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A B S T R A C T   

Starting from historic reflections, the current SARS-CoV-2 induced COVID-19 pandemic is examined from various 
perspectives, in terms of what it implies for the implementation of non-pharmaceutical interventions, the 
modeling and monitoring of the epidemic, the development of early-warning systems, the study of mortality, 
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Emphasis is placed on how the pandemic had led to unprecedented speed in methodological and clinical 
development, the pitfalls thereof, but also the opportunities that it engenders for national and international 
collaboration, and how it has simplified and sped up procedures. We also study the impact of the pandemic on 
clinical trials in other indications. We note that it has placed biostatistics, epidemiology, virology, infectiology, 
and vaccinology, and related fields in the spotlight in an unprecedented way, implying great opportunities, but 
also the need to communicate effectively, often amidst controversy.   
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1. Introduction 

We have to return to 1918, the time of the H1N1 influenza pandemic, 
the Spanish flu, to encounter a health crisis that had to be confronted 
without adequate medicinal products, prior to even the concept of 
vaccination, poor scientific knowledge (viruses had not been discov-
ered), and with little or no historic registration or surveillance data 
available [110]. 

Arguably, such an invasive health crisis has a profound trans-
formational impact on virtually all aspects of society. Spinney [110], in a 
chronicle of the Spanish flu, asserts that this 1918 pandemic, responsible 
for a death rate in the order of magnitude of 100 million people (rescaled 
to today’s world population; directly or because of induced comorbid-
ities, in particular also bacterial infections), was at least equally im-
pactful as both world wars for shaping the world as we have known it 
until the end of 2019. It is interesting from a historic perspective, and 
crucial in understanding today’s evolution, to examine how the Spanish 
flu impacted society (politics and geopolitics, social relationships, eco-
nomic power, etc.). Unquestionably, the SARS-CoV-2 induced COVID-19 
epidemic holds the same disruptive power. Our focus is on how such a 
global public health crisis transforms clinical research, and in particular 
epidemiological, (bio)statistical and clinical trials research. 

It is insightful to remember that, at the onset of Spanish flu, scientists 
thought that it was bacterial, before it catalyzed discovery and then the 
study of viruses and their induced ailments. In more traditional com-
munities around the world, religious, cultural, (e.g., Confucian) or even 
environmental explanations were given (such as miasma or bad air). 
Spanish flu was often confused with bacteria-induced typhus, also 
known as typhus fever. In the absence of proper diagnostic testing, the 
occurrence of typhus was confirmed as soon as the characteristic rash 
occurred. Other than that, milder cases of the Spanish flu were hard to 
set apart based on the symptoms they induced. For severe cases, there 
was less doubt (e.g., due to partial or full-body dis-coloring), but by that 
time it was usually too late. While the details are different, the broad- 
brush similarity between 1918 and 2020 is striking [40]. 

The post-Spanish flu public health world looked very different from 
what it was before. The importance of hygiene to fight and prevent 
disease had been understood since the seminal contributions of Florence 
Nightingale and the key discoveries of Louis Pasteur regarding bacteria. 
A key factor had been the discovery of penicillium and eventually an-
tibiotics. This brings to the fore two important ways to confront in-
fections: hygiene as an archetypical non-pharmaceutical intervention 
(NPI) [4,10,44,56] and antibiotics as an essential example of a phar-
maceutical intervention (PI). But, for the Spanish flu, antibiotic devel-
opment was in its infancy (arsphenamine, discovered by German 
physician Ehrlich in 1909, was used for syphylis at the time), which 
remained the case until the discovery and mass production of penicillin 
during WWII. More importantly, antibiotics do not work for viral in-
fections. While a century ago the world was less globalized than it is 
now, the mass movement of people due to WWI, but also transatlantic 
vessels, offered transmission opportunities to H1N1; our hyper- 
interconnected world did the same for SARS-CoV-2. 

This meant that Spanish flu had to be tackled with a variety of NPIs 
and some PIs, including social distancing, facial masks, quarantining 
after improvements in diagnosis, and more adequate treatment for 
H1N1-induced pneumonia. Eventually, likely already in 1919, the virus 
mutated to a less lethal strain, a typical competitive advantage for a 
virus, even though the mutation between Spring and Fall 1918 was 
uncharacteristic: the virus became more lethal over the summer, causing 
a horrendous second wave of infections [110]. 

It was clear in 1918 that little or no records, apart from anecdotal 
evidence, were kept about past influenza epidemics. Fast forwarding to 
2020, arguably influenza is properly understood, from a viral, epide-
miological, epidemic modeling, and vaccination standpoint. National 
and international surveillance is well developed, e.g., to determine the 
components of the upcoming season’s influenza vaccine and to monitor 

the emergence of strains with pandemic potency [61]. We have to admit, 
though that, even though SARS-CoV-1 and MERS-CoV provided a 
wakeup call, data on coronavirus induced pathology, in contrast, are 
rare. Vijgen et al. [129] suggest that the Russian flu of 1890 was the 
birth of hCoV-OC43, rather than H2N2, the 1957–1958 influenza 
pandemic in East Asia. 

Like H1N1, also SARS-CoV-2 induced a sense of urgency and mobi-
lized societal, political, and research forces that are in non-pandemic 
periods unheard of, except in wartime and in the face of catastrophes 
such as a financial meltdown. On March 10, 2020, Tomas Pueyo, a 
product and marketing leader at Course Hero, addressing politicians, 
wrote on medium.com: “The coronavirus is coming to you. It’s coming at 
an exponential speed: gradually, and then suddenly. It’s a matter of 
days. Maybe a week or two. When it does, your healthcare system will be 
overwhelmed. Your fellow citizens will be treated in the hallways. 
Exhausted health care workers will break down. Some will die. They will 
have to decide which patient gets the oxygen and which one dies.” While 
it sounded alarmist to some, it has proven an accurate vision for coun-
tries and regions in all continents except Oceania. 

The combined fields of biostatistics, epidemiology, survey science, 
and clinical trials research, in close collaboration and at the service of 
virology, immunology, and infectiology, contribute towards the 
following broad areas: understanding the virus and its dynamics by 
extending and reformulating existing mathematical and statistical 
models and used to estimate key epidemiological parameters (e.g., basic 
reproduction number, incubation period, serial interval, generation in-
terval, etc.); studying the immunological response to SARS-CoV-2 
exposure, including the determination of the (sero-)prevalence in the 
population, T-cell mediated and humoral immunity responses, and po-
tential cross-immunity; monitoring the global pandemic and its epi-
demics (country-wide, regional, city specific) by observing a set of 
characteristics and using a variety of modeling tools; gathering addi-
tional information by way of (longitudinal) survey sampling to gauge 
the epidemiological effect as well as the societal side effects (social and 
economic) of NPIs; making short-, medium-, and longer-term pre-
dictions – in view of monitoring health care capacity in early phases, NPI 
exit strategies, and the building of lines of defense towards surveillance 
in the post-peak period; contributing to clinical research for the devel-
opment of diagnostic tools, antiviral medicinal products, and vaccines. 

Every one of these areas has seen tremendous and rigorous scientific 
development in the pre-pandemic era, both theoretical and applied. In 
that sense, the body of knowledge in 2020 cannot possibly be compared 
with the fragmented knowledge in 1918, and still, the knowledge about 
key aspects (seasonality, immunity, prevalence) is partial and specula-
tive at best. The field of mathematical and statistical modeling of in-
fectious diseases is well established [5,54,55] as is, of course, 
epidemiology and clinical trial methodology. When a pandemic sud-
denly breaks out, all of these areas are strongly forced to collaborate, 
whereas scientific areas, even within medicine, tend to be compart-
mentalized. Researchers in the same field across the globe should work 
together. In addition, time is of the essence, so that certain principles 
need to be relaxed out of necessity, while others stand like a rock. A 
natural consequence for the need and willingness to collaborate is 
making available all potentially relevant data and an uncompromised 
commitment to an open access policy. We return to this key lesson in 
Section 11. Note that the need for open access to data should be paral-
leled by an open access to code in order to harness the power of the 
Internet and make research efficient on a worldwide scale. 

A sobering thought is that, in spite of all of this knowledge, at the 
outset, all one can do is enlist the key questions that emerge and quickly 
report early but key findings [21,43,49,64,91,132] 

An epidemic, or even pandemic, of a different nature was the HIV- 
induced AIDS epidemic [15,23]. Confronted with a lethal viral infec-
tion that affected predominantly younger people and hence led to a 
considerable number of life years lost, a massive response ensued, with 
large academic and collaborative AIDS research groups formed around 
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the globe, predominantly in the United States (e.g., the AIDS Clinical 
Trials Group). It led to the acceptance of placebo controlled trials with 
frequent interim analyses overseen by an Independent Committee [14]. 
Also, coerced by the ‘fourth player’ (i.e., the patients and their advocacy 
groups, next to the three other players: regulators, industry, academia), 
co-enrolment in several trials simultaneously was grudgingly accepted, 
but arguably led to the development of highly active anti-retroviral 
therapy (HAART; [23]). Undoubtedly, it dynamized the clinical 
research community and arguably paved the way for dynamic treatment 
regimes and a new emphasis on personalized medicine. It is evident that 
any deviation from standard practice poses methodological challenges 
that may be partially addressed during a crisis. A WWII example thereof 
is Wald’s development of the sequential trial framework: there simply 
was no time for the established rigorous but slow industrial quality 
control processes [131]. The new paradigm proposed by Wald led to 
further developments that continue to influence clinical research today 
[116]. 

The current pandemic, just like the earlier ones, shows the need to 
trust the good faith of experts, and the good intentions of health pro-
fessionals, rather than build onerous and time-consuming systems that 
are premised on the possibility of fraud and misbehavior. It is instructive 
to point out that the position of science and scientists was questioned in 
1918 as well as today. Some referred to a “totalitarian system of science” 
[110]. It is natural that the position of biomedical science and its 
biostatistics and epidemiological counterparts is debated because 
seldom are they so prominently present in the public debate. To un-
derstand this, note that an epidemic is somewhat archaically referred to 
as a “crowd disease” [50]. It is natural to consult a physician for an 
ailment and, the more severe the condition, the more a patient is willing 
to accept side effects, as long as there is a sufficiently strong therapeutic 
effect. In fact, this is not different in a crowd disease. In the absence of 
PIs, the NPIs are society’s only therapeutic class. Prescription, dosing, 
and monitoring of side effects then becomes a societal responsibility, 
where expert advice is blended with policymaking by mandated politi-
cians, and with input from advocacy groups. 

2. Epidemiological background 

The biomedical and public health community, as well as the world 
population, have quickly been learning crucial lessons about SARS-CoV- 
2 and COVID-19. To date, several aspects, though, remain uncertain or 
simply unknown. 

