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ABSTRACT

Various molecular mechanisms have been implicated
in the progression from hormone-sensitive to castra-
tion-resistant prostate cancer (CRPC). Novel tar-
geted agents to treat CRPC have been developed that
inhibit either androgen receptor (AR)-mediated sig-
naling (AR antagonists and inhibitors of androgen
synthesis) or non–AR-mediated signaling (inhibitors
of Src, mammalian target of rapamycin, chaperone
proteins, insulin-like growth factor-1 receptor, vas-
cular endothelial growth factor, and endothelin-A re-
ceptor) pathways. However, variable efficacy has
been observed in clinical trials, most likely because of

the biologic heterogeneity of CRPC. To account for
potential differences in disease biology, a more indi-
vidualized approach to treatment, based on genomic
and/or proteomic analyses of individual tumors, is be-
ing investigated. By identifying tumors with a char-
acteristic molecular subtype and assigning treatment
accordingly, it is hoped that a higher proportion of
patients will benefit from targeted therapy. Addition-
ally, lessons learned through the application of these
technologies to prostate cancer may subsequently in-
fluence therapeutic development in other solid tu-
mors. The Oncologist 2011;16:264–275

INTRODUCTION

Although most men who develop prostate cancer do not die
from their disease, those who develop castration-resistant
prostate cancer (CRPC) have a poor prognosis and are more
likely to die from complications of metastatic disease than
from comorbid illness. Approved systemic chemotherapies

for CRPC provide limited benefits. Docetaxel, a taxane in-
hibitor of microtubule function, remains the standard first-
line treatment based on two phase III trials that showed a
median survival time of 18–19 months [1, 2]. Efforts are
ongoing to develop various therapies targeting mechanisms
behind tumor progression.
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Several molecular pathways have been implicated in
prostate cancer progression from localized disease that re-
mains sensitive to androgen deprivation to CRPC, the lethal
tumor phenotype. Pathways can be divided into those me-
diated by the androgen receptor (AR) and those without di-
rect agonism of the AR [3]. Novel therapies have been
rationally designed to target molecular pathways involved
in oncogenesis and disease progression although results
from trials have been mixed. The biologic heterogeneity of
CRPC, including potential involvement of AR-mediated or
AR-independent pathways, is a probable cause of the vari-
able responses seen with targeted therapies. Arguably, a
more rational approach could involve determining the bio-
logic status of an individual tumor before therapy by assess-
ing gene expression, hormone metabolism, or signaling
activity, and directing treatment accordingly. This more in-
dividualized approach is being tested in early-phase clinical
trials.

Here, we highlight several novel therapies for CRPC tar-
geted to AR-mediated or non–AR-mediated pathways that
have recently entered clinical trials, including the molecular
rationale and available clinical data. We also summarize

emerging evidence on the potential of individualized therapy
for CRPC.

TARGETING AR-MEDIATED SIGNALING

Numerous lines of evidence indicate that persistent AR ac-
tivation is an important mediator of disease progression in
CRPC [3, 4]. Proposed mechanisms include: AR gene am-
plification or overexpression; AR gene mutation leading to
promiscuous ligand/cofactor interaction; enhanced AR sig-
nal transduction mediated via coactivators; and endocrine
or autocrine activation of the AR, for example, by adrenal
androgens or intratumoral production of dihydrotestoster-
one (DHT). Established AR-directed approaches include
AR antagonists, for example, bicalutamide and flutamide,
in addition to agents that block the production of AR-acti-
vating hormones, for example, ketoconazole (Fig. 1). How-
ever, in patients with AR overexpression, traditional AR
antagonists have shown agonistic activity toward the AR
[5], which may explain prostate-specific antigen (PSA) de-
creases that sometimes occur following antiandrogen with-
drawal [6, 7] and the limited additive effects of

Figure 1. The androgen synthesis pathway and actions of inhibitors.
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antiandrogens combined with luteinizing hormone-releas-
ing hormone–based therapies [8].

