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As the conventional means of analyzing the similarity between a query sequence and database sequences, the Smith-Waterman
algorithm is feasible for a database search owing to its high sensitivity. However, this algorithm is still quite time consuming.
CUDA programming can improve computations efficiently by using the computational power of massive computing hardware as
graphics processing units (GPUs). This work presents a novel Smith-Waterman algorithm with a frequency-based filtration method
on GPUs rather than merely accelerating the comparisons yet expending computational resources to handle such unnecessary
comparisons. A user friendly interface is also designed for potential cloud server applications with GPUs. Additionally, two data sets,
HINI protein sequences (query sequence set) and human protein database (database set), are selected, followed by a comparison
of CUDA-SW and CUDA-SW with the filtration method, referred to herein as CUDA-SWf. Experimental results indicate that
reducing unnecessary sequence alignments can improve the computational time by up to 41%. Importantly, by using CUDA-SWf
as a cloud service, this application can be accessed from any computing environment of a device with an Internet connection

without time constraints.

1. Introduction

The Smith-Waterman (SW) algorithm searches for a sequence
database to identify the similarities between a query sequence
and subject sequences [1, 2]. However, this algorithm is
prohibitively high in terms of time and space complexity;
the exponential growth of sequence databases also poses
computational challenges [3]. Owing to the computational
challenges of the Smith-Waterman algorithm, some faster
heuristic solutions (e.g., FASTA [4] and BLAST [5, 6]) have
been devised to reduce the time complexity yet degrading the
sensitivity of alignment results.

The feasibility of using massive computational devices to
enhance the performance of many bioinformatics programs
has received considerable attention in recent years, especially
many-core devices such as FPGAs [7-9], Cell/BEs [10-12],
and GPUs [13]. The recent emergence of GPUs has led to
the creation of hundreds of cores, with their computational

power having exceeded one TFLOPS and NVIDIA released
the CUDA programming environment [14], which allows
programmers to use a common programming language (e.g.,
C/C++) to develop GPU-related applications to enhance
the computing performance. Additionally, the feasibility of
using GPUs to accelerate the SW database search problem
has been widely studied, in which the pioneering work is
proposed by Liu et al. [15] to develop SW algorithm using
OpenGL for general-purpose GPUs (GPGPU). Following
the development of the CUDA programming model, SW-
CUDA [16] as the CUDA-based SW solution on GPUs
could run on multiple G80 GPUs. However, SW-CUDA
distributed the SW algorithm among multicore CPUs and
GPUs, making it a highly dependent CPU, owing to their
inability to utilize the entire computational power of GPUs.
Thereafter, CUDASW++ 1.0 [17], as designed for multiple
G200 GPUs, deployed all of the SW computations on GPUs
to fully utilize the powerful GPUs. In contrast to previous
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works, CUDASW++ 2.0 [18] contributes to SW database
search problem and optimizes the SIMT abstraction in
order to outperform CUDASW++ 1.0. The previous research
significantly improves the performance of SW algorithm; in
addition, CUDASW++ 2.0 significantly reduces the search
time in protein database searches.

However, when using a sequence to query a protein
database, biologists do not require all results between the
query sequence and all database sequences; however, the
similarities are more than at a certain level. Therefore,
many computations can be omitted when performing protein
database searches if the minimal difference of all alignment
combinations can be known in advance, allowing us to
omit the extremely different combinations and retain the
possible combinations in order to perform the SW alignment.
Related research in recent years has heavily focused on
establishing the multicore of a multicomputer system. Having
received considerable attention in bioinformatics research,
cloud computing integrates a large amount of computational
power and storage resources, as well as provides different
services through a network, such as infrastructure as a
service (IaaS), platform as a service (PaaS), and software as
a service (SaaS). In these cloud services, users can access
desired services without location constraints. Therefore, a
cloud service focuses on acquiring services via a remote
connection through a network, such as the Amazon EC2 ser-
vice which is an TaaS and provides various virtual machines
with operating systems for users. Other service such as the
Google App Engine is a PaaS cloud computing platform for
developing and hosting web applications in Google-managed
data centers. Other services using the SaaS$ platform are those
such as G-mail or Dropbox services. This cloud computing
platform can be viewed as an extended SaaS concept, which
refers to customized software, made available via the Internet.
Thus, no real computing environments in a local client do not
need to be set up since these software applications do not need
to ask each end user to manually download, install, configure,
run, or use the software applications on their own computing
environments. By using cloud services, users can even use a
mobile device to complete their tasks, which could only be
completed on a PC previously.

