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Abstract

It is widely assumed that we select actions we value the most. While the influence of rewards on decision-
making has been extensively studied, evidence regarding the influence of motor costs is scarce. Specifically,
how and when motor costs are integrated in the decision process is unclear. Twenty-two right-handed human
participants performed a reward-based target selection task by reaching with their right arm toward one of
two visual targets. Targets were positioned in different directions according to biomechanical preference, such
that one target was systematically associated with a lower motor cost than the other. Only one of the two tar-
gets was rewarded, either in a congruent or incongruent manner with respect to the associated motor cost. A
timed-response paradigm was used to manipulate participants’ reaction times (RT). Results showed that when
the rewarded target carried the highest motor cost, movements produced at short RT (,350 ms) were devi-
ated toward the other (i.e., non-rewarded, low-cost (LC) target). In this context participants needed an addi-
tional 150-ms delay to reach the same percentage of rewarded trials as when the LC target was rewarded.
Crucially, motor costs affected the total earnings of participants. These results demonstrate a robust interfer-
ence of motor costs in a simple reward-based decision-making task. They point to the rapid and automatic in-
tegration of motor costs at an early stage of processing, potentially through the direct modulation of
competing action representations in parieto-frontal regions. The progressive overcoming of this bias with in-
creasing RT is likely achieved through top-down signaling pertaining to expected rewards.
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Significance Statement

Rapid evaluation of expected action costs for action selection possesses an adaptive value in ecological
settings. The present work shows that these motor costs quickly and automatically bias decisions suppos-
edly based on reward information, leading to lesser earnings when rewards and motor costs are incongru-
ent. This bias is progressively overcome with increasing reaction times (RTs), consistent with the
perspective of a hierarchical influence of different decisional variables on action representations based on
their level of abstraction. Overall, these findings highlight the need to consider motor costs when using dy-
namic motor tasks for studying decision-making, especially under temporal pressure.
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Introduction
Should I run after the bus or wait for the next one?

Should I grasp the pen on my right side or the one on my
left? Motor decisions shape our daily life, allowing us to in-
teract with our environment by selecting the actions we ulti-
mately make (Cisek and Kalaska, 2010). Action selection is
determined by optimization rules (Todorov and Jordan,
2002; Scott, 2012) to maximize a reward rate which defines
the action value (Rangel and Hare, 2010; Carland et al.,
2019). Hence action selection is often studied in paradigms
manipulating action values, also called value-based deci-
sion-making. Value-based decision-making has mostly
been investigated by varying the type, size, and probability
of reward as well as the influence of time (Padoa-Schioppa
and Assad, 2006; Kable and Glimcher, 2007; Klein-Flügge
and Bestmann, 2012). Intriguingly, the involvement of the
expected motor costs associated with each possibility of
action, another fundamental parameter of the reward rate
(Rangel and Hare, 2010; Carland et al., 2019), has been less
studied and remains poorly understood, both at the behav-
ioral (Morel et al., 2017) and neuronal levels (Walton and
Bouret, 2019).
Understanding the integration of motor costs in the ac-

tion selection process represents an important stake for
the development of an ecological model of decision-mak-
ing. Indeed, considering motor costs quickly and reliably
is crucial when one has to flee from a predator or when
hunting a prey. Inspired by these accounts, it has been
suggested that sensorimotor representations of action
possibilities, called affordances (Gibson, 1966), might be
encoded and compete for action selection in parieto-fron-
tal regions (Cisek, 2012; Gallivan et al., 2015; Pezzulo and
Cisek, 2016). An intriguing possibility is that motor costs
quickly modulate the early formation of action representa-
tions and/or the competition process taking place in pari-
eto-frontal regions, and thus automatically bias action
selection, even when it is supposed to rely on abstract or
cognitive rules. This possibility is supported by recent be-
havioral studies demonstrating that motor costs strongly
influence target selection in motor choices (Cos et al.,
2011; Shadmehr et al., 2016; Gallivan et al., 2018) even
when adding temporal pressure (Cos et al., 2014), and
can also significantly bias perceptual-based judgements
(Marcos et al., 2015; Hagura et al., 2017). Yet, these pre-
ceding studies have revealed a significant influence of
motor costs only in uncertain perceptual decision-making
contexts, that is when the information provided by visual
stimuli is blurred and the perceptual decision harder. In
these contexts, motor costs might have influenced

decisions because of the lack of clear perceptual evi-
dence favoring one of the options dictated by the abstract
rule, thus making the less effortful option the most valued.
Hence, this evidence does not permit to disentangle if

motor costs involve an automatic bias even when the de-
cision is based on a clear and explicit abstract rule. To
test that we developed a simple reward-based decision-
making paradigm where the perceptual evidence re-
mained the same across conditions and constant during
trials. Critically, motor costs were manipulated by varying
target positions in the workspace to influence the biome-
chanical complexity of the required reaching movement,
and thus the amount of effort needed. We hypothesized
that if motor costs automatically bias decisions, then
there should be a significant influence of target position
on choices although the level of perceptual evidence re-
mains constant. We further assumed that this bias would
be most apparent at short response latencies. In order to
ensure a sufficient number of trials with short reaction
times (RTs) and to better identify the latency at which
motor costs might bias behavior, we used a timed-re-
sponse task (Ghez et al., 1997; Cos et al., 2014; Haith et
al., 2016). Results revealed that motor costs had a signifi-
cant influence on participants’ behavior by impacting
movement kinematics and target choices, and thus mod-
ulating the amount of rewards ultimately gained.