MDV3100 is a novel orally available AR antagonist
with no known agonistic activity that was discovered
through compound screening in a cellular model of prostate
cancer activated by AR overexpression [9]. In a phase I/II
trial, 140 patients with progressive CRPC were treated with
doses in the range of 30–600 mg/day. In the chemotherapy-
naïve and postchemotherapy subgroups, respectively, a
50% PSA decline from baseline occurred in 62% and 51%,
a partial response (PR) in soft-tissue tumors evaluable by
the Response Evaluation Criteria in Solid Tumors (RE-
CIST) was achieved in 36% and 12%, stabilized bone dis-
ease at 12 weeks on bone scan occurred in 63% and 51%,
and the median time to radiologic progression was not
reached and 29 weeks (47 weeks in all patients) [10]. A ran-
domized, placebo-controlled phase III study of MDV3100
monotherapy versus placebo in patients with docetaxel-
pretreated CRPC has completed accrual; a second phase III
study of MDV3100 monotherapy versus placebo in chemo-
therapy-naïve patients with CRPC has recently opened
(Table 1).

Therapies that decrease androgen production from both
endocrine and autocrine sources are also being developed.
Abiraterone acetate is a selective and irreversible inhibitor
of cytochrome P450 (CYP450)c17, an enzyme involved in
androgen synthesis from both adrenal and other sources.
Encouraging activity and safety with abiraterone were seen
in phase I studies [11, 12]. In a phase II trial of 47 patients
with CRPC with prior docetaxel therapy, 50% PSA de-
clines were achieved with abiraterone in 51% of patients,
and among the 30 patients who had RECIST-evaluable tu-
mors, 27% had a PR [13]. In a phase II study of abiraterone
plus prednisone in patients with CRPC and prior chemo-
therapy failure (n � 58), 50% PSA declines occurred in
55% of patients who were ketoconazole naïve, versus 30%
of those who had received prior ketoconazole, and the me-
dian times to PSA progression were 198 days and 99 days,
respectively [14]. Also, in a study of abiraterone plus pred-
nisone in patients without prior chemotherapy or ketocona-
zole treatment (n � 33), a 50% PSA decline was achieved
by 79% of patients and the median time to PSA progression
was 71 weeks [15]. In a phase III randomized, double-blind,
placebo-controlled trial of 1,195 metastatic CRPC patients
previously treated with docetaxel, abiraterone plus predni-
sone led to a longer overall survival time than with treat-
ment with prednisone plus placebo (median overall survival
time, 14.8 versus 10.9 months; hazard ratio [HR], 0.65; p �
.0001) [16]. A second phase III trial of abiraterone in
asymptomatic or mildly symptomatic men with metastatic
CRPC who had not received prior chemotherapy has com-

pleted accrual, with final results pending data maturity
(Table 1).

TAK-700 is a novel CYP450c17 inhibitor similar to abi-
raterone. In preliminary data from a phase I/II study in pa-
tients with asymptomatic metastatic CRPC, TAK-700 was
well tolerated and preliminary evidence of activity was
seen, including 50% PSA declines in 12 of 15 patients who
received doses �300 mg twice daily for �3 months [17].

Conversion of testosterone to the more potent DHT by
5�-reductase can occur within tumor tissue and is a mech-
anism for continued AR activation. Dutasteride, a dual-
isoform 5�-reductase inhibitor, was evaluated in several
phase II trials. In a study of 25 evaluable patients with
asymptomatic CRPC, two had a confirmed 50% PSA de-
cline and nine had stable disease (SD) for 2.5–9 months (de-
fined by PSA, RECIST, bone scan, and symptomatic
criteria) [18]. Dutasteride plus ketoconazole and hydrocor-
tisone was also studied in 57 patients with CRPC, resulting
in a 50% PSA response in 56% of patients and median time
to progression (TTP) of 14.5 months [19]. If antitumor ef-
fects are to be seen with dutasteride, it is likely that a dose
�0.5 mg/day used in benign prostatic hypertrophy will be
required.