This work implements an efficient CUDA-SW program
for a SW database search on GPUs. A real-time filtration
method based on the frequency distance [19], referred
to hereinafter as CUDA-SWH, is also designed to reduce
unnecessary computations efficiently. Before the database
search, a frequency vector is constructed for the query
sequence and the database sequences. Frequency distances
are then counted on GPUs for all combinations between
query and database sequences. Frequency distance refers to
the minimum difference between the query and database
sequence, allowing us to record frequency distance in order
to determine which combinations should be used to perform
a SW alignment and then output the alignment results.
Additionally, a friendly user interface (UI) is designed for the
potential cloud server with GPUs. Cloud service is combined
with GPU computing, in which the Saa$S concept through a
network is used and a Ul is provided to access the service.
In our test data sets, the CUDA-SWf can reduce up to
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41% of the computational time by comparing with CUDA-
SW. Moreover, CUDA-SWf is about 76x faster than its CPU
version.

The rest of this paper is organized as follows. Section 2
briefly describes the preliminary concepts for SW algorithm,
CUDA programming model, and related works for SW
algorithm on GPUs. Section 3 then introduces the method
of CUDA-SW algorithm and the implementations of the
frequency filtration method. Next, Section 4 summarizes
the experimental results. Conclusions are finally drawn in
Section 5, along with recommendations for future research.

2. Related Works

2.1. SW Algorithm. The SW algorithm is designed to identify
the optimal local alignment between two sequences by
estimating the similarity score of an alignment matrix. The
computation is based on a scoring matrix such as BLOSUM62
[20] or PAM250 [21] and on a gap-penalty function. Given
two sequences S; and S, whose lengths are [, and [,,
respectively, the SW algorithm calculates the similarity score
H(i, j) of two sequences ending at positions i and j of S; and
S,. Next, H(i, j) is computed, as shown in (1), for 1 <i < [},
1<j<l:

E(i,j)=max{E(i,j-1)-G,, H(i,j—1)-G; - G,},
F (i, j) = max{F (i-1,j) -G, H(i- 1,j) - G; - G},
H(i,j) = max{0,E(i,j),F(i,j), H(i—-1,j - 1)

+sc(8, [i],S, [])}
1)

where sc denotes the character substitution scoring matrix, G;
represents the gap opening penalty, and G, refers to the gap
extension penalty. A scoring matrix sc gives the substitution
rates of amino acids in proteins, as derived from alignments
of protein sequences.

The recurrences are initialized as H(i,0) = H(0,j) =
E(i,0) = F(0,j) = 0for0 < i < l;and0 < j < I,. The
maximum local alignment score refers to the maximum score
in H function. Estimating each cell in H function depends on
its left, upper, and upper-left neighbors, as shown by the three
arrows in Figure 1. Additionally, this data dependency implies
that all cells on the same minor diagonal in the alignment
matrix are independent of each other and can be calculated
in parallel. Thus, the alignment can be estimated in a minor-
diagonal order from the top-left corner to the bottom-right
corner in the alignment matrix, where calculating the minor
diagonal i only requires the results of minor diagonals i — 1
andi-2.