It is useful to briefly review some basic concepts of infectious disease 
modeling. While more complex models for COVID-19 are undoubtedly 
more appropriate to account for heterogeneity related to gender and age 
(in relation to social contact behavior, acquisition of infection, infec-
tivity per average person, symptomatology of infected individuals and 
corresponding risks of hospitalization as well as subsequent mortality 
risks), spatial heterogeneity, and/or variation in risks due to societal 
position, the so-called basic Susceptible-Infected-Recovered (SIR) 
compartmental model provides a reasonable starting point (see,e.g., 
[55]). Although simplistic in the face of the current epidemic, the SIR 
model does contain the essential ingredients. Abrams et al. (2020) have 
developed a much more elaborate model, i.e., an age-structured, sto-
chastic model, tailored to the dynamics of SARS-CoV-2 transmission and 
the subsequent human response upon contracting the disease, both at 
the level of the symptomatology as well as in terms of humoral immunity 
responses within hosts [1]. In the basic SIR model, at any time t ≥ 0, the 
population is divided into three fractions or compartments: S(t) repre-
sents the susceptible fraction, I(t) is the infected (and infectious) frac-
tion, and R(t) is the recovered fraction (immune survivors and 
potentially deaths). The initial states are S(0), I(0), and R(0). Flows of 
individuals between these states can be described using (ordinary) dif-
ferential equations. The model is further influenced by two critical 
numbers: the recovery rate k, and the basic reproduction number R0. 
While R0 is an implicit model parameter, the force of infection, i.e., the 

instantaneous rate at which susceptible individuals become infected, 
determines the basic and time-varying effective reproduction numbers, 
together with the recovery rate, through the so-called next generation 
matrix, providing information about the next generation of infected 
individuals resulting from a single typical infected individual. 

This basic model is rigid in that it assumes homogeneous (random) 
mixing within the population, and requires the population to be a closed 
system. In reality, as in Abrams’ model, a population consists of various 
subgroups, or silos, with different behaviors (such as different levels of 
social contacts), and borders in a country like Belgium are merely 
administrative lines between neighboring countries [1]. Also, the three- 
fraction system is often too simple. For SARS-CoV-2, we need to add an 
exposed state in which exposed individuals are not yet infectious while 
viral load is gradually building up, a pre-symptomatic compartment in 
which individuals are able to infect others even though they do no have 
symptoms yet, and compartments including asymptomatic individuals 
and individuals with mild symptoms, severely ill, hospitalised, and 
intensive care unit (ICU) admitted persons. Recovery and death are 
ideally kept separate as well. Such an elaborate model is essential if it is 
to be used against the background of the hospital capacity available, and 
to gauge the death toll. 

Consider now the reproduction number R0, defined as the average 
number of susceptible individuals infected by a single typical infected 
individual during his/her entire infectious period, at least in a fully 
susceptible population. There is a whole world “not” captured by a 
single R0 value. First, it may depend on the initial population charac-
teristics (age distribution, geographical spread], etc.). Second, as time 
evolves and S(t) depletes, the effective reproduction number Re is more 
relevant. The basic reproduction number as a measure of trans-
missibility of a pathogen is very different for seasonal influenza, where it 
is usually around 1.5, as compared to COVID-19, where it is estimated 
around 2.5 without medication or vaccines, and without NPIs. For an 
overview of COVID-19 related R0 estimates, see Abrams et al. (2020) 
[1]. An early estimate for COVID-19, based on the Wuhan outbreak, can 
be found in Zhou et al. [142]. As is now everyday knowledge, R0 < 1 
(and Re < 1) implies dampening of the epidemic, whereas with R0 > 1 
(and Re > 1) it picks up until immunity is sufficiently widespread or the 
susceptible reservoir is depleted. Depending on R0 and the generation 
interval (time between infection events in an infector-infectee pair, see 
[47]) building up immunity can be a lengthy process, even if no in-
terventions are implemented, which we seem to see with the current 
pandemic. Moreover, uncertainty surrounding the nature and extent of 
immunity is considerable, because humoral immunity seems to wane 
over time and the role of T-cell immunity is yet to be studied in more 
detail. 

At the onset of the Wuhan outbreak, there was considerable uncer-
tainty regarding key epidemiological parameters, in particular R0, but 
also the associated (case and infection) fatality rate. We now know that 
both R0 and the infection fatality rate (IFR) are relatively high, the latter 
being highly variable with age. Although highly dependent on the 
population under study, some additional examples of R0 values from 
other infections: measles (R0 ≃ 15), mumps (R0 ≃ 5), SARS (R0 ≃ 2.5). 
See Riccardo et al. [101], Chowell et al. [27], and He et al. [53]. 

Several other quantities are of epidemiological interest: infectious 
period (roughly about a week, versus a few days for influenza); age- 
specific contact rate (the typical number of social contacts of a certain 
type a member of the population has, see [55]); mode of transmission 
(for COVID-19, the mode of transmission was established early as 
airborne droplets, but this mode was later supplemented with others); 
probability of transmission upon a contact between a susceptible and 
infectious individual; shedding of viral load depending on the severity of 
symptoms; contribution of children to the infection process; high-risk 
contacts and their influence on disease dynamics (e.g., superspreading 
events). The infectiousness is strongly person-dependent (cf. the so- 
called superspreaders) and here secondary transmission via the 
airborne route is key, i.e., via aerosols [26,62]. 
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A key population characteristic is the contact rate, i.e., the frequency 
and intensity of physical social contacts between population members. 
The number and intensity of social contacts is not a constant. There are 
group- and individual-specific aspects to the contact rate and, impor-
tantly, it can be modified. During the time frame without PIs, modifying 
the contact rate and intensity (briefly or for a very extended period of 
time) is essentially the only option available. 

For a variety of reasons, describing and predicting a real-life 
epidemic curve may be very difficult. As the pandemic has been 
unfolding, the country and state specific epidemic curves take about any 
possible non-linear shape (https://coronavirus.jhu. 
edu/data/new-cases-50-states), underlining the importance 
and extent of heterogeneity in infectious disease dynamics. 

2.1. The non-pharmaceutical intervention period 

Let us turn to the three possible strategies to modify the aforemen-
tioned contact rate, because when the house is on fire, and neither 
medicinal products nor vaccines are yet available, NPIs are all that one 
has got. 

The first strategy is suppression. It essentially means that the 
reproduction number is forced below one by imposing severe contact 
restrictions at the population level, as was done in China outside of 
Hubei (in Hubei, where the Chinese authorities were taken by surprise, 
this was at first not possible). Of course, a large fraction of the popula-
tion is then kept in the susceptible state and hence they do not contribute 
to the build-up of herd immunity. As a consequence, measures should be 
put in place to avoid the epidemic from flaring up after measures are 
relaxed, while monitoring very effectively so that, if it does, suppression 
measures can be enacted again. Clearly, China is in this situation, and 
will be until vaccines and medication are available. Cheap, widespread, 
sensitive and specific diagnostic tools help maintain control, potentially 
supported by electronic means such as smartphone apps, as well as 
contact tracing and isolation [57]. Needless to say, international travel 
in and out of susceptible regions is and remains problematic. 

Suppression is only possible when the viral spread is radically sup-
pressed at an early stage, however, SARS-CoV-2 has stealth character-
istics. Its incubation period is relatively long, with a very infectious 
period near the end of the incubation period [67]. To aggravate matters, 
there is a large fraction of pre-symptomatic and asymptomatic but in-
fectious cases (possibly 40–50%, although estimates vary widely and 
could be even higher). These characteristics, combined with a high 
reproduction number, make the epidemic resemble a bush fire: one 
match is sufficient to ignite it, after which the fire starts to spread at 
ground level, invisible to the naked eye until it suddenly evolves in an 
all-out fire. For this reason, in Europe, suppression was not a viable 
option after the initial outbreak in Northern Italy. 

The second strategy is mitigation [113]. This was practiced by about 
all European countries during their first wave, to more (Italy, Spain) or 
lesser (Sweden) degrees. Here, measures are taken to bring the repro-
duction number down, such as reducing the number and nature of social 
contacts to a pre-specified level, so that the epidemic is slowed suffi-
ciently and the number of critically ill cases at any time can be handled 
by the health care system. The difference between suppression and 
mitigation is that the latter aims to build up herd immunity, in such a 
way that the health care system is able to cope. It can be supplemented 
by a temporary capacity increase of the system (e.g., field hospitals, 
annexes to existing hospitals). 

The third strategy, or perhaps absence thereof, is counting solely on 
herd immunity [97]. Generally, it will typically produce a shorter 
epidemic than with mitigation, and afterwards the population will be 
immune at population level. That is, the fraction of recovered people 
(immune for a certain time, e.g., the rest of the season) will be large 
enough, i.e. above the critical threshold, so that the re-emerging virus 
will not find enough susceptible population members to push the 
reproduction number above one, and the epidemic will soon decrease 

and become seasonal (where transmission is typically increased during 
winter months, as it is for influenza virus and other, more benign, 
betacoronaviruses, such as hCoV-OC43). 

It was anticipated, early March 2020, that mitigation in a country or 
region would lead to a population with roughly 30% of recovered, hence 
immune, members, whereas herd immunity could lead to 60–70% im-
munity, at least in the absence of clusters [13]. The latter is sufficient to 
prevent further outbreaks, or to ensure that they would be short-lived. 
That is, provided that immunity is sufficiently strong and sufficiently 
long-lasting. Unfortunately, none of this has played out as anticipated. 
Sero-prevalence has been building up depressingly slowly [58]. In 
Belgium, sero-prevalence was estimated at roughly 3% by the end of 
March, 6% mid-April, 7% mid-May, and back down to 6% and 5% in 
early June and July, respectively. This points to waning of IgG anti-
bodies, after their discovery has been ridden between a long delay in 
onset of detectability [11] and relatively poor sensitivity. At the time of 
writing, this suggests that other aspects of immunity, such as T-cell 
immunity, need to be scrutinized [3]. 

A key limitation to herd immunity strategies is the high fraction of 
critically ill patients, leading to overburdening of the health care system, 
and the high IFR [88]. In the Belgian non-nursing home population, the 
IFR is about 0.4%, but this figure masks the strong age gradient, with an 
IFR close to 0% in the population under 25, but rising to 2.5% in the 85+
population outside of nursing homes, and to 35% for the 85+ in nursing 
homes. Not surprisingly, the death toll in nursing homes is very large 
(two thirds of the nearly 10,000 COVID-19 related deaths in Belgium are 
among nursing home residents). This has been observed in a large 
number of countries around the globe [32]. The death toll has been 
quoted as an argument for why lockdowns and other NPIs are un-
avoidable. In Europe, an estimated 3 million deaths have been avoided 
by lockdown measures [46]. For Belgium, this boils down to a figure 
between 50,000 (with a coping health care system) and 250,000 (for a 
strongly overwhelmed health care system). 