Materials and Methods
Participants
Twenty-two university students [10 females, 246 4

(mean 6 SD) years old] participated in this study. All par-
ticipants had normal or corrected-to-normal vision. All
were right-handed based on self-report and were free of
any known neurologic or psychiatric condition. A $30
CAD compensation was given to participants ($15 per 1-h
session) and they could earn up to an additional $20 CAD,
depending on their performance. In all cases, participants
finished the experiment with a net monetary gain averag-
ing $44.56 1.8. Participants gave their informedwritten con-
sent, and all procedures were approved by the University of
Sherbrooke institutional review board and ethics committee.
The experiment conformed to the standards set by the 1964
Declaration of Helsinki.

Experimental task
Set-up
The experimental setup consisted of a table supporting

a 20-inch computer monitor that projected visual stimuli
onto a mirror positioned horizontally in front of the partici-
pants. The monitor (Dell P1130 20-inch monitor; resolu-
tion: 1024� 768; refresh rate: 150Hz) was mounted face
down 29 cm above the mirror and the mirror was posi-
tioned 29 cm above the table surface. A two-joint manipu-
landum composed of two lightweight metal rods with two
potentiometers located at the manipulandum’s hinges
permitted to record participants movements with an ac-
quisition frequency of 100Hz. Participants were asked to
grasp a short handle located at the mobile end of the ma-
nipulandum, which position in the workspace was visible
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for the participants via a cursor projected on the monitor.
Consequently, although participants could not see their
right hand, they had constant visual feedback of the posi-
tion of their hand, in a manner similar to a computer
mouse. This set-up allowed participants to see the visual
stimuli in the same plane as their hand and has already
been used in published studies (Hamel et al., 2017;
Hamel-Thibault et al., 2018; Savoie et al., 2019).

Overview
Participants were seated in front of this set-up. They

were asked to reach toward visual targets (diameter:
3 cm) with their right hand. Their starting position was
controlled by resting their chin on a small support and
keeping their right elbow in contact with the surface of the
table. They were also told to minimize postural changes
during the experiment. To initiate a trial, participants had
to place the cursor (white circle, diameter: 0.6 cm), and
thus their hand, on a starting point located at the center of
the screen (gray circle, diameter: 0.6 cm). Most of the tri-
als (720/1200) were two-target (2T) trials that consisted of
two targets located 90° apart on the screen, and the rest
of the trials (480/1200) were one-target (1T) trials in which
only one target was displayed. The difference between
the two conditions is that in 2T participants had to choose
which target they wanted to reach. There were four possi-
ble target locations: 60°, 150°, 240°, and 330°. All targets
were at the same distance from the starting point (10 cm).
In 2T, targets could appear upward (CONF1), leftward
(CONF2), downward (CONF3), or rightward (CONF4) from
the starting point. Each of these configurations contained

one target located in a direction biomechanically easier to
reach than the other (see below). The order of presenta-
tion of the trials was varied pseudo-randomly by ensuring
that the same condition was not presented twice consec-
utively and that a 2T trial following a 1T trial did not consist
of a configuration that included the same target as the
one displayed in the 1T trial, to prevent repetitiveness of
choices. Because the deliberation time was constrained
(see below), the use of different configurations of targets
provided stochasticity and prevented the stereotypical
preplanning of any given movement. Six blocks of 200
test trials were used for each participant. The experiment
was divided into two 1-h sessions (three blocks per session)
separated by 24 h. During the first session, participants had
to perform at least two blocks of 20 familiarization trials be-
fore beginning the experimental blocks. If they succeeded
at correctly hitting targets in 15 out of 20 trials in the second
block, they were allowed to move on with the first block of
test trials, otherwise they had to perform another familiariza-
tion block of 20 trials.

Trial timeline
We used a timed-response task (Ghez et al., 1997; Cos

et al., 2014; Haith et al., 2016) to control participants’
reach RTs. During each trial, participants heard a se-
quence of four rhythmic auditory tones separated by 500-
ms intervals (Fig. 1A). The first tone was triggered after
holding the cursor on the starting point for 350ms.
Targets were projected 100–400ms before the fourth
tone, according to a uniform distribution (60 trials per con-
dition ranging from 100 to 400ms with a 5-ms increment).

Figure 1. Experimental design. A, Brown bars and musical notes indicate the four auditory cues. The black horizontal bar indicates
the range of target onsets (�400 to –100 ms before go cue). The shaded red area around the go cue indicates valid movement
onset interval (�150 to 150ms). Reported times under the brown bars correspond to time differences from go cue (fourth tone). B,
LC targets on positions 1 (POS1=60°) and 3 (POS3=240°) were located on the major axis of the mobility ellipse (MAJ; thick blue el-
lipse) whereas HC targets on positions 2 (POS2=150°) and 4 (POS4=330°) were located on the minor axis of the mobility ellipse
(MIN; thin blue ellipse). Dotted lines schematically illustrate the right arm initial position, and the gray circle indicates the hand initial
position. C, First row shows the four configurations of targets used in the task. Second row illustrates the control (CTRL; first and
second panels), congruent (CONG; third panel), and incongruent (INCONG; fourth panel) conditions for the first configuration of tar-
gets (CONF1).
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Participants were told to initiate their movement as syn-
chronously as possible with the fourth tone. Visual feed-
back was presented at movement end and remained for
1 s. In correct trials, the feedback indicated the number of
points won (between 0 and 1 depending on MT when a
green target was correctly reached or 0 when it was a
cyan target, see below for further details). Trials in which
participants initiated their movement .150ms before or
after the fourth tone were aborted and an error message
was presented, informing them that they had lost one
point because they were too fast or too slow. The diame-
ter of the targets was relatively large (3 cm) to minimize a
potential precision bias which could interfere with the in-
fluence of biomechanical costs on decisions (Cos et al.,
2012). Accordingly, there was no penalty for missed-tar-
get trials, an error message simply indicated that the par-
ticipant had won no point because the target was missed.
Once the movement ended, participants had to bring the
cursor back to the starting point to initiate the next trial.