2.2. CUDA Programming Model (CUDA 3.2). Compute uni-
fied device architecture (CUDA) is an extension of C/C++,
in which users can write scalable multithreaded programs for
GPU computing field. The CUDA program is implemented
in two parts: host and device. The host is executed by CPU,
and the device is executed by GPU. The function executed
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FIGURE 1: Smith-Waterman method.

on the device is called a kernel. The kernel function can be
invoked as a set of concurrently executing threads, and it
is executed by threads. These threads are in a hierarchical
organization which can be combined into thread blocks and
grids. A grid is a set of independent thread blocks, and a
thread block contains many threads. The grid size is the
number of thread blocks per grid, and the block size is the
number of threads per thread block. Threads in a thread
block can communicate and synchronize with each other.
Threads within a thread block can communicate through
a per-block shared memory, whereas threads in different
thread blocks fail to communicate or synchronize directly.
Besides shared memory, four memory types are per-thread
private local memory, global memory for data shared by all
threads, texture memory, and constant memory. Of these
memory types, the fastest memories are the registers and
shared memories. The global memory, local memory, texture
memory, and constant memory are located on the GPU’s
memory. Besides shared memory accessed by single thread
block and registers only accessed by a single thread, the other
memory can be used by all of the threads. The caches of
texture memory and constant memory are limited to 8 KB
per streaming multiprocessor. The optimum access strategy for
constant memory is all threads reading the same memory
address. The texture cache is designed for threads to read
between the proximity of the address in order to achieve
an improved reading efficiency. The basic processing unit in
NVIDIAs GPU architecture is called the streaming processor.
Many streaming processors perform the computation on
GPU. Several streaming processors can be integrated into
a streaming multiprocessor. While the program runs the
kernel function, the GPU device schedules thread blocks
for execution on the streaming multiprocessor. The SIMT
scheme refers to threads running on the streaming multipro-
cessor in a small group of 32, called a warp. For instance,
NVIDIA GeForce GTX 260, each streaming multiprocessor
with 16,384 32-bit registers, has 16 KB of shared memory.
The registers and shared memory used in a thread block
affect the number of thread blocks assigned to the streaming
multiprocessor. Streaming multiprocessor can be assigned up

to 8 thread blocks. More details and other version of CUDA
can be found in the CUDA programming guides.

2.3. SW Algorithm on GPUs. The several platforms that the
SW algorithm has been implemented on include FPGAs,
Cell/Bes, and GPUs [7-18]. A query sequence compared with
all database sequences is more practical than with a single
sequence [22-26] (pairwise comparison). Many works have
implemented the SW algorithm on GPUs. Liu et al. [13] first
attempted to implement the SW algorithm on a GPU by
using OpenGL. The SW algorithm has subsequently been
implemented on NVIDIA graphics cards by using CUDA
[14, 16]. As for database searches, many efficient methods
implement the SW algorithm either by a thread called
intertask parallelization or by a thread block called intratask
parallelization [27]. By using intertask parallelization [27],
this work calculates the similarity score of each pair of input
sequences by a single thread. Additionally, a related work
developed a method to perform large sequence alignment,
not only a similarity score, but also alignment results, with
limitations on hardware [28]. Those works improved the
performance of the SW database search by using GPUs to
reduce the time spent. However, increasing the efficiency
of a database search is of priority concern. Performing a
protein database search involves finding the most similar
protein sequence in a specific database; biologists frequently
perform this task. However, many low-quality results are
available when performing all database comparisons, indicat-
ing the low similarity between query sequence and database
sequences. The ability to identify those sequences and distin-
guish them from deep comparisons will significantly decrease
the computational time. Additionally, the ability to qualify
a filtration algorithm under this circumstance allows us to
reduce computational resources and time. The most similar
sequence can be obtained by filtering out the dissimilarity
of characters, followed by a series of computations. When
sequences are filtered, the level of filtering depends on the
length of the query sequence. Longer database sequences
are generally preserved to prevent containment of the query
sequence. Hence, a longer query sequence implies a more
efficient filtering algorithm implemented in this work.

