivo [2], indicating that it is not an artifact
of the in vitro culture. Many diverse terms have been used to refer to these cytoplasmic
fragments, including corpse, cytoplasmic pinching, micronuclei, debris, and shedding
microvesicles. Highlights from the current literature support the cellular and molecular
heterogeneity of embryo fragments: they can vary in size, kinetics, and organelle and
molecular content [3]. Importantly, during assisted reproduction technology (ART) pro-
cedures, fragmentation and cell debris are considered important prognostic factors in the
static morphologic assessment of human embryo quality, along with cell number, size,
and symmetry. In this context, the presence of cytoplasmic fragments is suggestive of a
poor prognosis embryo development and poor ART outcomes. On the basis of this idea
but without strong supporting backgrounds, some groups have proposed to remove these
cellular structures from the embryos before the transfer [4]. More recently, time-lapse
microscopy (TLM) documented that cellular fragments can be extruded or reabsorbed into
blastomeres, highlighting a dynamism in the process [5].
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Thus, the impact of fragment-like entities on the embryo developmental competence
remains to be clearly elucidated. Most importantly, novel information on this topic suggests
that fragments may have different origins with a possible range of effect on embryo
competence. In this review, we intended to collate the older and more modern literature
regarding the origins of cytoplasm fragmentation in the various steps of pre-implantation
embryo development. In addition, we described the alternative theories on the origins
of these phenomena over the years, underling strengths and limitations. We pursued
the following aims: (i) description of the different embryo fragment-like entities in their
morphology, molecular content, and supposed function, and (ii) reporting the proposed
theories on the origin over the years.

2. Results
2.1. Different Fragment-like Cellular Structures: Characterization, Timing, and Cargo

• Fragment size

Embryo fragments are heterogeneous in size: they can vary from normal-size blas-
tomeres to simple cellular debris. Johansson et al. classified 44 cleavage embryos according
to fragment size: entities smaller than 45 µm in day 2 and smaller than 40 µm in day 3,
respectively, have been considered as anucleated cytoplasmic fragments, while larger struc-
tures as blastomeres [6]. In addition, human embryo can naturally release extracellular
vesicles (EVs) that, on the basis of cellular origin, size, and release mechanism, can be
categorized into exosomes (30–150 nm in diameter) [7], microvesicles (50–1000 nm) [8], and
apoptotic bodies (50 nm–5 µm) [9–12] (Figure 1).

Figure 1. Schematic representation of the various fragment-like cellular structures detected in embryos.

• Timing of cytoplasmic fragment formation

Fragmentation may occur from the first embryo division of pre-implantation devel-
opment when the maternal genome drives the development; this phenomenon has been
initially suggested to be less common after the embryonic genome activation [13]. Interest-
ingly, representative time-lapse frames exhibited dissimilar temporal and spatial patterns
of fragmentation among various steps of pre-implantation embryo development [3]. Frag-
ments formed in some embryos during the pronuclear or early cleavage stages but were
no longer detectable at later stages. For other embryos, some of the cellular fragments
occurring during early cleavage were still detectable in blastomeres during late cleavage [3]
(Figure 2). Direct evidence of the dynamic nature of the phenomena was subsequently
reported. Handarson and colleagues described by time-lapse sequence imaging the inter-
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nalization/reabsorption of cellular fragments into neighboring blastomeres, while others
disappear, leaving behind only debris [5]. A more recent suggestion is that an embryo can
be capable of excluding any unwanted cell and/or cellular fragment from the remaining vi-
able cells during the morula-to-blastocyst transition [14] (Figure 3). The complete exclusion
of fragments or entire blastomeres can be observed in compacted embryos, morulae and
blastocysts (Figure 4). Commonly, fragments do not take part in the blastocyst formation.
This phenomenon is usually not very visible when the blastocoel inside blastocyst increases
causing the progressive thinning of the zona pellucida (ZP). It is more visible when the
blastocyst shows collapse or contraction episodes: some cells or fragments or debris become
clearly visible in the perivitelline space (Figure 3).