Manipulation of rewards and costs
Each reaching movement has a biomechanical cost

that depended on the direction of the movement in regard
to the ellipse of mobility of the right arm in our task.
Indeed, previous studies showed that targets located on
the major axis of the ellipse of mobility (60° and 240°) are
chosen more often than targets located on the minor axis
(150° and 330°), because their associated reaching move-
ment carries a lower biomechanical cost (Cos et al., 2011;
Shadmehr et al., 2016; Michalski et al., 2020; Fig. 1B).
Importantly, in each 2T configuration one target was lo-
cated on the major axis of the ellipse of mobility of the
participant’s arm and thus associated with a low biome-
chanical cost (LC), whereas the other was located on the
minor axis and considered as a high-cost (HC) target.
Hence, there was a difference of motor costs between the
two action possibilities. Participants were not told that
some targets were more costly to reach than others.
Targets could appear green or cyan, with an equal level of
luminance. Participants were told that green targets were
rewarded (one point) whereas cyan targets were not, and
that the cumulated points would be converted into net
earnings at the end of the experiment (42 points = $1
CAD). Additionally, to incentivize speed, the magnitude of
reward on a trial gradually decreased as a function of
movement time (MT); if the MT was above 250ms, the re-
ward was decreased by 0.2 points per additional 100ms.
Thus, in 2T condition, the manipulation of reward and
motor cost could be congruent (CONG) when the LC tar-
get was green (rewarded) and the HC target was cyan
(non-rewarded), or on the contrary it could be incongruent
(INCONG) when the HC target was green and the LC tar-
get was cyan. There also was a control condition (CTRL)
in which both targets were the same color, so that the par-
ticipants’ decision should be based exclusively on the dif-
ference in motor costs between targets (Fig. 1C).

Data analysis
Visual stimuli were presented using Psychtoolbox on

MATLAB (MathWorks). Hand position was estimated in

real time with the coordinates of the two potentiometers
in the workspace. Movement onset was defined as the
first time point when the coordinates of the hand were
outside the starting point. Movement end was defined as
the first time point when the coordinates of the hand were
recorded inside of one of the presented targets with a ve-
locity below one pixel per second. Trials where movement
velocity fell below one pixel per second outside of the pre-
sented targets were considered as missed-target trials.
RTs were calculated as the latency between target appear-
ance and movement onset. MTs were calculated as the la-
tency between movement onset and movement end. In 2T
trials, the target where the movement ended was consid-
ered as the final choice of participants. Importantly, be-
cause of the possibility of rapid influence of motor costs on
choices (Cos et al., 2014) and changes-of-mind during
movement (Resulaj et al., 2009), we investigated the initial
choice of participants. The initial choice was determined
according to which quadrant the hand was located 100ms
after movement onset. Missed-target trials where the hand
position at movement end was,1cm around the edges of
one of the targets (,4cm from the target center) were kept
for further analysis. Indeed, because there was a conse-
quent proportion of missed-target trials (;9%) because of
the high time pressure, and because we were mainly inter-
ested in target choices and not in movement accuracy, we
considered that movements ending,1cm around a target
indicated that this target was chosen by the participant.
Participants had to initiate their movements in a time win-
dow of 300ms centered on the go cue (fourth tone) or else
the trial was aborted and they lost one point (see above).
Hence, these error trials were also excluded from the anal-
ysis. 2T trials for which the trajectory angle 100ms after
movement onset was outside of the quadrants containing
the targets (645° from the target) were excluded from anal-
ysis (0.3% of 2T trials) to ensure that the observed action
was not the result of a default or preplanned response. 1T
trials for which the trajectory angle 100ms after movement
onset was.90° from the target were excluded (0.2% of 1T
trials). The difference in accuracy criterion between 1T and
2T trials was chosen to make both conditions comparable.
Indeed, we reasoned that to control whether a rapid bias
toward the LC direction was the result of a preplanned
movement or a deviated trajectory to reach the HC target,
we should keep 1T trials in which the trajectory would have
been deviated in these directions.

Experimental design and statistical analysis
All analyses were conducted on the 22 participants that

took part in the experiment. In order to take into account
interindividual variability in behavior, we used general line-
ar mixed models (GLMMs) instead of ANOVA for within-
subjects comparisons. Indeed, GLMM allow to analyze
data with different numbers of observations per subject
and condition by assigning participants as a random fac-
tor in the model, making it a robust approach for the anal-
ysis of biological data (Harrison et al., 2018). For each
analysis we ran several models including the different
combinations of fixed and random factors and interac-
tions between them. We then selected the model with the
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lowest Akaike Information Criterion (AIC). AIC is a statistic
that quantifies the loss of information resulting from mod-
eling the real process underlying the data by taking into
account concurrently the bias and the variance of the
model (Symonds and Moussalli, 2011). Importantly, all
GLMM that we used included subject (22 levels: one for
each participant) as a random variable. We used paired t
tests or Wilcoxon tests if the data were not normally dis-
tributed (p, 0.05 Shapiro–Wilk test) for pairwise compari-
sons. A Bonferroni correction of p values was applied
when conducting multiple pairwise comparisons. For
each statistical test conducted, Cohen’s d was reported
to indicate effect size (Lakens, 2013). Statistical analyses
were computed using Jamovi v.1.2.27 (the jamovi project,
2019, Jamovi, computer software, retrieved from https://
www.jamovi.org), a software that implements R statistical
language (R Core Team, 2018, R: a language and environ-
ment for statistical computing, computer software, re-
trieved from https://www.cran.r-project.org/).