3. CUDA-SW and CUDA-SWf Methods

There are two methods, CUDA-SW and CUDA-SWI,
designed and implemented in this work. By integrating
the frequency-based filtration method [19], CUDA-SWf
performs better by reducing the comparisons than the
CUDA-SW. The CUDA-SWf algorithm can be divided into
three parts.

Part 1: Inputs Processing (Host, CPU). The inputs of CUDA-
SWtare a query sequence and a specific protein database with
a large amount of sequences. Before filtration on the device
(GPU) is performed, these inputs must be processed in the
following steps.

(1) For a query sequence, CUDA-SWTf records the query
string and the query length, referred to hereinafter as “Q,”
and “Q,,” respectively, followed by an analysis of the string



character structure to construct a frequency vector (FV) for
a query sequence named “Q,” The Q, is an integer array
with 26 indices that record the frequency of each alphabet
occurring in a string. Finally, Q, is stored in a character array,
Q, is stored as an integer, and Q, is stored in an integer array.

(2) For a protein database, CUDA-SWTF scans the entire
database and then records the sequence string and sequence
length for each database sequence, which is stored in the
host memory. All database strings are stored in three one-
dimensional arrays, referred to hereinafter as “D,;” “D;;” and
“D,, respectively. Notably, D, stores all characters of each
database sequence; D; stores the length of each database
sequence in Dg; D, stores the start position of each database
sequence in D,. The sequence length must be shorter than
2,000 characters; owing to that when executing the SW
algorithm, some data must be stored in the local memory;
in addition, local memory size for each thread is limited.
In this step, CUDA-SWf does not construct the frequency
vector for each database sequence; owing to that the database
contains a large amount of sequences and the cost is high
for constructing the frequency vector for each database
sequence on the host (sequentially). CUDA-SWI constructs
a frequency vector for each database sequence on the device
(GPU) when executing the filtration method (run time
filtration method).

Part 2: Implementation of the Frequency Filtration Method
(Device, GPU). Inputs on the host should first be transferred
from the host to the device. Because the query data are used
and not updated, the query string, Q,, query length, Q,,
and query frequency vector, Q,, are stored in the constant
memory. The size of database sequence data (D, D, and D,)
is too large and stored in the global memory.

When implementing the filtration method, assume that
two similar sequences found by SW algorithm may have
a certain number of the same characters. As restated,
counting the different characters can help to filter out the
dissimilar sequences by the enormous difference among
character structures. Counting the different characters for
each database sequence and query sequence is relatively easy;
CUDA-SWf allows a thread to analyze the difference between
the query and a database sequence. To analyze the differences
between query and database sequences, each thread must
construct an FV for a database sequence named “D,” Similar
to Q,, the D, value of each database sequence is also an
array with 26 indices to store the appeared frequency of each
alphabet. Next, counting the sum of the differences between
the number of each alphabet in the D, and Q, allows us to
calculate the differences in their character structure, which is
called frequency distance (FD). Frequency distance refers to
the minimum differences between two sequences. The details
of FV and FD can be found in the literature [19].

Finally, a variable “mismatch percentage (MP)” is avail-
able to determine whether to perform SW comparisons.
Notably, MP refers to the allowed maximum differences
ratio between a query and a database sequence; a small
value implies a strict filter due to the small FD allowed;
otherwise, it implies loose with large FD. When the FD value
between a query sequence and a database sequence is greater
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than MP, it refers to a situation in which the maximum
similarity ratio of these two sequences is not satisfied, and
this database sequence can be filtered out. When the FD
value between a query sequence and a database sequence is
lower than MP, it refers to a situation in which the maximum
similarity ratio of these two sequences may be satisfied, and
this database sequence should make a SW comparison with
the query sequence. An attempt is made to prevent database
sequences from having too long length, which would make
the sequences filtered out due to the large value of FD.
When calculating FD, if D; is longer than Q;, CUDA-SWf
will consider that this database sequence must be compared
with the query sequence by a SW algorithm. In doing so, a
situation can be avoided in which the query sequence is alocal
(partial) sequence of the database sequences.