Figure 2. Different degrees of fragmentation in cleavage stage human embryos. (A–F) Representative
images of day 3 embryos characterized by cellular fragments of different sizes and positions. For
each embryo, arrows indicate a representative cellular fragment.

Figure 3. Cellular debris/fragments in the zona pellucida of day 5, 6, and 7 blastocysts. For each
embryo, arrows indicate a representative cellular fragment or blastomere excluded upon blastocyst
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formation. (A–D) Representative images of collapsing blastocysts presenting different degree of
fragmentation; (E) hatching blastocyst characterized by several cellular fragments within the zona
pellucida; (F) hatched blastocyst on the right and its original zona pellucida containing leftovers of
cell debris on the left.

Figure 4. Entire blastomeres are excluded upon blastocyst formation. (A–F) Representative images of
expanded blastocysts expelling one or more cells.

Similarly, the release of human embryo-derived EVs has been reported from the
zygote stage up to expanded blastocyst stage [15,16]. Indeed, EVs were detected in the
zona pellucida of human zygotes and in embryo conditioned culture media, but not in the
ZP of metaphase II oocytes, suggesting that EV release begins shortly after fertilization [16].

• Fragment cargo

The cargo of embryo fragments (from entire blastomere up to EVs) may contain nucleic
acids, proteins, lipids, chromosomes, and entire organelles. Organelles as vacuoles, large
mitochondria, vesicle complexes, and lysosomes may be sequestered into fragments [17,18].
Entire or portions of chromosomes, sequestered during fragmentation, can originate from
either the mother or the father [19,20]. Evidence reveals that a preferential sequestering of
particular chromosomes is unlikely. Chromosomal fragment size was found to range from
6 to 85 Mb [20].

The Different Origins Proposed for Embryo Fragment-like Entities

1. Extruded blastomeres

Thanks to the use of TLM that allows a deeper observation of the events underling em-
bryo development, blastomere exclusion has been observed both in morulae and blastocysts
of several mammalian species (i.e., humans, rhesus macaques, cattle, and mice) [21–29]
(Figure 3). Blastomeres could be excluded during the first phases of embryo compaction,
while others could be extruded from the compacted morula after a transient involvement
during this process [14]. Lagalla et al. retrospectively evaluated 791 embryos obtained in
145 ART cycles by time-lapse morphokinetics analysis. Array-CGH analyses performed on
both trophoectoderm cells and those excluded during morula compaction demonstrated
that the latter have a higher incidence of aneuploidies as compared to the former ones.
Those extruded cells are unable to flatten and establish tight intercellular contacts. Several
factors may be involved in the failure of the compaction process: an abnormal formation of
tight junctions [29] or the inability to express proteins involved in cell adhesion [13]. The
frequency of this phenomenon is not a well-documented process, but it is clearly known
that pre-implantation embryos tolerate it well.
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2. Chromosome-containing micronuclei

Although initially embryonic fragments were considered as anucleate cytoplas-
mic components, subsequently, the presence of nuclear DNA started to be demon-
strated [19,30,31]. By performing immunofluorescence analysis using antibodies against
the centromere protein-A (CENP-A) and the nuclear envelope marker, LAMIN-B1, Chavez
and colleagues demonstrated the presence of micronuclei in cleavage stage human embryos,
suggesting their formation could be a mechanism adopted by embryos to sequester mis-
segregated chromosome [19]. Micronuclei are extra-nuclear bodies containing damaged
chromosome fragments and/or whole chromosomes that were not incorporated into the
nucleus after cell division. They originate from acentric chromatid/chromosome fragments
or from entire chromatids/chromosomes that are not correctly included in the main nucleus
during the telophase [32]. They are, instead, enwrapped by the nuclear membrane, acquir-
ing the structure of the daughter nucleus, even though smaller in size [33,34]. Fragments
containing micronuclei can be reabsorbed by the embryo and fused with neighboring blas-
tomeres, thus possibly resulting in the correction of aneuploid blastomeres or in altering
the correct ploidy status if they fused with euploid blastomeres. Thus, this process can
have a positive effect since, if tolerated, it can influence karyotype evolution in species, or
the result may be deleterious, leading to additional genetic mutation [19].