How to proceed with the mitigation strategy when the peaks in the 
relevant curves lie in the past? Given the large reproduction number 
(super-spreading virus combined with a long infectious period), relax-
ation of NPIs needs to be done with utmost care. Re-emergence of the 
epidemic is likely as the virus will have built up reservoirs already. 
Reservoirs take the form of animal species that harbor the virus during 
time periods when there is no human epidemic(e.g., geese and pigs in 
the case of influenza). Changing tactic and opting for herd immunity is 
extremely difficult because it would undo the effects of NPIs, including 
the hardships they will have induced. It is only a viable strategy if 
supplemented with sufficiently promising PIs (antiviral medication and 
vaccines). While pharmaceutical breakthroughs are happening at an 
unprecedented speed, it is unrealistic to expect major relief from this end 
in less than a year. It is more realistic to move towards suppression, or a 
combination of mitigation and suppression when the epidemic is suffi-
ciently under control, i.e., when the number of new infections falls 
below a certain level. At that point, contact tracing and quarantine 
measures, needed for suppression, become a viable strategy, supported 
by increased reliability and capacity of diagnostic testing, the use of 
electronic tracing (e.g., based on apps) in addition to human tracing (by 
infectiologists and health inspectors). A final but extremely important 
aspect is whether or not contact between populations will be possible in 
periods when there are no peaks or outbreaks. The answer is that this 
could well be detrimental. Not only is travel itself a risk factor, as is clear 
from the early introductions around the globe, but contact between 
populations in different epidemic stages is complex. China’s cautious 
protection of its borders after its initial peak, as well as Europe’s initially 
prudent but now complex international travel situation, even within the 
Schengen zone of the European Union, are cases in point. 

Inevitably, new outbreaks will keep emerging until immunity is 
sufficiently widespread or adequate vaccines are available. Antivirals 
will not stop this but may prove important in turning mitigation stra-
tegies into a success [117]. Note that this provides an interesting link 
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between NPIs and PIs, between mathematical modeling and the 
outcome of successful clinical trials. 

The seasonality of COVID-19 (and its successors in subsequent years, 
i.e., COVID-20, etc.) is poorly understood at this point, although Kissler 
et al. [72] provide useful predictions, based on knowledge from coro-
naviruses OC43 and HKU1. Corona virus-induced diseases (typically but 
not exclusively, common cold) are seasonal, but less so than, for 
example, influenza. Kissler et al. [72] report that outbreaks are possible 
at any time of year, with more acute outbreaks in autumn and winter. 
Depending on the extent of (non-permanent) immunity, either annual or 
biennial outbreaks are more likely. Other scenarios would be possible if 
immunity is lifelong (i.e., outbreaks in cycles of 5 years or more). Also, 
cross-immunity with other betacoronaviruses HCoV-OC43 and HCoV- 
HKU1 will play an important role in temporal SARS-CoV-2 dynamics. 

3. Modeling and monitoring the epidemic 

3.1. Modeling 

Jewell [66] underscores the importance of high-quality mathemat-
ical and statistical models for epidemics. Using such models, key 
epidemiological quantities are estimated: numbers of infected cases, 
hospitalizations, people in ICU, and deaths. Some models also permit 
short-term, medium-range, and long-term predictions, and allow to 
examine how such quantities change with changing human behavior 
and measures taken, such as social distancing, face masks, hygiene and, 
eventually, vaccination programs. 

It is useful to cast predictions according to a variety of scenarios, to 
inform policy makers, other scientists, and the public opinion. Each 
model has its strengths and pitfalls, and simultaneously considering 
various models strengthens prediction. Some models operate at macro 
level (e.g., to study the number of cases in the population of an entire 
country), while others operate regionally or locally. Models are 
informed by data, mathematical infectious disease theory, and as-
sumptions. Each model provides a piece of the jigsaw puzzle, and it 
requires a good amount of expertise and skills in infectious disease 
modeling to lay the entire puzzle. 

Model uncertainty and sensitivity analysis must accompany every 
modeling effort. Models, no matter how refined, will never be able to 
capture every detail of human behavior. In fact, there are striking ex-
amples of models that were poorly predictive because they ignored 
behavioral aspects, such as the need for college students to gather and 
party [24]. Also, important epidemiological quantities, such as the ones 
referred to earlier, are (typically) fully unknown at the onset of a 
pandemic. Over the first half year of the crisis, several quantities have 
been estimated with increasing precision, though sometimes with hic-
coughs (e.g., the length of the pre-symptomatic period). Others, such as 
seasonality, remain hazy. The determination of immunity has been a 
roller coaster of progressing insight (see Section 5). 

In a growth model, such as a logistic [127] or Richards model [102], 
hospital admissions, number of tests, etc. are used to compute how the 
spread of the virus evolves over time. This approach lends itself natu-
rally to estimating how the growth factor of the epidemic changes ac-
cording to measures taken, or under the influence of a changing testing 
strategy. 

Transmission trees aim at mapping the chain of infections among 
people [54]. One examines the genetic similarity of the virus among 
people or one makes use of contact tracing. For COVID-19, contact 
tracing was applied at the onset of the epidemic to find out in which 
region a person could have been infected. As the epidemic in March 
2020 gained strength and the number of infected people increased, 
contact tracing was no longer feasible in Belgium. However, it is 
considered a vital component of a suppression strategy for second and 
later waves. Transmission trees are helpful to estimate key characteris-
tics of SARS-CoV-2, such as the basic and effective reproduction number, 
and the generation interval, i.e., the time lapse in a so-called infector- 

infectee pair, the serial interval, i.e., the time between symptom onset in 
the infector and in the infectee, and the incubation period. Based on 
COVID-19 data from China and Singapore, Ganyani et al. [47] were able 
to show that R0 is larger when estimated from the generation interval as 
compared to the serial interval, pointing for the first time to pre- 
symptomatic infections, its associated risks, and implications for an 
exit strategy [28][94] 

A meta-population model is a robust, large-scale model, that allows 
to incorporate people’s mobility. It divides the population into groups 
based on age category, residence, etc. Each of these groups follow an 
underlying mathematical model for the spread of the epidemic. Such a 
model assigns people to the various compartments (susceptible, 
exposed, infected, recovered). By mimicking interaction between such 
groups according to various scenarios (e.g., little or a lot of contacts with 
people outside the household, little or more mobility between towns, 
etc.), it is possible to predict how the number of infected people changes 
over time, in the short run as well as over longer time intervals. 
Important sources of information are the number and the nature of so-
cial contacts of people in various age categories, the mobility patterns of 
people in different regions, etc. 

An individual-based model, based on the number of hospitalizations, 
performs well in terms of (1) describing the spread of the disease, and (2) 
examining the consequences of relaxing the measures taken, i.e., 
candidate exit strategies. In such a model, each individual is assigned to 
a family, a school category, type of workplace environment, and the 
population at large. This assignment is guided by data available from 
school registries as well as employment data. The model mimics 
behavior of individuals on a day-by-day basis. It accounts for changes in 
behavior on weekend days relative to weekdays, during holiday periods 
and, importantly, also as a result of measures taken, such as school 
closure and reduced social contacts. When investigating the conse-
quences of exit strategies (e.g., reopening of schools and certain work-
places), the team also examines the added value of household bubbles (i. 
e., a combination of members from multiple households, matched to 
have a similar structure in terms of age, composition, etc.), allowing 
repeated contacts within bubbles and lensuring a reduction in 
community-level mixing, and contact tracing to monitor and avoid new 
infections. 

Although simple deterministic compartmental models, such as the 
basic SIR model introduced previously, have been used in the initial 
phase of the pandemic, making an abstraction of some of the important 
properties of both the pathogen as well as the infected host, an addi-
tional layer of complexity is of utmost importance to incorporate in 
order to adequately describe the dynamics of COVID-19 and to make 
reliable predictions of the future course of the epidemic. As more and 
more evidence has been accumulating throughout the progression of the 
pandemic, it became clear that age-specific differences exist in suscep-
tibility to infection, infectiousness upon infection, probability of being 
symptomatic and disease severity, thereby leading to large differences in 
hospitalization and mortality risks upon contracting SARS-CoV-2. 
Research groups with ample of experience in infectious disease 
modeling were well equipped to expand and refine existing models for 
disease spread to account for such complexities. In a Belgian context, an 
individual-based model (STRIDE) previously developed for influenza 
[48,75,136] was adapted to describe COVID-19 dynamics in the Belgian 
population, a meta-population model accounting for mobility patterns 
was adapted to study the impact of exit strategies in the aforementioned 
setting [28] and a stochastic age-structured compartmental model was 
designed and specifically tailored to the spread of SARS-CoV-2 following 
earlier though related work on asymptomatic infections and their role in 
disease spread [104]. On top of that, preparedness after previous epi-
demics, such as but not limited to the Ebola virus epidemic in West 
Africa (2013–2016), and experience in modeling infectious disease dy-
namics under pressure allows one to go beyond the application of simple 
models. Complexities imposed by intervention measures taken, such as 
stringent lockdown measures, and their impact on social contact 
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behavior, pose additional challenges for modeling. Consequently, there 
is a need to directly relate the spread of the disease to social contact 
behavior and to inform transmission rates using social contact data. All 
of the approaches mentioned before (Individual-based, meta-population 
and stochastic models) rely on such social contact data, besides other 
sources of information, to calibrate and relate these models to the given 
epidemiological situation. Needless to say, model outputs and pre-
dictions require continuous fine-tuning and validation. Long-term pre-
dictions, while very useful [72] should be seen as plausible scenarios at 
best, that demonstrate the impact of assumptions and variations in 
behavior. 

A collection of the aforementioned statistical and mathematical 
models developed by the team at the Universities of Hasselt, Antwerp 
and Leuven in Belgium can be found at www.simid.be and 
https://www.uhasselt.be/dsi-covid19-en. While not always 
obvious, there are clear links between statistical and mathematical 
modeling of the epidemic, and COVID-19 clinical trials research. A 
convincing illustration is found in Torneri et al. [117], who establish the 
vital role of antiviral medication in local outbreak control, in other 
words, the impact of non-pharmaceutical and pharmaceutical in-
terventions can form a virtuous couple. 

In retrospect, when a number of predictions have been cast, under a 
variety of scenarios, at most one of these will come close to what actually 
happened, at least for the country or region for which it was intended. 
But, in a pandemic, countries and regions around the globe, with varying 
characteristics, all exhibit their own curves. For example, the Southern 
and Western states in the US exhibit a very different curve than the 
Northeastern states (cf. https://coronavirus.jhu.edu/map. 

html). While care needs to be taken when comparing an observed 
curve with a prediction intended for a different geographical entity (or 
subpopulation), it is useful information for epidemic monitoring as well 
as for future model refinement and calibration, not only for future 
pandemics, but also for subsequent peaks of the ongoing one. 