Results
We first sought to verify whether motor costs had a sig-

nificant influence on participants’ movements and
choices when targets were equally valued. To do so, we
isolated both 1T and 2T trials in the CTRL condition.
Targets in positions 1 and 3 were located on the major
axis of the ellipse of mobility and thus associated with a
LC, whereas targets in positions 2 and 4 were on the
minor axis and considered as HC targets (see Materials
and Methods; Fig. 1B). Targets were rewarded or not de-
pending on their color (cyan: no reward, green: reward).
GLMM that included position (four levels: POS1, POS2,
POS3, and POS4) and color (two levels: cyan or green)
were conducted on MT in 1T trials. The selected GLMM
[MT; 11position1 color1 position:color1 (11position
| subject), AIC =�36593.1, BIC =�36373.8, marginal R2 =
0.23, conditional R2 = 0.53] showed a significant effect of
the position of the target on MT (F(3,21) = 128.0, p,10�5),
but neither an effect of color (F(1,9847.7) = 0.03, p=0.858)
nor an interaction between them (F(3,9847.9) = 0.8, p=0.519).
Post hoc analyses showed that MT in 1T trials were signifi-
cantly lower for movements directed to target position 1
compared with targets located in position 2 (t(21) = �15.4,
p, 10�5, Cohen’s d = �3.3) and position 4 (t(21) = �14.3,
p, 10�5, Cohen’s d = �3.1). Similarly, movements di-
rected to target in position 3 were significantly faster than

those directed to targets in position 2 (t(21) = �16.2, p,
10�5, Cohen’s d = �3.5) and position 4 (t(21) = �12.8,
p, 10�5, Cohen’s d = �2.7), thus globally showing that
MT was reduced when reaching to LC as compared with
HC targets (Fig. 2A).
In 2T trials, the potential decisional bias incurred by

motor costs was assessed using one-sample Wilcoxon-
ranked tests on the average proportion of LC target
choices across participants in the CTRL condition for
each configuration of targets. Precisely, the statistical test
aimed to determine whether the proportion of LC target
choices was significantly different from 50%. Results
showed that participants’ choices were significantly biased
toward the LC targets, regardless of the configuration
(CONF1: W(21) = 253, p, 10�5, Cohen’s d=2.3; CONF2:
W(21) = 243, p=10�4, Cohen’s d=1.7; CONF3: W(21) = 238,
p=10�4, Cohen’s d=1.2; CONF4: W(21) = 253, p, 10�5,
Cohen’s d=2.0; Fig. 2B). Note that participants tended
to choose more often the LC target in 2T rewarded trials
compared with non-rewarded trials (t(21) = 3.3, p=0.003,
Cohen’s d=0.7), but the mean difference between choices
was low (3.8%) and was not sufficient to significantly im-
pact the average MT between rewarded and non-rewarded
trials (t(21) = 0.4, p=0.672). Furthermore, a control analysis
conducted only on non-rewarded CTRL trials also showed
a significant preference for LC targets (CONF1:W(21) = 238,
p=10�4, Cohen’s d=1.3; CONF2: W(21) = 249, p=10�4,
Cohen’s d=1.9; CONF3: W(21) = 247, p=10�4, Cohen’s
d=1.7; CONF4: W(21) = 249, p=10�4, Cohen’s d=1.9).
These first results confirm that participants’ movements
and choices were significantly influenced by the differential
motor costs associated with each target in our task, which
replicates previous findings using similar tasks (Cos et al.,
2011, 2014; Shadmehr et al., 2016).
The next step of the analyses consisted in testing the

influence of motor costs on reward-based decisions.
Specifically, we aimed to compare the accuracy of the de-
cisions in CONG and INCONG conditions. We analyzed
initial choices by calculating the trajectory angle 100ms
after movement onset and comparing it with the actual
angle of the rewarded target in each condition (Fig. 3A).
The success rate was defined as the proportion of trials
oriented toward the quadrant of the rewarded target
100ms after movement onset. Consequently, trials with
movements initiated (100ms after movement onset) in the
quadrant of the rewarded target were considered as cor-
rect and trials with movements initiated in the quadrant of

Figure 2. Effects of motor costs on movements and choices without rewards. A, Average MT for each target position in 1T trials. B,
Average proportion of LC target choices (targets in positions 1 and 3), for each target configuration. Values higher than 50 demon-
strate a bias toward the LC target. Error bars indicate ci95 around the mean; *p, 0.05, **p, 0.01, ***p, 0.001.
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the non-rewarded target were considered as incorrect.
Globally, participants were less accurate in INCONG than
in CONG trials, their success rates being lower in the for-
mer condition (W(21) = 253, p=10�4, Cohen’s d=1.1; Fig.
3B). In order to probe the magnitude of this difference for
the different deliberation periods, we then computed the
success rates of participants according to their RT. As ex-
pected, the success rates increased with the length of RT,
but this rise appeared slower in the INCONG condition
than in the CONG condition (Fig. 3C). Because we used
the hand trajectory to define choices, we controlled for
any default bias that could be because of the position of
the target by adding 1T trials to the model. More specifi-
cally, we used rewarded 1T trials, split according to their
motor cost (R-HC and R-LC). Thus, the only difference
between INCONG and R-HC trials was the presence of
the non-rewarded LC target in the INCONG condition (in
the same way the presence of the non-rewarded HC tar-
get in the CONG condition when comparing CONG and
R-LC trials). The analysis demonstrated that success
rates were significantly modulated both by conditions and
RT (Fig. 3C). We used a GLMM with condition (four levels:
CONG, INCONG, R-LC, and R-HC) and RT (13 levels: 20-
ms bins ranging from 200 to 460ms) as fixed factors. The
lower bound of RT analysis was fixed at 200ms to ensure the
validity and representativity of the observed behavior, be-
cause of the lack of datapoints in 20-ms bins below this time
(only 15 trials comprised between 180 and 200ms originating
from seven of the 22 participants). This might be explained by
the shortest stimulus-response interval fixed (1006 150ms),
allowing maximal RT of 250ms. In this context, it was optimal
to wait as much as permitted to fully process the position and
color associated with the targets to reach the rewarded one,
instead of initiating the movement too early and missing the