3. Apoptotic bodies

Since the 1980s, a role of apoptosis process in pre-implantation embryo development
has been suggested. The first report demonstrating the presence of ultrastructural features
associated with degenerating cells and with a micro-pinocytotic activity in the inner cell
mass (ICM) cells of viable/hatched human blastocysts was published in 1982 [35,36]. This
latter study confirmed previously published results in primate models [36], suggesting a
physiological role of cell death process in ICM development. Nevertheless, the pioneers
of ART realized that both viable and arrested embryos may contain a proportion of cy-
toplasmic apoptotic fragments, suggesting that cellular apoptosis could play a role also
in embryonic arrest. A detailed description of the controversial findings on the apoptotic
phenomena associated with embryo fragmentation is reported in a subsequent paragraph
(Section 2.2 point 1.). A distinctive morphological change of apoptosis is the blebbing
and the consequent apoptotic bodies formation. These membrane-bound vesicles contain
cytoplasm, organelles, and nuclear fragments, and they are released into the extracellular
space. After the release, apoptotic bodies are usually phagocytosed and degraded/digested
by professional phagocytes (such as macrophages) or non-professional phagocytes (such
as epithelial cells) [37]. The phagocytic competence of early embryonic cells has been
proposed following the observation of in vitro internalization of fluorescence microspheres
in trophectoderm cells of human blastocysts after overnight co-culture evaluated by trans-
mission electron microscopy (TEM) and fluorescence microscopy [38]. Li et al. did not
detect phagocytic activity in the ICM, and an increased ability in blastocysts after 6 days of
culture was observed compared to faster ones. However, the authors did not investigate the
molecular mediators of phenomenon. Phagocytosis is a very specific process, characterized
by several successive steps and mediated by fine interactions between cell surface ligands
and cell surface receptors. It is also true that Pisko and colleagues supported this idea in a
mouse model where embryonic cells had all the key molecules necessary for the recognition
and digestion of damaged blastomeres, undertaking the clearance of the majority of cellular
debris in blastocysts [39]. Despite the above assumptions, many cellular fragments mostly
persist in the blastocoel and in the perivitelline space, suggesting that other mechanisms
may be responsible for fragmentation and debris formation in pre-implantation embryos.

4. Persisting polar bodies

Polar bodies (PBs) are the byproduct of the oocyte meiotic cell divisions. They are small
cytoplasmic blebs containing haploid genetic material plus a small amount of cytoplasmic
organelles. Generally, they undergo apoptosis in 17–24 h after formation [40]. Evidence
suggests that persisting PBs in embryos at the blastocyst stage can give rise to cellular
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fragments in the sub-zonal space [41]. Ottolini and colleagues performed a genetic analysis
of a slow developing embryo; they analyzed the trophectoderm and the excluded cell
fragments. Results obtained from the karyotyping of the fragments (47,XX,+19) and of
the trophectoderm sample (46,XY) were non-concordant. In order to investigate deeper
the cause of these results, DNA fingerprinting analyses using a panel of informative short
tandem repeats markers and amelogenin were performed in all the samples. Subsequently,
samples were also analyzed for karyomapping. The fragments demonstrated the absence
of any paternal alleles and the presence of only a single maternal allele at each locus. The
karyomapping revealed that the DNA amplified from fragments was exclusively that of
the second polar body corresponding to the fertilized oocyte that gave rise to the embryo
from which the trophectoderm had been biopsied [42]. This study demonstrated that a
fraction of fragments may derive from the second PB.