Part 3: SW Comparison (Device and Host). Following selec-
tion of the frequency filtration method, CUDA-SWf performs
the SW comparison for each selected database sequence
with the query sequence. CUDA-SWf uses a thread to make
a SW comparison that is called intertask parallelization.
To improve the load balance and memory access pattern,
CUDA-SWf moves the selected database sequences to the
host memory before making SW comparisons for sorting
and rearranging the memory pattern for selected database
sequences for two subjects: (i) improved load balance for
each thread in the same thread block and (ii) coalesced
global memory access [17]. In the CUDA programming
model, a thread block occupies the resource of a streaming
multiprocessor (SM) until all threads in the same thread
block complete their computations. To improve the load
balance for interftask parallelism, CUDA-SWf must ensure
that all threads in the same thread block are assigned a similar
length of sequences to achieve a better load balance by sorting
the database sequences to assemble the sequences of a similar
length, as shown in Figure 2. In order to simply the work in
CUDA-SWI, the sorting is performed on CPU. After sorting
the database sequences, CUDA-SWf converts the memory
configuration from the row major to the column major, as
shown in Figure 3 in order to coalesced global memory
access. Therefore, all threads in a thread block can access
sequences in a continuous memory space. During implemen-
tation of the SW algorithm, the alignment sequences must
be stored in the global memory and then moved to the local
memory of a multiprocessor. The Fermi architecture has per-
SM L1 cache and unified L2 cache to service the load/store
to global memory; to maximize the performance of cache
memory, all threads in the same warp should access the
alignment data in global memory to maximize the efficiency
of cache memory.

To output the alignment result by the trace back path,
the original SW comparison must calculate and store the
values in a M x N matrix (M denotes the query length
and N represents the selected database sequence length),
explaining why its space complexity is O(N?), assuming that
M is equal to N. In this work, CUDA-SWf only reports the
similarity score, not alignment result, and does not need
to record the trace back path, explaining why its runtime
space complexity to each thread can decrease O(2N) and
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FIGURE 2: Sorting of the selected sequence to assemble the sequences
of a similar length for an improved load balance.

|

FIGURE 3: Memory patterns of sequences in the global memory.

suitable for using the intertask parallelization. Because each
thread service requires a selected sequence comparison to
perform the query sequence, the shared memory cannot load
all alignment data. CUDA-SWf thus stores the alignment data
of each thread in the local memory. In the Fermi architecture,
it is still efficient to store data in the local memory due to
L1/L2 cache. Notably, performance of the local memory is
not far away from that of the shared memory and is even
better than that of the shared memory when the bank conflict
occurs in shared memory. The SW comparison of each thread
can be divided to three steps: (i) create alignment data: when
the comparison is initiated, each thread must create two
integer arrays A and B, in which size denotes the length of a
selected sequence and stored in the local memory. Owing to
that the size limitation of local memory is 16 KB per-thread
and the maximum length of database sequence is 2,000. (ii)
Row by row comparison: CUDA-SWf can only output the
alignment similarity score. Array A is first assigned the value
of 0 and, then, each row cell can be calculated simultaneously
and the calculated score is stored in array B. Next, the values
in array B are moved to array A. Finally, the next row is
calculated until all comparisons are finished. (iii) Store the
maximum score and final output: when each row comparison
is completed, CUDA-SWf confirms the maximum score and
records it; finally, CUDA-SWI stores the maximum score in
the global memory and, then, moves it to the host memory
and finally outputs the database sequences that are similar to
the query sequence. The flowchart of CUDA-SWT is shown
in Figure 4. The CUDA-SW method is similar to CUDA-SWf
without the frequency filtration method.