reward. The analysis [success rates; 11 condition1 RT1
condition:subject1 (11 condition | subject), AIC =�3516.7,
BIC = �2827.8, marginal R2 = 0.31, conditional R2 = 0.46]
showed significant effects of condition (F(3,56.9) =10.2, p=
10�5) and RT (F(12,2481.0) =22.9, p, 10�5) on success rates
and an interaction between condition and RT (F(36,2481.1) =
10.5, p, 10�5). Crucially, the difference in success rates be-
tween CONG and INCONG trials was significant until the RT
reached [340, 360 ms] ([200, 220 ms]: t(108.8) =10.6,
mean diff =41.5%, p, 10�5; [220, 240 ms]: t(57.9) =9.7, mean
diff=32.2%, p, 10�5; [240, 260 ms]: t(51.9) =6.9, mean diff=
22.5%, p, 10�5; [260, 280 ms]: t(51.9) = 5.8, mean
diff = 18.8%, p = 10�4; [280, 300 ms]: t(51.9) = 4.2, mean
diff = 13.5%, p = 0.002; [300, 320 ms]: t(51.9) = 3.2,
mean diff = 10.9%, p= 0.018; [320, 340 ms]: t(51.9) =
3.2, mean diff = 10.5%, p= 0.027; [340, 460 ms]: t, 2.6,
mean diff, 8.4%, p. 0.160).
Another way of assessing the difference in the accuracy

of choices between CONG and INCONG conditions is to
use an absolute value of success rate (95%) as a criterion;
95% confidence intervals (ci95) around the mean of suc-
cess rates for each range of RT included the value 95 as
early as the lowest range of RT in the CONG condition
([200, 220 ms], mean = 94.4%, ci95 = [90.7, 98.2]),
whereas in the INCONG condition participants did not
reach this success rate until RTs of 350ms ([340, 360
ms], mean = 91.4%, ci95 = [85.4, 97.4]). This observa-
tion is consistent with the previous results using GLMM.
Overall, these results show that participants needed an
additional delay of;150 (140–160) ms to achieve a sim-
ilar success rate when the HC target was rewarded
compared with when the LC target was rewarded, sug-
gesting considerable interference of motor costs on re-
ward-based choices.

Figure 3. Effects of motor costs on reward-based decision-making. A, Distribution of trajectory angles 100ms after movement
onset as a function of RT in CONG (green dots) and INCONG (red dots) conditions for a representative participant in CONF1.
Dotted lines indicate the angle of the LC target and HC targets. B, Global success rates based on initial choices (proportion of tri-
als for which the hand location 100ms after movement onset was in the quadrant of the rewarded target) in CONG and
INCONG conditions for each participant. C, Success rates as a function of RT in CONG (green line), INCONG (red line), R- LC
(cyan line), and R-HC (magenta line) conditions. The shaded areas indicate ci95 around the mean. D, Total earned points during
the experiment in CONG and INCONG conditions for each participant. Error bars indicate ci95 around the mean; *p, 0.05,
**p, 0.01, ***p, 0.001.
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Critically, this difference in success rates between
CONG and INCONG conditions was not explained by a
difference between trajectories needed to reach the LC
and the HC target. Indeed, there was no significant dif-
ference between R-HC and R-LC in success rates at any
RT tested ([200, 460 ms]: t, 2.1, mean diff, 7.9ms,
p. 0.530). Additionally, the choice bias observed in the
INCONG condition did not appear to result from a default
movement, made without considering the presented
targets at short RT, because we noted a significant
difference in success rates between INCONG and R-
HC over RT ranging from 200 to 340ms, comparable
to the difference previously found between CONG
and INCONG conditions ([200, 220 ms]: t(169.1) = 7.2,
mean diff=32.3ms, p, 10�5; [220, 240 ms]: t(61.2) =10.5,
mean diff = 36.3 ms, p,10�5; [240, 260 ms]: t(50.7) =
7.4, mean diff = 24.2ms, p,10�5; [260, 280 ms]:
t(50.1) = 6.1, mean diff = 19.9ms, p = 10�5; [280, 300
ms]: t(50.1) = 4.5, mean diff = 14.7ms, p = 10�4; [300,
320 ms]: t(50.1) = 3.7, mean diff = 12.2ms, p = 0.007;
[320, 340 ms]: t(50.1) =3.6, mean diff=11.6ms, p=0.011) until
[340, 360 ms] ([340, 460 ms]: t,2.7, mean diff, 8.7ms,
p. 0.156). This suggests that the shift in the initial trajectory
observed in the INCONG condition was specifically due to
the presence of the non-rewarded LC target (Fig. 3C). The dif-
ference in initial choices between INCONG and R-HC condi-
tions was also observable in the average angle of the initial
trajectory at shortest RT (Fig. 4B).
The next question we asked was whether this bias in ini-