5. Extracellular Vesicles

In 2019, Vyas and collaborators demonstrated that EVs could be released from all stages
of pre-implantation embryos including 1-cell zygotes, cleavage embryos (2-cell, 4-cell, and
8–10-cell), morulae, and blastocysts. EVs were also detected throughout the ZP from the
inner to its external surface, suggesting the capability of these vesicles to pass through ZP.
In the same year, Battaglia and colleagues reported the presence of EVs in human blastocoel
fluid [42]. Some studied confirmed that embryo-derived EVs are present in embryo-
conditioned culture media of both day 3 and day 5 human pre-implantation embryos
and, in both cases, with a diameter between 50 and 200 nm, consistent with exosome
and microvesicle size [9,16]. Their specific molecular cargo (OCT4 and NANOG gene
transcripts, HLA-G protein) suggests that they can arise from both ICM and trophectoderm
compartment [9]. Unlike other cytoplasmic fragments, EVs have been shown to act as
mediators of active cell-to-cell communication by packaging and transferring molecules
from one cell to another both locally and remotely [43].

6. Others

• Mitochondria

Fragmented embryos displayed a different organization of mitochondrial distribution:
a higher concentration of mitochondria has been observed in the center rather than in the
periphery of blastomeres in fragmented embryos as compared to non-fragmented ones [44].
This pattern could be linked to reduced adenosine triphosphate (ATP) content and reduced
developmental potential [45] that can ultimately result in the disruption of the membrane
with subsequent cellular lysis caused by disruption of the ion pump function [3].

• Perivitelline threads

Perivitelline threads (PVTs) (also defined with the term of trans-zonal projections)
are thin filaments that extend across the perivitelline space connecting the ZP with the
oolemma or with the blastomere membrane. Their origin and nature are not clear. A
theory linked their formation to the corona radiata; indeed, corona radiata cells are char-
acterized by projections that can traverse the ZP with a role in the communication with
the oolemma before ovulation [46,47]. After the luteinizing hormone surge, these projec-
tions are withdrawn and are thought not to persist beyond the meiotic reactivation stage.
Nevertheless, observations during intracytoplasmic sperm injection, demonstrated that
remnants of the projections of corona radiata persist, thus resulting in the formation of
PVT [48]. Derrick and colleagues demonstrated an association between the presence of
PVTs and embryo fragments. Analyzing 525 blastocysts, the authors found that 77% of
them were characterized by the presence of PVTs, most appearing at the 2-cell stage (98%
of the cases). Almost all of the embryos characterized by PVTs presented fragments (98%).
Conversely, fragmentation was significantly less frequently observed in embryos without
PVTs [48]. During the first mitotic division, a tight adherence between the PVT and the
membrane may cause a strain during movement of the cells, causing fragments to form
where there are already some weaknesses, thus explaining the link between PVTs and the
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generation of fragments [49]. Notably, there is no evidence of a relationship between PVTs
and implantation potential (implanted embryos with PVT vs. without PVT: 25 vs. 29%) or
with the ploidy status (euploid embryos with PVT vs. without PVT: 40 vs. 49%), suggesting
no significant relationship between PVTs and embryo developmental potential [48].

2.2. Theories on the Origins over the Years

The precise mechanism(s) by which embryo fragmentation occur remains to be clar-
ified. The cellular machineries involved in fragment-like entities formation and release
could be unique or various (depending on type of cellular content or the timing of forma-
tion). Nevertheless, several hypotheses on the origin of fragments have been proposed,
including apoptotic cell death, the effect of reactive oxygen species, cytoskeletal disorders,
vesicles and micronuclei formation. All these theories might be valid. In addition, the
frequency of this phenomenon in humans is also unknown. Notably, as a general idea,
it has to be underlined that, in recent years, the interest in chromosome abnormalities
and chromosomal mosaicism in human pre-implantation embryos has increased. As a
consequence, the presence of whole chromosomal abnormalities or aneuploidy has been
considered to be a primary determinant of whether an embryo arrests or reaches the blasto-
cyst stage [50]. Thanks to the use of high-resolution techniques, it has been estimated that
between 50% and 80% of cleavage stage human embryos contain more than one aneuploid
cell [10,51–55]. Because of the lack of cell cycle check points during blastulation, different
types of mosaicism (i.e., aneuploid/diploid mosaicism and complex aneuploid mosaicism)
have been frequently found in embryos [55,56]. Despite the majority of chromosomal errors
not being corrected, there are several lines of evidence supporting the existence of “embryo
self-corrective” mechanisms that are involved in the extrusion of aneuploid cells during
embryo development [57,58]. These mechanisms are thought to be the results of multipolar
divisions, blastomere exclusion, and cellular fragmentation. The hypothesis that embryo
fragmentation could be a tool of regulation and maintenance of cellular homeostasis in
human embryo was supported by reported associations between extensive fragmentation
and chromosomal abnormalities [59–62].