4. Results

CUDA-SWf was implemented on NVIDIA Tesla C2050
(G400 GPU) with 14 streaming multiprocessors, consisting
of 448 CUDA cores and 2.5 GB RAM. The host (CPU) is Intel

Host Device

Load database
Load query

Sort database
Find max

Program by C

Scoring matrix

Part 1 Part 2

Filter sequences

Smith-Waterman

Part 3

i

Program by CUDA

FIGURE 4: Flowchart of CUDA-SWI.

Xeon E5506 2.13 GHz with 12GB RAM running on Linux
operation system. The protein sequence database was human
protein database downloaded from NCBI (http://www.ncbi.
nlm.nih.gov/); the query sequences were selected from the
HINI virus database from the Influenza Virus Resource from
NCBI (http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.ht-
ml). The testing data sets include the following: (1) 32,799
protein sequences of human with an average length of 555 as
the database, and (2) HINI virus protein sequences that were
randomly selected from the NCBI HINI virus database, and
the length brackets are 100, 200, 300, 400, 500, 600, and 700
as query sequences. After deleting the protein sequence with
length larger than 2,000, there are 32,133 human sequences
used in the following tests. The gap open penalty was set to
10.0; the gap extension penalty was set to 2.0; the scoring
matrix was BLOSUM62. Next, the MP was set to 10%, 30%,
50%, and 100%, implying the number of different characters
between query sequence and database sequences. When the
MP is set to 100%, it means that no filtration method is used
in CUDA-SWT. The number of threads in a thread block is set
to 128; the number of thread blocks depends on the number
of sequences that must be compared with query sequences.

Table 1 shows the overall computation time of CPU
version of SW algorithm, CUDA-SW, and CUDA-SWf for
human protein database and HINI virus sequences under
various query sequence lengths with MP of 10%. The overall
computation time of CUDA-SWHT is the sum of computation
time in each part. Table 1 indicates that the proposed
frequency filtration method can reduce up to 46% of the
computation time by filtering out the database sequences in
which the minimum different ratio exceeds 10%. Besides,
there are two observations in Table 1. First, the computation
time increases when the query sequence (HIN1 virus) length
increases. The time complexity of SW algorithm is propor-
tional to the query sequence length. Second, the improved
ratio increases when the query sequence length increases. The
reason is that the number of filtered database sequences is few
when the query sequence length is short. When the query
sequence length is short, most of database sequences have
larger length than it, and they should make SW comparisons
in Part 3 of CUDA-SWH.
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TABLE 1: Overall computation time of CPU version of SW algorithm, CUDA-SW, and CUDA-SWf with MP (10%).

HINI virus query CPU version of SW CUDA-SW CUDA-SWf Improved ratio

sequence length (bp) (second) (second) (second) (CUDA-SWf versus CUDA-SW)

100 49.91 6.79 6.68 1.62%

200 97.84 7.04 6.25 11.22%

300 145.6 7.27 5.71 21.46%

400 193.62 7.52 5.02 33.24%

500 243.56 777 4.71 39.38%

600 293.43 8.02 4.52 43.64%

700 343.31 8.29 4.48 45.96%

Table 2 shows the overall computation time of CUDA-
SW for human protein database and HIN1 virus sequences
under various MPs with the query length of 700. Table 2
indicates that the number of selected database sequences
decreases when the MP decreases. When MP is 100%,
there are 32,133 human protein sequences selected to make
following SW comparisons; when MP is 10%, only 21.8% of
32,133 human protein sequences can be selected. Therefore,
the computation time of CUDA-SWT is reduced from 8.27 to
4.4 (near to 47% improved ratio). When doing the filtration
method, extra computation time is needed for CUDA-SWf
to construct FV and calculate FD for each database sequence
and sorting database sequences on the host. From Table 2, the
best score can be found by CUDA-SWf under various MPs. It
implies that the frequency filtration method in CUDA-SW is
suitable for database search problem. Besides, in Table 2, the
worst score found by CUDA-SWf when MP is 10% is closer
to that when MP is 100%. This phenomenon indicates that
a selected database sequence with low FD may have large
difference to a query sequence. Therefore, the FD can be used
to filter out the dissimilar sequences; however, it cannot be
used to determine the similarity score.