tial choice was further corrected or not. We compared ini-
tial and final choices of participants in INCONG trials
across RT ranges. The GLMM included two fixed factors:
choice (two levels: initial and final) and RT (13 levels: 20-
ms bins ranging from 200 to 460ms). The selected model
[success rates ; 11 choice 1 RT 1 choice:RT 1 (11
choice 1 RT | subject), AIC = �621.5, BIC=206.5, mar-
ginal R2 = 0.19, conditional R2 = 0.60] demonstrated a sig-
nificant effect of RT (F(12,30.1) = 9.2, p, 10�5) and a
significant effect of choice (F(1,96.4) = 6.7, p=0.01) but no
interaction between RT and choice (F(12,1226.2) = 1.0,
p=0.441). The magnitude of the choice effect was rela-
tively low because success rates were only on average
2.6% [ci95: 0.7%, 4.5%] higher in final choices compared

with initial choices. Additionally, the absence of interac-
tion between choice and RT suggests that initial and final
choices evolved in a similar manner as a function to RT.
Consequently, at shorter latencies participants’ initial
choices were not only biased in the quadrant of the LC
target, but their final choice also corresponded more
often to the non-rewarded target. This tendency was con-
firmed by the analysis conducted on the total earned
points. We first removed the MT-based correction (no de-
crease in the number of earned points according to MT)
so that the total amount of points was not influenced by
the longer MT needed to reach to the rewarded target in
INCONG than in CONG conditions (Fig. 2A). The analysis
showed that participants won significantly more points in
the CONG than in the INCONG trials (t(21) = 6.4, mean
diff = 42.3, p, 10�5, Cohen’s d=1.4; Fig. 3D). Hence, the
difference in motor costs between targets meaningfully
impacted the total earnings of participants.
Beside motor costs, other factors might have also bi-

ased choices in the present task. Namely, low-level visuo-
attentional processes may also have had an influence.
These preferences possibly involve a right-hemifield vis-
ual bias for right-handed individuals as well as for move-
ments performed with the right hand (Coelho et al., 2013;
Le and Niemeier, 2014). In order to test for such visuo-at-
tentional bias, we analyzed the difference in success
rates between CONG and INCONG conditions separately
for each configuration of targets. We included only trials
with RT,350ms because it was at these latencies that
motor costs significantly influenced participants’ choices
in previous analyses (see above). The GLMM included
congruence (CONG, INCONG) and configuration (CONF1,
CONF2, CONF3, CONF4) as fixed factors [success
rates ; 11 congruence 1 configuration 1 congru-
ence:configuration 1 (11 congruence 1 configuration
| subject), AIC = �766.3, marginal R2 = 0.23, condition-
al R2 = 0.62]. It demonstrated a significant effect of
congruence (F(1,21.1) = 28.6, p = 10�5), configuration
(F(3,26.3) = 5.1, p = 0.007) as well as an interaction
(F(3,457.0) = 5.6, p = 0.001). Post hoc analyses revealed
significant differences in success rates between CONG and
INCONG for CONF1 (t(35.7)=5.0, mean diff=15.8%, p=10�5),
CONF2 (t(35.7)=6.1, mean diff=19.3%, p, 10�5), and

Figure 4. Influence of target configuration on directional bias. A, Average success rates according to configurations of targets and
congruence (green bars, CONG; red bars, INCONG). Error bars indicate ci95 around the mean; *p, 0.05, **p, 0.01, ***p, .001. B,
Mean trajectory angle 100ms after movement onset in INCONG condition for CONF1 (brown arrows), CONF2 (red arrows), CONF3
(orange arrows), and CONF4 (yellow arrows), and in R-HC condition for POS2 (dark purple arrows) and POS4 (light purple arrows).
Concentric circles indicate RT (gray values in ms).
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CONF4 (t(35.7) =4.6, mean diff=14.6%, p=10�4). This effect
was also significant for CONF3 but was of smaller magnitude
(t(35.7) =2.9, mean diff = 9.3%, p= 0.02; Fig. 4A). This
smaller effect for CONF3 suggests that a rightward vis-
ual bias could have countered the influence of motor
costs, because in this condition the LC target was lo-
cated on the left hemifield whereas the HC target was lo-
cated on the right hemifield. Comparisons between
configurations of targets showed no significant differ-
ence in success rates in CONG condition (t,0.5, mean
diff, 1.3, p= 1), whereas success rates in INCONG were
higher in CONF3 compared with CONF1 (t(46.8) = 3.0,
mean diff = 6.5%, p= 0.024) and CONF2 (t(43.8) = 5.1,
mean diff = 11.3%, p= 10�5). Hence, choices in INCONG
condition were not equivalent between configurations
of targets, especially comparing CONF2 and CONF3.
Importantly, only the position of the HC target differed
between both conditions (Fig. 1C), suggesting that this
behavioral effect should be attributable to a different de-
gree of preference for HC targets depending on their lo-
cations. Indeed, the choice was significantly more
biased toward the LC target when the HC target was lo-
cated in the upper left quadrant (CONF1 and CONF2)
compared with when it was located in the lower right quad-
rant (CONF3 and CONF4; Fig. 4B). Overall, these results sug-
gest that a rightward visual bias could have influenced initial
choices along with motor costs. Nonetheless, the lack of sig-
nificant preference for the LC target in CONF1 as compared
with other target configurations limits this interpretation.
Hence, the existence of an early visual bias remains to be
clarified. Finally, the last part of the analysis aimed to deter-
mine whether motor costs were learned and thus had a grow-
ing influence on participants’ choices over the course of the
experiment, or whether they consisted in a bias that was al-
ready present at the beginning of the experiment. The GLMM
included two fixed factors: congruence (two levels: CONG
and INCONG) and block (six levels). The analysis [success
rates ; 11 congruence 1 block 1 (11 congruence | sub-
ject), AIC = –1067.7, BIC = �915.2, marginal R2 = 0.16, con-
ditional R2 = 0.44] revealed a significant effect of congruence
on participants’ choices (F(1,20.9) =23.9, p=10