However, different mechanisms were studied over the years linking embryo home-
ostasis and the release of fragments, uneven cells, or debris and they are described below.

1. Apoptotic cell death

Apoptosis involves redistribution of membrane phospholipids within the lipid bi-
layer, nuclear fragmentation, cytoplasmic shrinkage, and plasma membrane protuberans
known as blebs [63,64]. One of the early events of the apoptotic process, before the loss
of cell membrane integrity, is the phospholipid phosphatidylserine translocation to the
outer leaflet of the membrane bilayer [65]. Phospholipid phosphatidylserine externaliza-
tion can be easily detected using annexin V, a phosphatidylserine-binding protein. This
apoptosis stage is strongly associated with chromatin condensation events on the inner
nuclear membrane [66], a process that can be detected by labelling DNA with specific
fluorochromes such as propidium iodide (PI) and 4′,6-diamidino-2-phenylindole (DAPI).
Another important feature of late phase apoptosis is the DNA fragmentation that can be
detected by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)
assay [67]. Correlation of cellular fragmentation with apoptosis in fragmented or normally
developing human cleavage stage embryos represents a controversial finding. Yang and
colleagues reported a TUNEL signal in most fragmented cleavage stage embryos (from
the two-cell to eight-cell stage) but not in non-fragmented ones [68]. Antczak and Van
Blerkom reported no TUNEL signal or annexin V fluorescence in both fragments and in
intact blastomeres of living fragmented embryos between 2- and 8-cell stages [69]. Levy
and colleagues reported increased annexin V staining and TUNEL assay labelling in ar-
rested and fragmented day 2 embryos but no annexin V staining in cleavage stage embryos
normally developing after thawing [70]. Jurisicova and colleagues also proposed cellular
fragmentation as a consequence of embryo programmed cell death of blastomeres in human
cleavage embryos arrested at different stage of development. Several cellular fragments
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containing organelles and condensed chromatin within the ZP, associated with apoptosis
markers (TUNEL staining) as well as caspase-2 and caspase-3 mRNA expression, were
observed in these embryos [71,72]. Studies investigating apoptosis pathways reported that
some markers such as BAX and BCL (mRNA and proteins) were even expressed from
unfertilized oocyte, while others such as PDCD5, BAD (mRNA), caspases, and Harakiri
were expressed mainly at the blastocyst stage [71]. Martinez and colleagues frequently
observed positivity for caspase activity in fragments but rarely in normal blastomeres
of arrested embryos. No differences were detected in the proportion of caspase-positive
cellular fragments between 2-cell and 12-cell stage embryos, thus before and after em-
bryonic gene activation [73]. In 2001, with an integrated approach between retrospective
data and mathematical modeling, apoptosis episodes were demonstrated from morula
to blastocyst stage in viable embryos of good morphology [74]. Hardy and colleagues
assessed morphological and biochemical markers of apoptosis in fixed zona-free embryos
at different developmental stages until blastocyst stage by using confocal microscopy. Nu-
clear morphology was evaluated after treatment of samples with DAPI, and fragmented
DNA detection was evaluated by TUNEL. The levels of TUNEL-labelled cells substantially
increased at blastocyst stage, while apoptosis markers were absent in cleavage stage em-
bryos. The appearance of apoptotic markers has been associated with important steps of
pre-implantation embryogenesis: the activation of the embryonic genome, the develop-
ment of gap junctions, and the maturation of mitochondria. Cell–cell communication via
gap-junctions, in particular, rarely present in cleavage stage embryos, was supported as a
molecular requirement for apoptotic signal propagation [75,76]. In line with the idea that
selection/correction of aneuploidies are one of the mechanisms for fragmentation of the
embryos, Santos and colleagues observed aneuploid blastomeres leaving the blastocyst
following the activation of apoptotic pathways [77,78]. Recently, also, the blastocoel fluid
was analyzed for the presence of apoptosis markers [43,79]. Caspase-3 protease activity
has been detected in this compartment, supporting the idea that a fraction of molecules in
blastocoel fluid are products of apoptotic embryonic cells [80]. In general, however, several
aspects still need to be elucidated, i.e., factors affecting blastomere apoptosis and the entity
of the phenomenon in the human pre-implantation embryo at different stages.