Paradoxically, preclinical studies have shown that tes-
tosterone, if given at a high enough dose, caused regression
of an androgen-independent prostate cancer cell line [20].
In a prior phase I trial of exogenous testosterone adminis-
tered at three times the normal dose to 12 men with CRPC,
treatment was well tolerated, and a �50% PSA decline was
observed in one patient [21]. In order to block peripheral
conversion to DHT and potentially increase serum testos-
terone levels and the therapeutic effect, dutasteride was
added to high-dose exogenous testosterone and is currently
being studied in an ongoing phase II trial.

HE3235, a structurally related synthetic analog of an-
drostenediol, an adrenal androgen, has shown preclinical
activity against CRPC cells and xenografts. In preclinical
models of LNCaP cell lines exposed to the combination of
HE3235 and either DHT or androstenediol, there was
greater AR activity and PSA expression. Parodoxically,
however, the addition of HE3235 led to inhibition of tumor
formation/growth in xenograft studies, likely through in-
ducing a proapoptotic effect on tumor cells [22]. Phase I
studies have determined that HE3235 is well tolerated
across a range of doses, and phase II studies are under way
[23].

TARGETING NON–AR-MEDIATED SIGNALING

In addition to AR-mediated pathways, evidence suggests
that several alternative signaling pathways may also be in-
volved in prostate cancer disease progression. Whether or
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Table 1. Selected ongoing clinical trials of targeted agents in CRPC

Target Agent Phase Design Population Primary endpoint
Estimated n
of patients

ClinicalTrials.
gov identifier

Androgen
synthesis
(CYP17)

Abiraterone and
prednisone

III Randomized, placebo
controlled

Metastatic CRPC after
docetaxel failure

OS 1,158 NCT00638690

Abiraterone and
prednisone

III Randomized, placebo
controlled

Asymptomatic or mildly
symptomatic CRPC

OS, PFS 1,000 NCT00887198

Abiraterone and
prednisone

II Single arm Metastatic CRPC Hormonal effects 60 NCT00544440

TAK-700 II Single arm Chemotherapy-naïve
nonmetastatic CRPC

PSA 42 NCT01046916

TAK-700 I/II Dose ranging Chemotherapy-naïve
metastatic CRPC

Safety 100 NCT00569153

TAK-700 plus
docetaxel and
prednisone

I/II Dose ranging Chemotherapy-naïve
metastatic CRPC

MTD, PK, PSA
response

40 NCT01084655

5�-reductase Dutasteride plus
testosterone

II Single arm Metastatic CRPC PFS 30 NCT00853697

Androgen analog
(androstenediol)

HE3235 I/II Dose ranging Metastatic CRPC after
taxane failure

Safety, PK, activity 122 NCT00716794

Androgen
receptor

MDV3100 III Randomized, placebo
controlled

CRPC after docetaxel
failure

OS 1,200 NCT00974311

MDV3100 III Randomized, placebo
controlled

Chemotherapy-naïve
metastatic CRPC

OS, PFS 1,680 NCT01212991

BCL-2, BCL-XL,
MCL-1

AT-101 and
docetaxel

II Randomized, placebo
controlled

Chemotherapy-naïve
metastatic CRPC

OS 220 NCT00571675

Clusterin
(chaperone
protein)

Custirsen plus
docetaxel and
prednisone

III Randomized, placebo
controlled

Chemotherapy-naïve CRPC OS 800 (Planned)