�5) but neither a
significant effect of block (F(5,866.1) =0.8, p=0.544) nor an in-
teraction between congruence and block (F(5,866.1) =1.2,
p=0.298). The presence of a bias in choices between CONG
and INCONG as early as the first block and the absence of a
significant change in this bias across blocks suggest that the
influence of motor costs on behavior was not acquired during
the experiment.

Discussion
This study revealed that varying the relative positions of

targets, and thus the motor costs associated with each
movement, is enough to influence a decision based on
simple visual cues specifying rewards. Precisely, motor
costs significantly biased initial choices, represented by
the direction of the hand trajectory 100ms after move-
ment onset, when RT ranged from 200 to 350ms. This
bias seemed to delay the normativity of the decision
because it took ;150ms more to achieve a similar suc-
cess rate when the rewarded target was the most

biomechanically costly (INCONG) compared with when
the rewarded target carried the lowest cost (CONG).
Motor costs had a substantial impact since participants
earned significantly less reward in the INCONG than in the
CONG condition. Importantly, the bias in INCONG initial
trajectory could not be explained as an intrinsic feature of
the trajectory used to reach the HC targets, since this de-
viation was not observed in 1T trials involving a HC re-
warded target (R-HC).
These results should be interpreted keeping in mind

that reward information was varied in the simplest way in
our task with a binary color-based choice (for details, see
Materials and Methods). The stimuli were equiluminant,
there was no perceptual ambiguity between them, and
the perceptual evidence remained constant throughout
the trial. Additionally, participants were not explicitly in-
formed that some targets would be easier to reach than
others; they were only told that green targets were associ-
ated with points and that whatever monetary gain they ac-
cumulated by the end of the experiment would be theirs.
A “normative” decision in this task should thus only con-
sider expected rewards and not motor costs since the lat-
ter were irrelevant to the task. In this light, the fact that
motor costs impacted time-constrained choices (imped-
ing success rates), speaks to the automatic nature of their
influence. This extends previous studies reporting a sig-
nificant influence of motor costs on effort-based (Cos et
al., 2014; Gallivan et al., 2017; Morel et al., 2017) and per-
ceptual-based decision-making (Marcos et al., 2015;
Hagura et al., 2017). This influence is particularly relevant
to underline because the trajectory of reaching move-
ments has been frequently used to infer choices based on
visual and cognitive information (for review, see Song and
Nakayama, 2009; Gallivan et al., 2018) even in high-speed
decision contexts (Chapman et al., 2010, 2015; Carroll et
al., 2019), but little interest has been given to the impact
of motor costs carried by the different targets in these
contexts.
There is a debate between serial and parallel models re-

garding the functional architecture underlying decision-
making (Wispinski et al., 2020). In short, serial models
state that decisions are made in a space of goods repre-
senting abstract values of options in the prefrontal cortex
(Padoa-Schioppa, 2011), whereas parallel models sug-
gest that decisions are made in a space of actions
through a competition between sensorimotor representa-
tions of actions in parieto-frontal regions (Cisek and
Kalaska, 2010). This debate is a central issue in the under-
standing of the integration of motor costs in the decision
process because there is evidence that motor costs
might be integrated with reward information in the pre-
frontal cortex (Cai and Padoa-Schioppa, 2019), but also
that they might bias the decision quickly and thus be
rather integrated in sensorimotor regions (Cos et al.,
2014; Christopoulos and Schrater, 2015; Gallivan et al.,
2017). The present results do not allow to resolve this
debate, because they can be explained by both models.
Indeed, in our task the success rate was not signifi-
cantly different from 50% in the INCONG condition at
the shortest RTs (Fig. 3C), meaning that participants

Research Article: New Research 8 of 11

July/August 2021, 8(4) ENEURO.0247-21.2021 eNeuro.org



might have considered both reward and motor cost informa-
tion before initiating their movements. Consequently, motor
costs could have increased the conflict in a competition be-
tween target values, or conversely, they could have biased
action representations while being modulated by top-down
signals specifying reward information. Nonetheless, the pres-
ent study highlights the importance of considering basic
motor costs inherent to reaching in different directions, even
in a context in which target choices supposedly rely on other
variables.
Previous studies have shown that motor costs influence