2. Reactive oxygen species effect

Generated during the physiological consumption of oxygen, reactive oxygen species
(ROS) can be the product of the embryo metabolism, but they may also originate from
embryo surroundings [81]. High levels of ROS along with an imbalanced formation of
antioxidants is thought to result in oxidative stress, resulting in suboptimal embryos com-
petence [82,83]. Indeed, differently from what occurs in vivo, in which the presence of
antioxidants or antioxidative enzymes in the fluid and epithelium of oviduct protects
the embryo from ROS, in an in vitro culture system, levels of these compound have been
demonstrated to inversely correlate to embryo developmental competence [81,84,85]. In-
terestingly, several studies have reported a positive correlation between ROS levels in the
spent medium and the fragmentation rate in human embryos at cleavage and blastocyst
stage [84,86]. Thanks to the use of imaging techniques, such as TEM and other fluorescence
assays, ROS have been detected at a higher concentration in embryos with a higher rate
of cellular fragmentation [68]. While a certain amount of ROS may benefit the embryo
development, as mitochondrial oxidative phosphorylation is an efficient way to produce
ATP but at a cost of ROS generation, elevated ROS levels have harmful effects, including
DNA damage and alteration of most types of cellular molecules [86]. Nevertheless, a recent
study reported a lack of association between ROS levels in media of cultured individu-
ally embryos (as evaluated by a chemiluminescence assay using luminol) and embryonic
development or high embryo fragmentation [87].

3. Membrane compartmentalization of DNA

As mentioned above, micronuclei have been detected in cleavage stage human em-
bryos as a whole chromosome or a fragment of a chromosome that is not incorporated into
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one of the daughter nuclei during cell division. There is no evidence of a preferential asso-
ciation of aneuploidy with a subtype of chromosomes: both large and small chromosomes
can be sequestered [88]. In addition, mis-segregated chromosomes and chromatid frag-
ments encapsulated within micronuclei are dynamic entities: they may persist, rejoin the
primary nucleus, or might be definitely eliminated from the embryo, in line with the theory
of embryo “self-correction”. Moreover, chromosomes can undergo a specific phenomenon
of “chromosome pulverization”, known as chromothripsis, that allows the reduction of one
or a few chromosomal fragments into many pieces, randomly reassembled in one unique
cellular event during a single-cell division [59]. Not all the fragments are characterized by
the presence of sequestered micronuclei; thus, the rearrangement of fragments does not
always result in the alteration of the ploidy [5,19,89].