Custirsen plus
docetaxel and
prednisone

III Randomized, placebo
controlled

Metastatic CRPC after
docetaxel failure

Pain palliation 292 NCT01083615

CTLA-4 Ipilimumab III Randomized, placebo
controlled

Metastatic CRPC after
docetaxel failure

OS 800 NCT00861614

Ipilimumab III Randomized, placebo
controlled

Asymptomatic or mildly
symptomatic CRPC

OS 600 NCT01057810

Endothelin A
receptor

Atrasentan plus
docetaxel and
prednisone

III Randomized, placebo
controlled

Chemotherapy-naïve
metastatic CRPC

OS, PFS 930 NCT00134056

Zibotentan III Randomized, placebo
controlled

Chemotherapy-naïve
nonmetastatic CRPC

OS, PFS 1,500 NCT00626548

Zibotentan III Randomized, placebo
controlled

Asymptomatic or mildly
symptomatic CRPC with
bone metastases

OS 848 NCT00554229

Zibotentan plus
docetaxel

III Randomized, placebo
controlled

Chemotherapy-naïve
metastatic CRPC

OS 1,445 NCT00617669

IGF-1R Cixutumumab plus
mitoxantrone and
prednisone

II Randomized, open label
versus IMC-1121B

Metastatic CRPC after
failure on docetaxel-based
chemotherapy

PFS 132 NCT00683475

Figitumumab plus
docetaxel and
prednisone

II Single arm Chemotherapy-naïve or
docetaxel-refractory CRPC

PSA, tumor
response

120 NCT00313781

IGF-1R, mTOR Cixutumumab plus
temsirolimus

I/II Single arm Chemotherapy-naïve
metastatic CRPC

Tumor response,
time to progression

48 NCT01026623

mTOR Everolimus II Single arm Metastatic or locally
advanced CRPC that is not
progressing rapidly

PFS 39 NCT00976755

Everolimus plus
docetaxel and
prednisone

I/II Single arm Metastatic CRPC Safety, tumor
response

60 NCT00459186

Everolimus plus
bicalutamide

II Randomized, placebo
controlled

Metastatic or recurrent
CRPC

PSA response 80 NCT00814788

Everolimus II Molecular, genetic, and
genomic assessments of
mTOR inhibition

Metastatic CRPC mTOR inhibition 60 NCT00636090

Temsirolimus II Single arm Chemotherapy-naïve CRPC Tumor response 24 NCT00919035

Ridaforolimus plus
bicalutamide

II Randomized, placebo
controlled

Asymptomatic metastatic
CRPC

PSA response,
dose-limiting
toxicities

156 NCT00777959

(continued)
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not these pathways are truly independent of the AR or
downstream components of AR signaling has not been fully
elucidated, but this may vary by pathway. Several pathways
that are a current focus for research with targeted agents are
discussed below (Fig. 2).

Src Pathway
Src and other members of the Src-family kinases (SFKs) are
nonreceptor tyrosine kinases that transduce signals from a
range of upstream proteins, including receptors for epider-
mal growth factor (EGF), platelet-derived growth factor
(PDGF), and vascular endothelial growth factor (VEGF)
[24]. In addition to the established role of growth factor re-
ceptors in prostate cancer oncogenesis, preclinical studies
have shown that Src and SFKs are highly active and/or
overexpressed during prostate tumor growth and metastasis

[25]. Src is also required during osteoclast functioning [26].
In a recent study of tumor samples from patients with
CRPC, SFK activity was elevated in approximately 30% of
cases and patients with greater SFK activity had a signifi-
cantly shorter overall survival duration [27].

Dasatinib is a potent inhibitor of Src and SFKs that has
shown preclinical antitumor and antimetastatic activity
against prostate cancer cells and antiosteoclast activity
[28–31]. In a phase II trial of dasatinib monotherapy in 47
patients with metastatic chemotherapy-naïve CRPC, 6%
had a 50% reduction in PSA, 12 of 23 patients (52%) with
RECIST-evaluable disease had SD, and 23 of 41 patients
(49%) with bone metastases at baseline had no new bone
lesions at week 12 [32]. In a phase I/II study of dasatinib
plus docetaxel and prednisone in chemotherapy-naïve pa-
tients with CRPC, 49% had a 50% PSA decline and 58% of

Table 1. (Continued)