Figure 5 shows the speedup ratio of CUDA-SW and
CUDA-SWIf by comparing with CPU version of SW algo-
rithm for Human protein database and HIN1 virus sequences
under various query sequence lengths with MP of 10%. From
Figure 5, the speedup ratios of CUDA-SW range from 7x
to 41x; the speedup ratios of CUDA-SWf range from 7x to
76x. The improvement is significant when the query sequence
length is larger than 400 due to large number of database
sequence filtered out.

For the user interface, this work constructs a workbench
for CUDA-SWf with QT Creator 2.4.1 (http://qt.nokia.com/
/products) on Ubuntu 10.04.1, as shown in Figure 6. As a
cross-platform application framework, QT is used to design
the same Ul for different operating systems then through
a network, which transfer the input data to a cloud server.
Figure 6 reveals 7 steps to run the CUDA-SWf method.

Step 1 (select the scoring matrix). Notably, the scoring matrix
is needed when doing the SW comparison. Five matrices
are provided in this work: Blosum50, Blosumé62, Blosum80,
PAMI100, and PAM250.

TaBLE 2: Overall computation time of CUDA-SWf with query
sequence length (700).

Number of Differences Differences CUDA-SWf

MP selected database
(worst score) (best score)  (second)

sequences
100% 32,133 3,542 1,169 8.27
50% 17,913 3,542 1,169 5.77
30% 8,578 3,536 1,169 4.63
10% 7,007 3,525 1,169 4.4

Speedup ratio

100 200 300 400 500 600 700
Query sequence
B CUDA-SW
B CUDA-SWf

FIGURE 5: Speedup ratio of CUDA-SW, and CUDA-SWf with MP
(10%).

Step 2 (select the gap penalty). Users can select the desired
penalty. The open gap penalty range is 5~20, and the gap
extension penalty range is 0~10.

Step 3 (select query sequence). Users select a sequence as a
query sequence. If a new query file is available, a new file can
be created using File(F)->New(N).

Step 4 (select the database). A database can be selected or
created by the button “Create FV file” Users can download
the database from NCBI. Also, a new database can be created
using the button, in order to implement the frequency
filtration method. This button creates two files: the first one
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F1GURE 6: Workbench of CUDA-SWH.

is the new database sorted by length; and the second one is
the FV file by the new database file.

Step 5 (select the filter ratio (MP)). Filter ratio can allow
users to determine how strict the CUDA-Swf is used with
the filtration method. Users can choose from 10% ~100%.
10% refers to the sequences with those with more than 90%
similarity to be computed.

Step 6 (select the FV file). Users select the FV file to be created
at Step 4, which helps to execute the frequency filtration
method.

Step 7 (execute CUDA-SWf). Two modes can be selected,
CPU or GPU. GPU version requires CUDA. Following their
execution, the result window is shown (Figure 7). The empty
text line displays a message with some errors.

The workbench for CUDA-SWIF is freely available to
download at http://163.25.101.18/~ppcb/main/research/CU-
DASWEhtml.

5. Conclusions

This work designs and implements a novel CUDA-SWf
method to solve the Smith-Waterman database search prob-
lem with a frequency-based filtration method and CUDA.
The proposed method focuses on the intratask parallelization
to calculate the frequency distance and perform Smith-
Waterman comparisons on a single GPU. Experimental
results demonstrate that the proposed CUDA-SWf method
achieves up to 76x speedup ratio under a single GPU for the
computation time. Moreover, CUDA-SWf can improve the
computational time by up to 41% than CUDA-SW without
the frequency filtration method. These results demonstrate
that CUDA-SWT can accelerate the Smith-Waterman algo-
rithm on GPUs, and the novel idea is still worth to be

=)

FIGURE 7: Result window of CUDA-SWH.

designed and proposed in order to enhance the performance
of CUDA applications.
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