3.2. Nowcasting and early warning 

Modeling the event history of COVID-19 is important for public 
health policy, especially towards critically ill patients [130]. Event 
history analysis includes studying the timing (or delay) between 
different events: infection, symptom onset, confirmed case, hospitali-
zation, recovery and death. First, due to the incubation period and the 
delay of reporting and/or hospitalization, the impact of intervention 
measures is only observed after several days. For example, if the sum of 
the incubation period and delay of reporting is 10 days, then we expect 
to see an impact of the interventions on the number of confirmed cases 
after 10 days. However, as the delay time varies from individual to in-
dividual, the effect of the intervention is spread over several days. The 
delay distribution of the incubation period [81,100] and the time be-
tween symptom onset and hospital admission [41]126] is therefore 
crucial, as is understanding the heterogeneity in the delay times among 
individuals. Good knowledge of such delay distributions allows one to 
back-calculate the number of newly (symptomatic) infected cases, 
known as nowcasting, from either the number of confirmed cases or 
hospitalised cases, and assess the impact of intervention measures. 

Second, the length of stay in hospital is important, which varies 
among individuals and among countries due to different health systems. 
Information about the length of stay in hospital is important to predict 
the number of required hospital beds, both for beds in general hospital 
and beds in the ICU, and to track the burden on hospitals [126]. 
Individual-specific characteristics, such as, for example, sex, age, co-
morbidity, and frailty of the individual, can explain differences in length 
of stay in the hospital and are therefore important to correct for. The 
estimation of the length of stay is complicated by the truncated and 
interval-censored nature of the data collected during the unfolding 
epidemic [41]. 

Third, the time delay from infection and illness onset to death is 

important for the estimation of the case fatality ratio [35]. A naïve case 
fatality ratio based on the proportion of reported deaths to reported 
cases during an outbreak is generally biased upwards, due to both the 
delay between case and death incidence and underreporting of cases. 

An early warning system to monitor COVID-19 trends and forecast 
increases of the hospital burden are essential in times of a pandemic 
[73]. Multiple data streams are used as predictors of increases at the 
national and provincial level in Belgium. The mobility of individuals 
(tracked via mobile phone data), absenteeism at work, the number of 
patients with respiratory diseases visiting their general practitioner and 
the proportion of positive tested cases are important predictors for the 
immediately following two-week period [42]. 

This is especially relevant at crucial times during an epidemic with 
multiple waves. Nowcasting is essential at the onset of the epidemic and 
when the curve begins to flatten and a peak is reached. It is also relevant 
when the rate of decrease slows, an often missed signal. While a 
decreasing curve is qualitatively a favorable evolution, it is important to 
constantly monitor the rate of decrease: if the decrease slows down 
while the curve is still at a relatively high level, it might be an early sign 
that it might eventually stop and then, unfortunately, start to increase 
again. 

4. Mortality reporting 

Mortality among COVID-19 patients is relatively high when 
measured by IFRs [51,88,144]. The overall IFR is estimated around 
0.6% in many countires, but is very strongly age dependent, and the risk 
is higher for males than for females. This was clear even from early re-
ports [141]. 

In a pandemic like the current one, it is not uncommon to have (at 
least) double mortality reporting. For example, in Belgium, Statistics 
Belgium reports overall mortality, while the Belgian health institute 
Sciensano reports COVID-19 mortality. Excess mortality can be deduced 
from overall mortality, providing an alternative estimate for, and 
perhaps a better one, than COVID-19 mortality [6]. Hence, this is a place 
where official statistics, epidemiology, and demography meet. Bustos 
Sierra et al. [16]and Molenberghs et al. [88] from a Belgian perspective, 
and Aron et al. [6] from an international standpoint, reported that 
Belgium’s excess mortality agrees very closely with COVID-19 mortality. 
This is because Belgium reports not only confirmed COVID-19 deaths in 
hospitals, but also suspected deaths regardless of the place of occur-
rence. In contrast, these authors found that in the Netherlands the re-
ported COVID-19 mortality accounts for only 62% of excess mortality. 

Arguably, excess mortality, when carefully teased out from overall 
mortality, is a better estimate of COVID-19 mortality, than reported 
COVID-19 mortality itself. For example, the number of deaths per 
million on July 4, 2020, was 843 in Belgium, 650 in the UK, 607 in 
Spain, 576 in Italy, 458 in France, and 357 in the Netherlands. But, after 
correction for underreporting, these figures become 1012 for Spain, 860 
for Italy, 813 for the UK, 766 for Belgium, 575 for the Netherlands, and 
472 for France (https://github. 
com/owid/covid-19-data/tree/master/public/data). 

Something that has become saliently clear is the very steep IFR curve 
as a function of age [71,88]. This, combined with the superspreading 
context that nursing homes provide has led, in many countries, to a huge 
death toll in such settings [32], which has in turn triggered dedicated 
epidemiological research. 

5. Prevalence determination and other surveys 

Unlike testing and tracing, which is aimed at finding as many new 
cases as possible, prevalence determination is aimed at reliably esti-
mating what fraction of the population is recovered and hopefully im-
mune. Apart from the viral and immunological issues related to 
prevalence determination, it should be done based on representative 
samples. Hence, sample survey methods can be used, although often 
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alternative methods are used. Prevalence determination is important to 
gauge IFRs and to assess whether or not herd immunity is building up. 

5.1. Prevalence determination 

An obvious way of prevalence determination is by means of the sero- 
prevalence, based on the detection of antibodies in blood serum samples. 
Herzog et al. [58] proceeded via a nationwide cross-sectional survey of 
residual blood samples tested for the presence of Immunoglobulin G 
(IgG) antibodies against SARS-CoV-2. This method, as we know now, is 
ridden with a number of issues, such as time to IgG seroconversion, 
detectability, and waning [11,52,63]. In Belgium, sero-prevalence 
around April 1, 2020, was around 3%, three weeks later it was 6%, 
rose to nearly 7% mid-May, and then started to drop to 5.5% (around 
June 10) and even 4.5% around July 1. In other words, as mentioned in 
the literature [83], waning of IgG antibody concentrations is also 
observed in this sero-epidemiological study, and the primary route for 
immunity may not be these antibodies but rather T-cell mediated im-
munity or other antibodies not measured so far. As a consequence, IFR 
determination and the status of a population’s immunity are referred 
back to the drawing board and the interpretation of (serial) sero- 
prevalence studies have to be reconsidered. Evidently, the decrease in 
seroprevalence implies that the status but also extent of immunity may 
be very different when based on T-cell mediated and humoral immunity 
responses. Also, cross-immunity with endemic coronaviruses, especially 
beta-coronaviruses such as hCoV-OC43, is a relevant study subject, but 
one about which there is little or no knowledge available [72]. 

Note that different survey sampling methods and different sub- 
populations considered (e.g., blood donors, or people spontaneously 
reporting at hospitals) may well yield different estimates. Apart from 
immunological issues with prevalence determination, the quality of the 
representative sampling method used influences the reliability of the 
findings. 

5.2. The role of public opinion surveys 

It is important to keep the finger on the pulse of the public opinion, 
for various reasons. Well-conducted surveys are vital to get a feel for 
how the population perceives risk, the impact of measures taken, 
acceptance and compliance to NPIs, etc. At the same time, it can be a 
component of an early warning system (Section 3.2) if the occurrence of 
symptoms is queried. One such example is the “Big Corona Study” (see 
also [93]), an online survey that can be filled in by all members of the 
public on every Tuesday since March 17, 2020; from June 2, 2020 on-
wards, the survey shifted to a bi-weekly frequency. It collects data about 
public adherence to measures taken by the government, contact 
behavior, mental and socio-economic distress, and spatio-temporal dy-
namics of COVID-19 symptoms’ incidences. While public participation is 
useful as a low-cost method to collect timely information within the 
context of a pandemic, caution should be exercised at the analysis stage; 
online surveys, based on self-reporting, often do not reach every societal 
group equally [2]. It typically causes response rates to vary among cit-
izens of different ages, genders, cultures and economic statuses. This is 
particularly the case in 2020, where the perception of the seriousness of 
the COVID-19 pandemic varies considerably between individuals and 
has become politically coloured. This then translates to increased diffi-
culties to correct for unrepresentative samples, even after standardiza-
tion methods such as inverse probability weighting are performed. In 
essence, these problems all relate to non-random missingness patterns 
[89], where the absence of information is driven by complex processes. 
These processes do not lie far from opportunistic sampling phenomena 
that often occur in biodiversity studies that make use of citizens to 
collect data [92]. For example, using such surveys to pinpoint areas of 
increased disease incidence necessitates careful investigation, since 
response rates’ spatial dynamics may be stochastically dependent on the 
underlying spatial process that generates heterogeneity in the 

symptoms’ incidences. If present, this opportunistic sampling phenom-
enon, termed preferential sampling [34], invalidates statistical inference 
on the spatial dynamics of COVID-19 symptoms. This can be accom-
modated by using a shared latent process approach where a geo-
statistical binomial model for the proportion of participants of each 
Belgian municipality that experiences COVID-19 symptoms shares a 
spatial random effect with a model for the response rates. The result of 
this approach is shown in Fig. 1, which depicts predicted symptoms’ 
incidence, corrected for preferential sampling, using data of 397,529 
individuals collected during the third round of the “Big Corona Study” 
(March 31, 2020). 

The above is an example of how survey sampling methods, citizen 
science, and spatial statistics come together to gauge the public opinion 
regarding COVID-19 and, in turn, to inform policy makers. Unsurpris-
ingly, several suveys are undertaken simultaneously. For example, the 
Belgian health institute Sciensano has conducted several waves of a 
COVID-19 Health Interview Survey [106]. This study has a longitudinal 
component; participants can indicate whether or not they are willing to 
have their responses linked across waves. Smaller scale (longitudinal) 
surveys towards the public’s perceived vulnerability and acceptance of 
measures are undertaken too [31]. A general perspective on the role of 
social and behavioral science in the response to COVID-19 research can 
be found in Van Bavel et al. [124]. 

In many countries, all such surveys take place in an ad hoc fashion. It 
can be beneficial, though, to make use of a permanent (online) repre-
sentative panel for public opinion research. Such a panel exists in the 
Netherlands [65]. Catalyzed by the current pandemic, a panel of this 
type is likely to be initiated in Belgium as well. 

6. Diagnostic and serological testing 

The battle against a novel emerging pathogen such as COVID-19 
requires the development of a rigorous screening strategy to detect the 
virus, with the objective to mitigate its public health impact and to bring 
the pandemic under control. Aiming to achieve a rapid scale-up of 
diagnostic testing capacity has rarely, if ever, been attempted at the 
current pace [118]. Testing is not merely an instrument to diagnose a 
given individual and to determine individual-level risk factors, it is also 
a prerequisite to a proper disease surveillance system, serving in 
monitoring and managing the epidemic. Testing allows unraveling a 
number of key uncertainties concerning the epidemic, such as the 

Fig. 1. Predicted probabilities for a citizen to experience at least one key COVID-19 
symptom per municipality, based on extensions of a shared latent process model that 
corrects for preferential sampling [93]. 
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number of infected people, or the proportion of the population that is 
effectively immune against the virus. Early literature [80], i.e., from the 
first quarter of 2020, is a testimony that at first, diagnostic instruments 
for SARS-CoV-2 were lacking and needed to be developed in a speedy 
fashion. 