4. Abnormal cytokinesis and cytoskeletal disorder

It is well documented that embryos with abnormal duration of cell cycles and cytoki-
nesis (generally, with a delayed first mitosis, an earlier start of the second mitosis, and a
longer duration of the third mitosis) are more likely to be fragmented [13]. An incorrect
cell cycle may result in genomic alterations because the cell does not have enough time to
correct any eventual error during DNA replication. Alikani and colleagues reported that
loss of interplay between the spindle complex and cortical microfilaments was associated
with blebs and cellular fragments formation. In addition, the authors demonstrated that
treatment with cytokinesis inhibitors prevented cytokinesis as well as fragment formation,
supporting a cause–effect relationship [13]. Stensen and colleagues also linked the rate of
embryo fragmentation with the duration of meiotic process. A delay in the oocyte meiotic
division (formation of the meiotic spindle 36.2 h after human chorionic gonadotropin injec-
tion) was associated with higher fragmentation rates [50–100%] in resultant embryos [90].
The reason underlying this observation may be related to cell cycle defects implicated
in oocyte aneuploidy involving alterations in chromosome pairing, recombination, and
spindle assembly, resulting in a delayed meiotic cell cycle [91–93]. No correlation, instead,
was found between fragmentation and other spindle characteristics (i.e., a delay in its
formation and the angle calculated between the first polar body and the meiotic spindle).
Lastly, according to the same group, the process of fragmentation was more pronounced
during the early phases of cell division, when the maternal genome is still active. After
the activation of the embryonic genome, the tendency of human blastomeres to fragment
would be lost. Extruded blastomeres from these embryos would express maternal instead
of embryonic transcripts, during an inappropriate timing for the developmental stage [90].

5. Extracellular vesicle formation

Human embryos can secrete EVs in their culture media that can be easily taken up
by endometrial cells [15]. They are formed through multiple biogenetic pathways: (i) Ex-
osomes are generated from the endosomal system by the formation of late endosomes,
which are formed by inward budding of the multivesicular body (MVB) membrane. Invagi-
nation of late endosomal membranes results in the formation of intraluminal vesicles (ILVs)
within large MVBs [94]. In the next step, MVBs have two fates: most ILVs are released
into the extracellular space upon fusion with the plasma membrane or, alternatively, these
components are trafficked to lysosomes for degradation [95,96]. (ii) Microvesicles, instead,
are formed through the outward budding and fission from plasma membranes. In contrast
to exosome formation, the secretion of microvesicles requires the lipid microdomains at
the membrane and a reorganization of the actin–myosin cytoskeletal network [97,98]. A
possible association between the EV quantity in the spent culture media and embryo quality
and competence has been suggested [99–101]. Specifically, fewer EVs have been reported in
spent culture media of embryos leading to successful pregnancy than in those who failed,
suggesting that a good quality and competent embryo releases different amounts/types of
EVs compared to a low-quality embryo [102–105].
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3. Discussion

Fragmentation is a common feature of the early development of human embryos.
During ART procedures, multiple clusters of fragments can be frequently observed in
in vitro developing embryos. However, the causes of this cellular phenomenon and its
impact on developmental competence are not so clear. Notably, the literature on this topic
is for the most part dated on one hand, and, on the other hand, refers to studies far from
the ART procedures [19,20,73]. The phenomenon may be the results of intrinsic processes
in cleaving embryos or may be the results of external factors [106,107]. The consequence
is that fragmentation can affect none, some, or all embryos, demonstrating that this phe-
nomenon is both embryo- and patient-specific. A critical point of discussion focuses on the
impact of fragment-like entities on the embryo developmental competence. A consistent
body of literature linked the rate of fragmentation with a lower embryo developmental
potential and implantation rate [24,32,74,108,109]. This observation could be explained
by the theory supporting an association between fragment-like entities and chromoso-
mal abnormalities. Aberrant or exceeded chromosomes may result in the formation of
DNA-containing micronuclei that ultimately may lead to the inactivation of the embryonic
genome and the subsequent block of embryo development [31]. On the other hand, a
reduced embryo developmental potential may be explained also by those theories sup-
porting the anucleate cytoplasmic nature of embryo cellular fragments. The loss of a large
volume of cytoplasm may be detrimental to embryo potential by depleting blastocyst of
essential organelles (e.g., mitochondria), mRNAs, and proteins, resulting in an early block
during embryo development. More specifically, the loss of a large volume of cytoplasm
may be related with the reduction of important regulatory proteins for embryogenesis
(e.g., leptin, signal transducer and activator of transcription 3, BAX, Bcl-x, transforming
growth factor beta 2, vascular endothelial growth factor, c-kit, and epidermal growth factor
receptor) [69]. In addition, the presence of large cytoplasmic cellular fragments may also
have an impact in the spatial arrangement of the blastomere in the context of ICM and
trophectoderm of the blastocyst [24,110]. Indeed, they can cause apoptosis or the loss of a
significant volume of cytoplasm, limiting the rate of blastomere cleavage because of the
distortion of the blastomere division planes, leading to abnormal compaction, cavitation
and blastocyst formation.