decisions in ,200ms (Cos et al., 2014), with activation of
sensorimotor regions related to the evaluation of motor
costs found as early as 100ms after stimulus onset
(Harris and Lim, 2016). These data, in line with ours, sug-
gest that there appears to be no RT that is too fast for
motor costs not to be considered. This would be consist-
ent with the rapid formation of sensorimotor representa-
tions of action possibilities (Cisek and Kalaska, 2010), and
point to the possibility that motor costs might bias action
representations at a very early stage. More specifically,
reaching movements are thought to be represented within
directionally-tuned neuronal assemblies in the dorsal pari-
eto-frontal cortex, as a result of the integration of arm-re-
lated and target-related sensory signals (Buneo et al.,
2002; Pesaran et al., 2006; Bernier et al., 2017). An intrigu-
ing possibility is that motor costs are intrinsically factored
in this arm-target integration process. This could take the
form of a gain on the activity of directionally-selective
neurons when the reach direction incurs low motor costs.
Such “native” biasing of action representations according
to cost may be akin to a subset of these regions respond-
ing preferentially to targets in peripersonal space (i.e., at a
reachable distance; Gallivan et al., 2009, 2011). This early
bias has been suggested for attentional and other cogni-
tive biases in perception, under the concept of priority
maps (Andersen and Cui, 2009; Roggeman et al., 2010;
Klink et al., 2014). A unifying mechanism underlying
visuo-attentional preferences and the influence of motor
costs would also explain why they both influenced
choices at the shortest RTs in our task. Indeed, partici-
pants were more accurate when the rewarded HC target
was located in the right visual hemifield as compared with
when it was located in the left hemifield (see Fig. 4B). This
observation is consistent with previous studies that dem-
onstrated an ipsilateral hemifield preference for move-
ments performed with a given hand (Coelho et al., 2013;
Le and Niemeier, 2014). Still, the motor cost bias re-
mained significant in all tested configurations of targets,
suggesting that it was robust in our task.
Alternatively, motor costs might be computed in other

cortical and subcortical regions that influence parieto-
frontal activity. It may arise from inputs from the basal
ganglia and the cerebellum, which are known to modulate
activity in sensorimotor regions by means of cortico- sub-
cortical loops (Pezzulo and Cisek, 2016). Previous studies
suggested that motor costs could influence action selec-
tion by the re-activation of a stored internal model of
limbs biomechanics in the cerebellum (Dounskaia, 2005;
Goble et al., 2007). This is consistent with the proposed

role of the cerebellum in motor learning and prediction of
sensory consequences of movement (Shadmehr and
Krakauer, 2008). Additionally, recent studies highlighted
the involvement of cortico-striatal circuits in the evalua-
tion of effort mediated by dopamine, including the medial
frontal cortex and the dorsal striatum (Kurniawan et al.,
2010; Prévost et al., 2010; Zénon et al., 2015; Klein-
Flügge et al., 2016). However, the role of dopamine in ef-
fort encoding is currently a debated topic (Salamone et
al., 2016; Walton and Bouret, 2019), and the extent to
which our results are linked to these preceding studies re-
mains to be determined. Indeed, most of them have used
hand grip tasks in which participants had to assess the
cost associated with each level of isometric contraction
and compare it with an expected reward by means of ex-
plicit, conscious computations (Prévost et al., 2010;
Zénon et al., 2015; Klein-Flügge et al., 2016; Chen et al.,
2020). This is in contrast with our task where motor costs
inherent to reaching movements are arguably assessed
more implicitly, notably because of the absence of a stim-
ulus indicating the level of required effort. Moreover, vary-
ing the force or duration of an isometric contraction
results in only manipulating the energetic cost of the
movement, whereas the biomechanical preference for
reaching in specific directions appears mainly driven by a
simplification of neural control (Goble et al., 2007). It con-
stitutes a notable consideration because motor costs are
defined as a combination of an energetic cost and a con-
trol cost (Shadmehr and Krakauer, 2008), and the percep-
tion of effort appears not to rely only on the computation
of an energetic cost (Morel et al., 2017).
One limitation concerning the interpretation of the re-

sults is a potential preexisting influence of motor costs
on action selection, before processing target informa-
tion. This concern is related to previous studies that
have shown that movements are biased toward the
lowest cost directions in a context where there is no
target to reach (Wang and Dounskaia, 2012) or move-
ments have to be initiated before target onset (Haith et
al., 2016). Consequently, an alternative explanation of
the rapid motor cost influence observed in the present
results is that this influence preexisted the processing
of target, and thus was independent of the position of
the presented targets. However, this preexisting bias
appears unlikely in our task for several reasons. First, if
this initial bias was preexisting, we should have seen it
also in the 1T trials directed toward the HC target at
the same RT. However, as detailed in Results, there
was no such bias. Second, if the bias was preexisting,
there should be movements initiated in a quadrant
where no target was displayed. However, there were
very few of those (0.3% of the trials, see Materials and
Methods). Furthermore, it should be noted that we
used four different configurations of targets and alter-
nated randomly 2T and 1T to ensure stochasticity. In
this context, participants could not anticipate where
the targets would appear, restricting their capacity to
preplan their movements. Finally, participants ap-
peared to wait as much as permitted before initiating
their movements (few trials with RT, 200ms, see
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Results), indirectly suggesting that they tried to pro-
cess target information.
In conclusion, our results suggest that motor costs bias

action selection even in a reward- based decision-making
context, possibly by providing an early boost to action
representations associated with lower motor costs.
Consequently, when reward information is incongruent
with motor costs, this initial bias would have to be over-
come by the gradual accumulation of evidence in favor of
the other rewarded action, thus accounting for the ob-
served 150-ms delay. This increasing (albeit slower) con-
sideration of the associated reward is likely to be because
of top- down signaling from prefrontal cortex and basal
ganglia, regions known to be involved in the computation
of stimulus-reward association rules (Sleezer et al., 2016;
Ebitz et al., 2020). Overall, these findings are in line with
the perspective of a hierarchical influence of different de-
cisional variables on action representations, based on
their level of abstraction (Cisek, 2012; Pezzulo and Cisek,
2016). This underlines the importance of taking motor
costs into consideration when using dynamic motor tasks
for studying decision-making and to further investigate
the underlying neural basis of the integration of motor
costs in the action selection process.
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