The SARS-CoV-2 tests that were developed since the start of the 
COVID-19 outbreak can broadly be categorized in so-called real-time 
(diagnostic) reverse-transcriptase PCR (RT-PCR) and serological tests. 
Patients with symptoms are often diagnosed based on RT-PCR tests 
allowing the detection of viral nucleic acid in oropharyngeal or naso-
pharyngeal swabs. Such tests identify whether someone has the virus. 
Serological tests on the other hand, determine the presence of anti-
bodies. With the advent of COVID-19, new serological tests have been 
emerging, creating new opportunities for an assessment of the SARS- 
CoV-2 epidemic. Serologic tests are most of the time ineffective at 
detecting early stages of the infection, since antibody titers only grad-
ually increase days or weeks after infection, but are able to detect past 
infections providing, in theory, an indication of the proportion of the 
population that has been infected with the virus, at least when lifelong 
humoral immunity is conferred. Serological analysis may be useful to 
actively identify close contacts, define clusters of cases and linking 
clusters of cases retrospectively to delineate transmission chains and 
ascertain how long transmission has been ongoing or to estimate the 
proportion of asymptomatic individuals in the population [137]. Sero-
logical tests help to understand the epidemiology and to evaluate vac-
cine responses, but the reliability for diagnosis in the acute phase of 
illness and the assumption of protective immunity have been questioned 
[107]. Detection capabilities of tests may further depend on the delay 
since the onset of the infection or symptoms [11]. Furthermore, higher 
antibody levels not necessarily correlate well with an increase in pro-
tection against reinfection. Despite their value, serological tests do not 
allow, given the many current unknowns and uncertainties, to confirm 
whether or not a person is contagious or if he/she is protected against 
the virus, unless a correlate of protection is well-established, and do not 
allow, in other words, the delivery of an “immunity passport”. 

In the initial phase of an epidemic, knowledge on diagnostic test 
performance is scarce and not fully reliable. Samples are usually 
collected from a limited number of patients, and negative controls are 
not always present. A correct assessment of the limitations and perfor-
mance of each of these tests is nevertheless crucial to demonstrate their 
accuracy and clinical utility and to design a correct testing strategy. The 
performance of a diagnostic test is typically characterized by its sensi-
tivity and specificity. RT-PCR tests are considered reliable for detecting 
the presence of the virus, and are considered the standard by some, 
despite a non-negligible rate of false negative results, i.e., a low sensi-
tivity - in some circumstances (see, for example, [128,133]). False 
negatives can complicate governmental decisions to lift confinement 
restrictions. False-negative results have an impact on the manner in 
which serological testing might be used to support non-pharmaceutical 
interventions, as well as implications for the development of large-scale 
testing pathways [96]. The current evidence about the diagnostic ac-
curacy of COVID-19 serology tests is characterized by high risks of bias 
and heterogeneity, with limited generalizability to outpatient pop-
ulations [8]. A full comparison of the performance of serological tests 
has not yet been conducted on a large set of identical samples. The 
duration of antibody rises is currently unknown, and the utility of these 
tests for public health management purposes has been reported as un-
certain [33]. Variation in performance characteristics between assays 
indicates the urgent need for evaluation of the large number of SARS- 
CoV-2 serology tests that have become rapidly available [96]. 

Evaluating the performance of diagnostic tests is usually based on 
comparing test results with a gold standard, but such a “perfect test” is 
often unavailable. Moreover, even if the diagnostic sensitivity and 
specificity are considered fixed values, intrinsic to the diagnostic test (i. 
e., constant and universally applicable), many examples illustrate that 
these values can fluctuate depending on the context [108]. Estimations 

of test characteristics are often obtained from studies under well- 
controlled conditions. The sensitivity of RT-PCR tests used for the 
diagnosis of COVID-19 may, for example, depend on factors such as the 
type of specimen, the timing of sampling and the sampling technique 
[125]. Yet, quantifying the performance of a given test in real-world 
conditions is essential when interpreting test results, measuring its 
predictive value, or when choosing a test for a specific use case: screen 
asymptomatic patients, monitor contacts, identify clusters, support 
contact tracing, and as a preventive measure. Hitchings et al. [60] 
explain how the so-called test positive fraction correlates with the 
incidence in a given population, turning this into a useful surveillance 
tool. In hospital settings, sensitive and specific diagnostic tests for active 
infection with SARS-CoV-2, allow guiding the care for individual pa-
tients, but a fast and repeated testing strategy at the expense of e.g. a 
lower test sensitivity may be more effective as a public health strategy 
[77]. A public health strategy – with the goal to reduce transmission - 
may indeed ask for the use of rapid tests, removing the focus from the 
usual dogma of high sensitivity and specificity towards a test to be 
practically useful, also accounting for factors such as costs, speed, and 
logistical constraints. 

A proper evaluation of diagnostic performance in the absence of a 
gold standard can be done by using latent class models, which do not 
require a priori knowledge of the infection status. Umemneku Chikere 
et al. [119] provide an overview of these and other models that allow 
using the combined information of multiple different tests applied on the 
same samples and Kostoulas et al. [74] present standards for the 
reporting of such diagnostic accuracy studies. Models used to analyze 
the results of multiple diagnostic tests assume that there is an unknown 
prevalence, sometimes referred to as a latent class, and that the sensi-
tivity and specificity of the diagnostic tests are unknown. This “latent 
prevalence” can then be linked to the apparent prevalence (i.e., the 
observed proportion of positive results of the diagnostic tests) through a 
set of equations allowing estimating all parameters at stake (i.e., prev-
alence, sensitivities and specificities of each of the tests used) [108]. 
Further context on issues surrounding diagnostic tests is given in Tang 
et al. [112]. 

Once diagnostic tools are available and properly evaluated, their use 
may be hampered by constraints such as a lack of reagents, limited 
laboratory capacity, and personnel. Pooling samples may be used to 
addresss this concern, increasing the number of individuals tested with 
an available number of tests and providing a cost-effective alternative to 
individual testing. Over the years, an entire body of research has indeed 
been developed around group testing in a diagnostic context, for 
example when resources are scarce and/or under time pressure [25]. 
This is precisely the situation we are confronted with the current 
pandemic, creating an opportunity to roll out and test reliable and new 
methodologies (see, e.g., [109]). It is another example where existing 
and seasoned methodology can be tailored to differing circumstances, 
such as the need for repeated testing, as described by Augenblick et al. 
[7]. 

Test results can be compared with the results from non- 
pharmaceutical components of early warning systems (Section 3.2). 
Knowledge on the test characteristics can be used and integrated when 
interpreting survey results (Section 5.2). 

7. Vaccine development 

While a number of effective vaccines have been developed over the 
last half century, such as for measles, rubella, smallpox, hepatitis B, 
Ebola, etc., vaccine development remains a challenging area. For 
example, no succesful vaccine has been found so far for HIV [23]. Even 
the determination of the seasonal influenza vaccine, a yearly exercise, is 
one of hits and misses, due to the volatile nature of the influenza virus. 

Of particular importance to us is that traditionally coronaviruses 
(hCoV-229E, hCoV-NL63, and hCoV-OC43) have received little or no 
attention from a vaccine development standpoint. This changed for 
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SARS-CoV-1 and MERS-CoV but in these cases there was no opportunity 
to put potential vaccines to the test[111]. 

While existing vaccine-constructs (e.g., adeno-based, adjuvants, 
etc.), in particular for influenza and the aforementioned coronaviruses, 
can provide a step-up for SARS-CoV-2, success is not automatically 
guaranteed. Because the general consensus is that the global population 
will be able to return to normalcy only after the development of effective 
vaccines and the implementation of large vaccination programmes, the 
challenge is to develop a vaccine at unprecedented speed. 

Evidently, global collaboration is essential. A candidate vaccine 
developed in one part of the world may have to be put to the test in 
another, depending on the succession of epidemic waves. The state of 
urgency poses ethical questions, such as whether one can, besides the 
traditional phase 3 efficacy studies, set up controlled human infection 
model (CHIM) studies where healthy subjects are infected to test a 
vaccine, while effective treatment may not yet be available. A further 
challenge is that vaccines need to be developed while the immunology 
associated with SARS-CoV-2 is still unclear, and knowledge is accumu-
lating, with trial and error. 

Several pharmaceutical companies have taken the unprecedented 
step to plan and build production capacity in parallel with candidate 
vaccine development and testing. A fascinating new chapter is currently 
being written to bring future vaccines to market; many lessons will be 
learned that fall beyond the scope of the present paper. 

8. Clinical trials for COVID-19 patients 

The amount of clinical research generated by the COVID-19 
pandemic is mind-boggling: on June 15, 2020, a search of the 
ClinicalTrials.gov website with the keywords “COVID”, returned more 
than 600 interventional studies currently recruiting patients [123]. For a 
more complete coverage of trials worldwide, the ReDO database listed 
1144 interventional trials for the treatment of COVID-19 infected pa-
tients on June 26, 2020 [99]. Reassuringly, 825 (80%) of these trials 
were controlled and taking place in a hospital setting (because testing 
capacity was lacking outside of the hospitals at the start of the 
pandemic). It is beyond the scope of this paper to cover the various 
treatment approaches that are being tested against COVID-19, whether 
using repurposed drugs already in use for other indications, new drugs 
specifically developed against the virus, or non-drug treatments. The 
World Health Organization (WHO) published a useful classification of 
treatment types [138]. Here we focus on key features of some of the 
clinical trials that were designed and conducted in record time in the 
early days of the epidemic in Belgium. 

8.1. Outcome measures 

The natural history of most diseases is well established, and a 
consensus has in most cases been reached on outcomes that appropri-
ately capture how a patient feels, functions or survives. COVID-19 in-
fections were, at least initially, largely unknown, hence it was 
challenging to choose outcome measures that would be clinically rele-
vant as well as statistically sensitive to treatment benefits. The best 
outcomes to use will undoubtedly emerge as the results of clinical trials 
begin to appear and clinicians have built experience on how to measure 
these outcomes. In large randomized trials for hospitalised patients such 
as RECOVERY (Randomized Evaluation of COVid-19 thERapY), all- 
cause mortality within 28 days was the primary outcome of interest 
[114]. While all-cause mortality is unquestionably the ultimate clinical 
outcome most therapies are trying to impact, cause-specific mortality 
could be more sensitive and also more relevant if (and only if) the 
treatments had no impact on deaths due to other causes. In practice both 
all-cause and cause-specific mortality are typically required to assess all 
treatment effects, and the designation of either one as the primary 
outcome may depend on the importance of competing risks of death. 
Other outcome measures of interest are time to invasive mechanical 

ventilation, and time to discharge. 
Besides time to clinically important events, the need to quantify the 

severity of the COVID-19 infection led to the definition of clinical pro-
gression scales. Table 1 shows one such ordinal scale with scores ranging 
from 0 to 10 [135]. Less granular ordinal scales have been used (e.g., 
with scores ranging from 1 to 5) with a similar intent. Various outcome 
measures can be defined using these scales, e.g. time to a score change 
(improvement or deterioration) of at least 2 points on the chosen scale, 
cumulative score or area under the score curve up to day 15, etc. Time 
will tell which scale and outcome measure are simple enough to be used 
effectively and sensitive enough to detect treatment benefits. Last but 
not least, inclusion of patient-reported outcomes (PRO) should be 
considered in trials of COVID-19 patients with prolonged follow-up 
[22]. 