On the basis of these observations, cosmetic embryo microsurgery in terms of removal
of fragments and coarse granulation from the embryo before embryo transfer has been
suggested to improve cell division and implantation potential [4,24,32]. Sordia-Hernandez
and colleagues reported results in line with this idea, but they also observed a higher rate
of abortions in the group of patients who had defragmented embryos transferred. The
relationship between micromanipulation and abortion is controversial and could be related
to the fact that fragmented embryos could be genetically abnormal, or they could suffer
important structural damage when fragment aspiration is performed [111,112]. Taken
together, positive implantation outcomes after microsurgical fragment removal could be
the result of the restoration of spatial relationship of cell-to-cell contacts disturbed by
fragments. In addition, this procedure may prevent secondary degeneration of adjacent
cells caused by debris [24].

In contrast, on the basis of the other theories presented, the removal of fragments could
have a negative effect on the implantation embryo potential. In the study by Halvaei et al.,
larger cytoplasmic fragments were characterized by the presence of sequestered functional
cellular organelles, particularly mitochondria capable of generating ATP [113]. The effect
of their removal could be detrimental since it could prevent surrounding blastomeres of
important organelles and of their enzymatic activity. Moreover, the same study suggested
that it is not beneficial to proceed with the removal neither on embryos with a fragmentation
rate between 0 and 10%, nor on embryos with more than 35% of cellular fragments. Indeed,
the former embryos displayed an implantation rate very similar to those of high-grade
embryos, while the removal of cytoplasmic fragments from the others may lead to an
amelioration only from a morphological point of view [18]. Lastly, cellular fragments could
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be indicative of chromosomal problems, and therefore their removal might not improve
the potential of many severely fragmented embryos.

4. Materials and Methods

A search in PUBMED for the peer-reviewed papers published in English from 1970
through January 2021 was conducted to identify articles related to characterization of
embryo fragmentation or cellular fragments and description of the kinetic of cell extru-
sion/exclusion phenomena. The search string used was (embryo* OR blastocyst) AND
(fragment* OR corpse OR vesicle) NOT (sperm DNA fragmentation OR sperm fragmenta-
tion). Animal models were excluded from the study.

5. Conclusions

It is beyond any doubt that, in the near future, a wide panel of the investigations
from the fields of experimental and applied embryology should have been targeted at the
precisely identifying and comprehensively exploring a broad spectrum of morphologi-
cal, ultrastructural, biochemical, and molecular determinants responsible for increased
incidence of the processes leading to initiation and progression of embryo fragmentation.
The thorough characterization of the aforementioned determinants seems to be strongly
justified in order to recognize the highly predictable biomarkers related to diminishments
in not only molecular quality parameters, but also the extracorporeal and peri-implantation
developmental capabilities of the ex vivo produced embryos created by such modern
ARTs as in vitro fertilization and intracytoplasmic sperm injection in humans and other
mammalian species and somatic cell nuclear transfer (SCNT)-mediated cloning in other
mammalian species [114–119].

Different patterns of fragmentation may have different etiologies and effects on em-
bryo competence. Removal of fragments from the embryo before embryo transfer with
the aim to improve implantation potential should be reconsidered on the basis of the
present observations.
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ART assisted reproduction technology
CENP-A centromere protein-A
DAPI 4′,6-diamidino-2-phenylindole
EV extracellular vesicles
ICM inner cell mass
ILV intraluminal vesicle
MVB multivesicular body
PB polar body
PI propidium iodide
PVT perivitelline thread
ROS reactive oxygen species
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SCNT somatic cell nuclear transfer
TEM transmission electron microscopy
TLM time-lapse microscopy
TUNEL terminal deoxynucleotidyl transferase dUTP nick end labeling
ZP zona pellucida
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