8.2. Multi-arm designs 

The main challenges when conducting clinical trials in the COVID-19 
context are (a) the multitude of potential treatments, (b) the lack of 
patients in some regions to conduct several trials in parallel, (c) the pace 
at which new scientific insights become available, and (d) the push to 
use treatments based on incomplete preclinical development and unre-
liable clinical data. Hydroxychloroquine, for instance, made it into 
preliminary COVID-19 treatment guidelines without proper supporting 
evidence, thus undermining the use of untreated controls in clinical 
trials. This has forced statisticians and clinicians to search for flexible 
designs which allow including additional promising therapies or 
removing therapies which have shown not to be effective, while 
simultaneously allowing for optimal use of the limited available patients 
and drugs. When two treatments A and B are to be compared to standard 
of care (SOC), a natural choice would be a randomized multi-arm study 
comparing A, B and SOC (leaving aside the potential difficulties of access 
to A and B at once). The advantage is that a single SOC group can be used 
rather than two SOC groups which would be needed in two separate 
trials comparing A with SOC and B with SOC. However, classical multi- 
arm studies require all patients enrolled to be eligible for all treatments. 
In the COVID-19 context, a research treatment often has contraindica-
tions which do not allow patients to be randomized to that particular 
treatment, but allowing patients to be randomized to some of the other 
treatments under consideration. A possible solution is selective exclu-
sion. While such designs with selective exclusion have been described in 
the statistical and medical literature [68,78], the statistical analysis of 
such studies has not received much attention. 

As an example, consider a scenario in which patients are randomized 
to treatment A, B, or SOC in a (1:2:1) ratio. Interest is in comparing A 

Table 1 
WHO clinical progression scale (ECMO = extracorporeal membrane oxygena-
tion; FiO2 = fraction of inspired oxygen; NIV = non-invasive ventilation; pO2 =

partial pressure of oxygen; SpO2 = oxygen saturation).  

Patient State Descriptor Score 

Uninfected Uninfected; no viral RNA detected 0 
Ambulatory mild 

disease 
Asymptomatic; viral RNA detected 1  

Symptomatic; independent 2  
Symptomatic; assistance needed 3 

Hospitalised: 
moderate disease 

Hospitalised; no oxygen therapy 4  

Hospitalised; oxygen by mask or nasal prongs 5 
Hospitalised: severe 

diseases 
Hospitalised; oxygen by NIV or high flow 6  

Intubation and mechanical ventilation with  
pO2/FiO2 ≥ 150 or SpO2/FiO2 ≥ 200 

7  

Mechanical ventilation with pO2/FIO2 < 150 or 
vasopressors 

8  

Mechanical ventilation with pO2/FiO2 < 150 and 
vasopressors, dialysis, or ECMO 

9 

Dead Dead 10  
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with SOC, and B with SOC. Further assume that 10% of the population 
eligible for A and/or B is eligible for A only (subpopulation 1), while 
30% is eligible for B only (subpopulation 2). The remaining 60% is 
eligible for both A and B (subpopulation 3). This situation is graphically 
shown in Fig. 2. Out of 100 patients eligible for A or B, we expect 10, 30, 
and 60 subjects in subpopulations 1, 2, and 3, respectively. In each 
subpopulation, randomization is performed according to the appro-
priate ratios, i.e., (1:1), (2:1), and (1:2:1), in subpopulations 1, 2, and 3, 
respectively. 

When analyzing the effect of treatment A versus SOC, only concur-
rent controls can be included. Hence the SOC patients from sub-
populations 1 and 3, will be compared to all A patients from the same 
two subpopulations. However, in subpopulation 3, 50% of the patients 
received B, implying that subpopulation 3 is underrepresented in the 
comparison of A versus SOC. If the objective is to estimate the marginal 
effect of A versus SOC, i.e., the effect one would estimate in a placebo 
controlled trial of A versus SOC, the patients from subpopulation 3 need 
to be reweighted by a factor 2, in order to restore the balance between 
subpopulations 1 and 3. The final analysis of A versus SOC is then a 
weighted analysis of the 2 × 20 patients from the subpopulations 1 and 3 
who received either A or SOC, however, the patients from subpopulation 
3 get each a weight of 2. 

Likewise, the marginal effect of B versus SOC can be estimated using 
a weighted analysis of the 25 SOC patients and the 50 B patients from 
subpopulations 2 and 3, but the patients from subpopulation 3 need to 
be reweighted by a factor 4/3 in order to correct for the imbalance due 
to the removal of the 25% patients on treatment A in subpopulation 3. 

Note that the gain of the design in Fig. 2 is that an expected 15 SOC 
patients, i.e., 25% of 60% of the study population, can be used twice, 
once in the comparison with A and once in the comparison with B. The 
gain obviously highly depends on the eligibility criteria and on the 
randomization ratios used. Note also that the methodology can easily be 
extended to trials with more than two research treatments and to trials 
with adaptive designs allowing for adding new treatments or removing 
non-promising treatments. 

8.3. Factorial designs 

Factorial designs, a rare exception in trials sponsored by pharma-
ceutical companies who prefer to focus on a single therapeutic question, 
were suggested for situations in which more than one treatment could be 
tested simultaneously in the same patients. As an example of such a 
design, the COV-AID trial (Treatment of COVID-19 patients with Anti- 
Interleukin Drugs) simultaneously tested blockade of the Interleukin-1 
pathway with Anakinra, and blockade of the Interleukin-6 pathway 
with either Siltuximab or Tocizilumab, in hospitalised adult patients 
with COVID-19 infection, acute hypoxia and signs of cytokine release 

syndrome. The factorial design is premised on the effectiveness of 
interleukin blockade to prevent hyperinflammation or auto- 
inflammatory syndromes in COVID-19 infected patients. Interestingly, 
in such a design, only 2 out of every 9 patients receive usual care while 7 
receive usual care plus at least one experimental drug (see Table 2). 

8.4. Interim analyses and multi-stage designs 

In view of the huge uncertainties associated with anticipated clinical 
outcomes as well as treatment effects, it was generally considered 
appropriate to include one or more interim analyses for safety and/or 
futility and/or efficacy in the trial designs. Group sequential trial 
methodology provides a well-known framework for incorporating as 
many interim analyses as deemed necessary while adequately control-
ling the probability of a type I error. Any substantial trial benefits from 
being monitored by an experienced IDMC (Independent Data Moni-
toring Committee), and in particular trials with interim analyses of ef-
ficacy; however IDMCs are in high demand and short supply, and the 
flurry of COVID-19 trials will not ease the current shortage. Adaptive 
design methodology was also considered, though its most common ap-
plications (choice of an optimal dose, increase in sample size, or 
enrichment in specific patient subsets) did not address the most acute 
need in COVID-19 trials, which was to allow seamless addition or 
dropping of treatment arms to reflect a changing therapeutic landscape. 
This is the objective of platform trials, such as the multi-arm multi-stage 
(MAMS) trials [134]. 

The PRINCIPLE trial (University of Oxford [120]), served as a model 
for the design of a similar trial in Belgium, the DAWN (Direct Antivirals 
Working against nCov) Ambulatory Care Platform trial. Logistical 
challenges in the setting of COVID-19 include the timely identification of 
eligible subjects, obtaining informed consent when isolation at home is 
needed, as well as the delivery of study medication. Initially, this trial 
will compare Camostat with standard of care in community dwelling 
adult patients who are at least 50 years old presenting with signs and 

Fig. 2. Graphical depiction of two clinical trials with a common standard of care arm.  

Table 2 
Factorial design to simultaneously test three drugs, two blocking IL-6 and one 
blocking IL-1.    

IL-6 blockade   

No Yes   

1/3 2/3  
No Usual Care Siltuximab Tocilizumab  
2/3 2/9 2/9 2/9 

IL-1 blockade   Anakinra + Anakinra +
Yes Anakinra Siltuximab Tocilizumab  
1/3 1/9 1/9 1/9  
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symptoms compatible with COVID-19. The aim of this large pragmatic 
trial is to avoid hospitalization by using a well tolerated antiviral to 
rapidly treat patients at risk who have first symptoms of COVID-19. Like 
in PRINCIPLE, the DAWN trial will use Bayesian posterior probabilities 
to add or drop treatment arms while the study is ongoing, but unlike in 
PRINCIPLE, randomization will not use adaptive randomization, for 
there is neither a statistical advantage nor an ethical imperative to do so 
(see [59], with discussion). Instead, minimization can be used to allocate 
treatments in a constant ratio while allowing for several prognostic 
factors to be balanced across the treatment arms. 

8.5. Pragmatism in trial conduct 

Perhaps the most impressive aspect of clinical trial activities during 
the pandemic was the collaborative pragmatism that naturally evolved 
in response to the crisis. Statisticians from academia, the public and the 
private sectors voluntarily contributed ideas and resources to come up 
with optimal trial designs to address the most critical clinical questions. 
Some of these collaborations pre-dated the pandemic, but many were 
improvised to respond efficiently to the most pressing needs. When it 
came to launching the trials, the usual delays and bureaucratic hurdles 
evaporated, and the trials could all be launched within a couple of weeks 
- instead of the several months usually required to fulfil all adminis-
trative requirements. While excessive speed may create challenges, as 
discussed in Section 10, on balance it may be preferable to unnecessary 
delays whenever the health of patients is at stake – and this is the case for 
many non-COVID-19 related health issues. 

While an overarching priority was given to rigorous trial designs, 
implementation details were kept as simple as possible. As was already 
argued prior to the pandemic, simplicity is a virtue in clinical research 
[76], but one that does not align with the commercial interests of the 
clinical research organizations that implement clinical trials for phar-
maceutical companies [29]. Many have argued that the absurdly high 
costs of pivotal clinical trials are due to inefficiencies in the current 
clinical research process [90]. Examples of inefficiencies include the 
collection of data of marginal interest, including details of medical 
history and concomitant medications, complex procedures to measure 
outcomes, including central reviews and outcome adjudications, strict 
visit schedules and examinations that do not reflect clinical routine, and 
so on. Although some of these inefficiencies may be justified for pivotal 
trials of new drugs, they should generally be avoided in trials of 
approved drugs or other non-drug treatments. A clear distinction be-
tween pragmatic and explanatory approaches to clinical trials was 
proposed nearly fifty years ago, yet most trials conducted today adopt 
the explanatory approach, which is unnecessarily onerous [105]. 
Table 3 provides a comparison of trial characteristics under the 
explanatory and pragmatic approaches [19]. The COVID-19 pandemic 
provided empirical evidence that inefficiencies in clinical research can 
easily be overcome in pragmatic trials in times of emergency. Will this 
lesson survive the end of the pandemic? 

9. Impact of COVID-19 on ongoing clinical trials 

The COVID-19 pandemic has had, and will continue to have, a major 
impact on the conduct of almost all ongoing clinical trials, in particular 
on the treatment of patients and the schedule of their planned protocol 
visits. Regulatory agencies worldwide have promptly issued guidance on 
measures to be taken to minimize the impact of COVID-19 on ongoing 
trials [39,122]. Given the huge uncertainty associated with the current 
situation, and the lack of historical precedents, the guidance documents 
recommend to capture as much information as possible on protocol 
deviations and other unexpected events, so as to be able to conduct 
various analyses when the trial is completed. Meyer et al. [86] give an 
excellent overview of statistical issues and recommendations for clinical 
trials during the COVID-19 pandemic. 

From a statistical inference perspective, despite the dramatic health 
care disruptions caused by the COVID-19 pandemic, intention-to-treat 
(ITT) analyses of randomized clinical trials remain valid, if (as will 
generally be the case) protocol deviations impact all randomized treat-
ment groups equally. However, such deviations may induce a dilution of 
the treatment effect, and as such are likely to result in more conservative 
estimates of treatment effects (with the exception of non-inferiority 
trials). In other words, the ITT estimates of treatment effects will in 
general not be biased by systematic differences between the randomized 
treatment groups, but they may well underestimate treatment effects 
that would have been estimated in ‘normal’ circumstances. 

9.1. Missing data 

Missing visits, missing clinical assessments, missing scans or labo-
ratory values, and all such like that result from the COVID-19 pandemic 
will in general be missing at random (MAR), since the pandemic is an 
external cause of missingness that bears no relationship to the disease or 
treatment under investigation. Hence COVID-19 related missing data 
can be appropriately dealt with by using likelihood based methods or 
multiple imputation under the MAR assumption. To give a few typical 
examples: (1) hazard ratios estimated using proportional hazards 
regression models, e.g., survival times, remain valid under independent 
censoring (and proportional hazards); (2) treatment effects estimated 
using mixed models for repeated data, e.g., for longitudinal measure-
ments of visual acuity, remain valid if the outcome data are MAR; (3) 
generalized estimating equations for longitudinal measurements of re-
sponses remain valid if missing data are imputed under the assumption 
of MAR. Multiple imputation may be feasible when the amount of 
missing data is limited; however, the potential for multiple imputation is 
limited when large volumes of data are missing, especially when few 
patients have observed data that can be used to impute the data for 
patients with missing values. 

In multinational or multiregional trials, the COVID-19 pandemic 
may take a different course in different regions; in addition, regional 
differences such as distance traveled to health care centers may create 
very different patterns of missingness across regions. This variability 
may not create a systematic bias if it affects all treatment arms equally. It 
does offer an opportunity to perform sensitivity analyses using region as 
a potential modulator of treatment effect. Other sensitivity analyses 
(such as shift imputation and tipping-point analyses) will likely play a 
more prominent role due to the larger than usual volume of missing 
data. 

Finally, it will be important to rule out situations of differential drop- 
out rate between the randomized treatment groups. This could happen, 
for instance, in open-label trials if patients in the control arm are more 
likely to miss their planned visits than patients who receive an experi-
mental therapy. Conversely, some trials had to stop the experimental 
treatment (e.g., immunotherapy in cancer) for fear of an interaction 
with COVID-19. 

Table 3 
Contrast between the explanatory and the pragmatic approach in clinical trials.  

Approach Explanatory Pragmatic 

Type of trial Industry-sponsored Investigator-led 
Primary purpose Regulatory approval Public health impact 
Patient selection Fittest patients All comers 
Effect of interest ‘Ideal’ treatment effect Actual treatment effect 
Outcome ascertainment Centrally reviewed Per local investigator 
Preferred control group Untreated (when feasible) Current standard of 

care 
Experimental conditions Strictly controlled Clinical routine 
Volume of data 

collected 
Large, for supportive 
analyses 

Key data only 

Data quality control Extensive and on-site Limited and central 
only  

G. Molenberghs et al.                                                                                                                                                                                                                          



Contemporary Clinical Trials 99 (2020) 106189

12

9.2. Outcome assessments 

Missing visits have a direct impact on outcome assessments. For 
instance, in oncology trials, tumor response and time to progressive 
disease are assessed through CT-scans performed according to a fixed 
schedule. Some conventions that are sometimes applied, e.g., to censor 
patients if they have missed too many visits, become wholly inappro-
priate when deviations from the intended schedules are systematic and 
unavoidable. In such cases, these conventions should be used, if at all, 
only in sensitivity analyses. The proper primary analysis of time to 
progression should remain an ITT analysis, in which all patients are 
followed up as thoroughly as possible, regardless of how long it takes to 
obtain CT-scans, until they have objective confirmation of disease pro-
gression. Because in some patients such confirmation may come with 
considerable delay, interval-censoring analyses may be helpful to com-
plement or even replace the traditional analyses with right censoring 
only. 

Some patients may prefer to avoid hospital or office visits during the 
COVID-19 pandemic. If outcome assessments were due to take place at 
the hospital or doctor’s office (e.g., a 6-minute walk test), it may be 
preferable to replace these assessments by their home-based equivalent 
assessments, when available. In most situations, some data are better 
than no data at all, under the assumption that data taken in less than 
ideal situations are not grossly erroneous or misleading. In fact, even if 
assessments taken at home in poorly controlled conditions are less 
reliable than those taken at the hospital in the most rigorous conditions, 
the loss in efficiency in detecting a treatment effect may be surprisingly 
small, assuming no systematic bias between the randomized treatment 
groups [18]. 

It is sometimes believed, wrongly, that patients who have symp-
tomatic COVID-19 infections should be removed from trials of other 
indications. This is unjustified and should not be done unless it is 
mandated by the patient’s safety or personal choice. 

9.3. COVID-19 related events 

It is conceivable that in some cases a randomized trial has its treat-
ment arms differentially affected by the pandemic if the intervention 
under study is a risk factor for COVID-19. As an example, in oncology, 
chemotherapy is felt to increase the risk of infection among cancer pa-
tients, and some authors have cautioned the medical community about 
this risk. In a trial comparing chemotherapy with a non-cytotoxic 
intervention, the incidence of COVID-19 may therefore be higher in 
the chemotherapy arm. If the infection is a risk factor for one or more of 
the outcomes of interest (e.g., survival), an association may be created 
between the exposure (treatment) and the outcome (in this case, sur-
vival) through the infection, thus confounding the analysis of such 
outcome(s), unless cause-specific mortality is used. The reporting of 
causes of death is generally unreliable and variable from center to 
center, but COVID-19 related deaths are likely to be reported reliably 
(respiratory diseases being an exception). It may also be useful to 
perform competing risks analyses for the outcome of primary interest in 
the trial (such as disease progression) and COVID-19 infection. 

It is conceivable that patients with COVID-19 infection will receive 
treatments that interact with their treatments for other indications. Such 
interactions would only create a potential bias in randomized trials if 
they were different for the treatments being compared, an unlikely sit-
uation but one that may on occasion occur. A related issue is that most 
clinical trials forbid the inclusion of patients in other trials of investi-
gational drugs. AIDS advocacy groups argued long ago that co- 
enrollment in multiple trials was both ethically and scientifically 
desirable, a view that still prevails today and should be pro-actively 
implemented in trials [87]. 

9.4. Protocol amendments 

Because the results of randomized clinical trials are, by nature, 
protected against changes in the environment that affect all randomized 
groups equally, there will generally be no good reason to amend the 
statistical sections of the protocols of ongoing studies, except for sample 
size calculations and the provision of descriptive statistics on the impact 
of COVID-19 (number of patients with COVID-19 infections and COVID- 
19 deaths). 

Some trials will have to stop as a result of the pandemic with a lower 
sample size than initially planned. For trials that can continue 
throughout the pandemic, major protocol deviations may result in a 
lower treatment effect than anticipated, which might justify a sample 
size increase to compensate the loss in statistical power. Such sample 
size increases do not affect the type I error. 

10. The Price of speed: methodological sloppiness 

10.1. Uncontrolled trials 

In times of great pressure, such as when the COVID-19 pandemic 
erupted, it is very tempting to take shortcuts and experiment with 
potentially effective treatments in an uncontrolled way, with the hope 
that some of the treatments tested will be so effective as to constitute 
real breakthroughs in the management of the disease. Two additional 
factors may mitigate against conducting properly controlled experi-
ments: the number of patients available, and the severity of their con-
dition (patients admitted to ICU often having a fatal outcome). Yet, 
despite ethical dilemmas with control arms, randomization was widely 
considered during the COVID-19 outbreak as the only way to generate 
reliable, practice-changing evidence [29]. Claims made on the basis of 
supposedly impressive clinical outcomes of COVID-19 infected patients 
treated with Chloroquine and Hydroxychloroquine were viewed with 
skepticism, and the contradictory data that were later published about 
these drugs, including some that had to be retracted [85], confirmed that 
skepticism was indeed in order, and that scientific standards could not 
be lowered as a result of the pandemic [82]. Observational studies, even 
when conducted with care, can be so misleading that some authors have 
argued a moratorium should be placed on reporting them [20]. And 
indeed, to counteract exaggerated claims based on uncontrolled data, 
some wide-ranging national or international collaborations were quickly 
put in place for the conduct of large-scale trials [115]. The SOLIDARITY 
trial, conducted in 35 countries under the auspices of the WHO, is an 
example of a large simple trial for hospitalised patients with COVID-19 
treated with local standard of care (SOC) against Remdesivir, Lopinavir 
and Ritonavir, or SOC plus Lopinavir and Ritonavir and Interferon β-1a 
[139]. Despite the best of intentions, the SOLIDARITY trial ran into 
contractual and legal difficulties that made its adoption in many coun-
tries slow and inefficient. Furthermore, the trial prioritized antiviral 
agents and other PIs over NPIs, which may have diverted resources away 
from trials of simple supportive care interventions. Finally, finding in-
ternational consensus to select or change trial interventions is far more 
challenging than at the national level. The right balance between na-
tional and international efforts will have to be addressed going forward, 
with the overarching goal of maximizing the efficiency of clinical 
research. Trial implementation is definitely more efficient at the na-
tional level; however the number of patients in a small country like 
Belgium is insufficient to size the trials properly. Most of the trials 
started during the early phase of the COVID-19 epidemic will be too 
small to provide reliable estimates of treatment effects, and it would 
therefore be advisable to plan prospective meta-analyses of all such 
trials as soon as possible. Such prospective meta-analyses should be 
based on patient-level data (see Section 11). In the UK, the large RE-
COVERY trial tested standard of care against low-dose Dexamethasone, 
Azithromycin, Tocilizumab or convalescent plasma[121]. This trial 
accrued 11,303 patients between March and June 2020 and, in this short 
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period of time, was already able to show a highly significant benefit of 
dexamethasone on mortality [114], which immediately led to the use of 
glucocorticoids as standard of care for hospitalised COVID-19 patients. 

10.2. Methodological errors 

Methodological issues have arisen in a number of studies dedicated 
to prediction models for diagnosis and prognosis (mortality risk, pro-
gression to severe disease, length of hospital stay) of patients with 
COVID-19. Wynants et al. [140] conducted a systematic review and 
detected 51 studies with methodological issues and errors among a 
collection of 4909 titles screened. 

In clinical trials conducted in COVID-19 patients, the statistical 
methods commonly used are based on the standard Cox proportional 
hazards model [30] and the Kaplan-Meier estimator [70] (see, for 
example, [9], and [79]). When time to death due to COVID-19 is the 
outcome of interest, these methods implicitly treat discharged or 
recovered patients as right censored. Doing so is incorrect, however, as 
right censoring means that the unobserved time to death can be any time 
point larger than the observed one, whereas patients who recover may in 
fact never die from COVID-19. A correct way of analyzing this type of 
data is through the use of competing risk models, such as the model 
proposed by Fine and Gray [45] which is based on the subdistribution 
hazard, or on cure models. To study the impact of incorrectly classifying 
recovered patients as right censored, Oulhaj et al. [95] simulated data 
from a fictive clinical trial on COVID-19. Six scenarios representing 
different situations of the effect of treatment on death and its competing 
event recovery were considered. The hazard ratio of death and the 28- 
day absolute risk reduction were estimated using the Cox model and 
the Fine and Gray model. The Cox model estimated the hazard ratio of 
death due to COVID-19 and the 28-day absolute risk reduction incor-
rectly in almost all cases. The magnitude of the estimation bias increased 
when the process of recovery was faster and/or the chance of recovery 
was higher. In some cases, the estimates obtained from the Cox model 
also incorrectly showed a harmful effect of treatment when it was in fact 
beneficial. The simulation study therefore shows that there is a sub-
stantial risk of misleading results in COVID-19 research if recovery and 
death due to COVID-19 are not considered as competing events, and the 
assumption of non-informative censoring is violated. This issue, and 
others related to intercurrent events, is best addressed using the esti-
mand framework, which has now become a regulatory requirement for 
trials aimed at new drug registration [69]. 

Another well-known issue with the Cox model is the presence of 
strongly non proportional hazards. Much literature has recently focused 
on alternatives to the Cox model, especially for situations where de-
viations from proportionality are expected or have been observed, e.g., 
in trials of immunotherapy for cancer patients. Accelerated failure time 
models and the restricted mean survival time have been advocated in 
such cases, as have approaches based on generalized pairwise compar-
isons such as the win ratio and the net benefit [17]. Further experience is 
needed with these alternative approaches, which might advantageously 
be considered in COVID-19 trials. 

11. The need for data sharing 

During the pandemic, one of the key needs was and remains the 
collection of personal and medical data at an individual and group level. 
This need provided impetus for contact tracing and opened possible 
avenues of research for understanding the spread of the virus throughout 
the population and specific subgroups. In the discussion regarding the 
use of existing medical data, the collection of new data and in particular 
the collection of contact tracing data, some policy makers argued that 
there was a conflict between the rights guaranteed by the European 
Union’s General Data Protection Regulation (GDPR), and this need for 
data sharing. This paradoxical dichotomy potentially inhibits the use of 
valuable data for research purposes within a country, and jeopardises 

cross-border scientific cooperation in the case of different in-
terpretations of the same regulation within EU-member states. Several 
authors have argued that there is ample room within the GDPR for a 
framework allowing for the scientific use of existing and newly collected 
data to support the international effort to curb the pandemic [12,84]. 
These views are echoed by the European Data Protection Board [38], 
and confirmed by the Belgian Data Protection Authority. Specifically, 
one can invoke article 9(i) of GDPR if ‘… processing is necessary for 
reasons of public interest in the area of public health …’ and 9(j) if ‘… 
processing is necessary for archiving purposes in the public interest, 
scientific or historical research purposes or statistical purposes in 
accordance with Article 89(1)’. These provisions, together with the 
European Clinical Trials Regulation and the corresponding Belgian law, 
provide a solid base for the scientific use and data sharing of medical and 
personal data [37]. As argued by other authors [143] the COVID-19 
pandemic is not a free pass to use these data without any safeguards. 
The pandemic actually has been an opportunity to show that the prin-
ciple underlying GDPR can actually be an advantage for data-driven 
research. The confrontation with a new situation, may also require 
reflection time, i.e., for a debate, but this time was not available, and 
hence public interest should prevail, within limits defined by the ethical 
committees. The availability of granular data from differing sources like 
individual medical files, or data held by mutual health organizations 
would provide unique opportunities to support health policy making 
and develop successful strategies for the current and future pandemics. 
The adoption of standards for data citation and referencing would also 
promote data sharing in an international, interdisciplinary, and inter-
dependent research community. Guidelines have been developed by 
DataCite (https:https://datacite.org/cite-your-data. 
html) and DataVerse (http://best-practices.dataverse. 
org/data-citation/). 

As far as clinical research is concerned, there has been a remarkable 
push towards sharing of individual patient data for a number of years, 
both from publicly-funded trials but also from the pharmaceutical in-
dustry [103]. The goal is to share individual patient data from all 
completed trials within reasonable time after their completion so as to 
allow for further analyses of these patient data, as well as to help the 
design of other trials. Such maximization of the use of patient data is 
certainly in line with greater patient involvement in clinical research, 
and would pave the way to truly patient-centric research. For the 
sharing to be maximally useful, the data should be made available as 
early as possible (without infringing intellectual property rights or 
publication in full by the trial principal investigators). The COVID-19 
pandemic has also made it clear that data should be shared even 
earlier, albeit confidentially, among the Independent Data Monitoring 
Committees of trials investigating similar treatments in order to inform 
decisions about amending or stopping ongoing trials after careful review 
of all relevant data [98]. 

12. Reflections, concluding remarks, and outlook 

In this section, we suggest some specific lessons learned for both the 
modeling and prediction as well as for clinical research. 

First and foremost, there is a huge need for international collabora-
tion through formal and informal scientific networks during pandemics. 
While there are local, country specific aspects to the epidemic (culture, 
population density, demography, health care system), there is com-
monality from an infectious diseases perspective. 

The statistical and methodological teams in academia, industry, and 
government need to connect with each other, nationally and interna-
tionally. Steady research capacity is needed, that can quickly scale up in 
pandemic times in order to respond to pandemics efficiently. For 
example, statisticians working in other areas (exact sciences, economy, 
humanities) can be converted quickly to COVID-19 response work pro-
vided they are sufficiently broadly trained, and there are pre-existing 
communication lines (e.g., university wide statistics research centers, 
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learned societies, etc.). 
More than ever statisticians, modelers, and epidemiologists must be 

able to communicate and collaborate with research teams from other 
key fields, such as virologists, health economists, but also economists, 
social and behavioral scientists, etc. Effective communication lines need 
to be established between statisticians and other scientific experts, 
policy makers and international, national, and local policy makers, the 
public opinion, and the press. A number of statisticians must have 
received media training and ideally have built up experience in clearly 
communicating potentially complex statistical matters. 

An exceptional pandemic situation makes it clear that out-of-the-box 
thinking is needed. Inevitably, inaccurate or incorrect judgements will 
be made at some level during the pandemic. It must be acknowledged, 
and accepted, that knowledge is being built while the response to the 
crisis is being rolled out. Mutual trust between the parties involved and 
honest communication towards the public opinion is essential. In this 
sense, it is fine and even healthy that researchers not automatically 
agree with one another. Critical reflection and peer review, formally and 
informally, externally and internally within research groups, is of crucial 
importance to avoid serious mistakes. A gradually, orderly, and natu-
rally built consensus, can help avoid misguided policies. When the 
process works, public opinion is ready to accept NPIs, for example, 
before they are formally announced. 

A key problem with COVID-19 is the pressure that it can induce on 
the health care system. It is therefore important to have sufficient 
reserve capacity (in terms of hospital, staff, supplies). This is difficult 
because of the cost involved. Statisticians can contribute to planning, 
health economic evaluation, and, during pandemic times, by monitoring 
and forecasting hospital load and other capacity. 

12.1. Modeling, prediction, prevention 

To avoid methodological errors, even when research is done at very 
high speed, and to ensure that models built and data analyses under-
taken are as stable, broadly valid, and unbiased as possible, it is 
imperative to share data at the finest granular level possible, including 
individual patient data in clinical and epidemiological studies, and 
spatial data used to monitor the epidemic, to deter or alleviate post- 
wave outbreaks, etc. 

As is well-known throughout statistics, a well-fitting model (curve) 
does not automatically imply good prediction qualities. In meteorology, 
various weather models are juxtaposed to come to a calibrated weather 
forecast. Good models imply a subtle interplay between epidemiological 
theory, sophisticated modeling, and the use of real-world data: data 
about infections, hospitalization, and mortality on the one hand, and 
non-pharmaceutical interventions taken as well as their gradual relax-
ation on the other. 

In a pandemic epoch, a large number of national, regional, and city- 
wide epidemics can be compared. To date, excellent international re-
sources are available, such as from the European Centre for Disease 
Prevention and Control ([36]; https://www.ecdc.europa. 

eu/en/covid-19-pandemic), Johns Hopkins University 
(https://coronavirus.jhu.edu/map.html), and Our World in 
Data (https://ourworldindata.org/coronavirus). These offer 
valuable resources on how the epidemic is playing out elsewhere. 
Especially in contiguous and highly connected areas, such as in the 
United States and the European Union (especially the Schengen Zone), 
the epidemic’s evolution cannot be seen in isolation, except at the rare 
times where state or international borders are virtually closed. 

12.2. Clinical research 

The COVID-19 crisis has provided an exceptional opportunity to 
question the way in which clinical research is conducted, not just for the 
treatment of COVID-19 patients but also for all other diseases. One of the 
priorities today should be to streamline clinical research in diseases with 

high morbidity and mortality (cancer, cardiovascular disease, etc.) This 
could entail drastic simplifications of trial set-up (protocol review 
committees, ethical approval, regulatory submissions, access to drugs 
from competing drug companies for comparative effectiveness trials, 
etc.) as well as trial conduct (pragmatic trials comparing standards of 
care using ultra-simple protocols, real-time electronic data capture, 
central statistical monitoring, common resources for Independent Data 
Monitoring Committees, etc.) These ideas are by no means new (see, e. 
g., https://moretrials.net/) but with the lessons learned during 
the COVID-19 pandemic, they may get more traction than ever before. 

The need for a strengthened international collaboration in epide-
miology should be accompanied by a corresponding international pre-
paredness for clinical research, in order to quickly deploy large simple 
trials simultaneously in as many countries as possible. If the urgency to 
carry out clinical trials of treatments against COVID-19 could now be 
expanded to all other diseases, it would be a revolution in using statis-
tical methodology to improve global health. 
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