Target Agent Phase Design Population Primary endpoint
Estimated n
of patients

ClinicalTrials.
gov identifier

mTOR, VEGF Temsirolimus plus
bevacizumab

I/II Dose ranging Metastatic CRPC after
chemotherapy failure

MTD, composite
response

34 NCT01083368

RANKL Denosumab III Randomized, placebo
controlled versus
zoledronic acid

CRPC with bone metastases Time to skeletal-
related event

1,904 NCT00321620

Denosumab III Randomized, placebo
controlled

Nonmetastatic CRPC Time to bone
metastasis

1,435 NCT00286091

Src Dasatinib plus
docetaxel and
prednisone

III Randomized, placebo
controlled

Chemotherapy-naïve
metastatic CRPC

OS 1,380 NCT00744497

Dasatinib or
nilutamide

II Genomic-guided therapy Metastatic CRPC PFS 60 NCT00918385

Saracatinib II Randomized versus
zoledronic acid

Recurrent or progressive
prostate or breast cancer
with bone metastases

Bone markers 132 NCT00558272

VEGF Bevacizumab plus
docetaxel and
prednisone

III Randomized, placebo
controlled

Chemotherapy-naïve CRPC OS 1,020 NCT00110214

Bevacizumab plus
lenalidomide plus
docetaxel and
prednisone

II Single arm Metastatic
chemotherapy-naïve CRPC

Safety 57 NCT00942578

Aflibercept (VEGF
trap) plus docetaxel
and prednisone

III Randomized, placebo
controlled

Metastatic
chemotherapy-naïve CRPC

OS 1,200 NCT00519285

VEGFR Cediranib II Single arm Metastatic
chemotherapy-naïve CRPC
after docetaxel failure

PFS 62 NCT00436956

Cediranib plus
docetaxel and
prednisone

II Randomized versus
docetaxel/prednisone

Chemotherapy-naïve CRPC PFS 104 NCT00527124

VEGFR, PDGFR,
Kit

Sunitinib plus
prednisone

III Randomized, placebo
controlled versus
prednisone

Metastatic CRPC after
docetaxel failure

OS 819 NCT00676650

Sunitinib II Single arm Metastatic CRPC after
docetaxel failure

PFS 50 NCT00748358

VEGFR, PDGFR,
RAF, Kit

Sorafenib plus
docetaxel

II Single arm Metastatic
chemotherapy-naïve CRPC

PSA response 69 NCT00589420

Abbreviations: BCL, B-cell lymphoma; CTLA-4, cytotoxic T-lymphocyte antigen 4; CRPC, castration-resistant prostate
cancer; CYP, cytochrome P450; IGF-1R, insulin-like growth factor-1 receptor; MCL-1, myeloid cell leukemia sequence 1;
MTD, maximum-tolerated dose; mTOR, mammalian target of rapamycin; OS, overall survival; PDGFR, platelet-derived
growth factor receptor; PFS, progression-free survival; PK, pharmacokinetics; PSA, prostate-specific antigen; RANKL,
receptor activator for nuclear factor �B ligand; VEGFR, vascular endothelial growth factor receptor.
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evaluable patients had a RECIST PR. Bone scans showed a
reduction in the size and/or number of lesions in 28% of pa-
tients and no new lesions in 69% of patients [33]. These
findings led to a randomized, placebo-controlled phase III
trial of dasatinib plus docetaxel.

Saracatinib (AZD0530) is another oral Src inhibitor in
clinical development. In preclinical studies, saracatinib
blocked proliferation and migration in a range of prostate
cancer cell lines, including androgen-independent xeno-
grafts [34–36]. Saracatinib has also shown antiosteoclast
activity in vitro and in vivo [37, 38]. In an initial phase II,
single-arm, Simon two-stage trial of saracatinib mono-
therapy in patients with advanced CRPC, five of 28 patients
had a slight decline in PSA, though no patient achieved a
30% decline. The median progression-free survival interval
was 8 weeks [39].

Phosphoinositide-3-Kinase–Akt–Mammalian
Target of Rapamycin Pathway
Upregulation of the phosphoinositide-3-kinase (PI3K)–
Akt–mammalian target of rapamycin (mTOR) pathway has
been detected in various tumors, including prostate cancer
[40]. PI3K is activated by several extracellular receptors,
including EGF receptor and insulin-like growth factor-1 re-
ceptor (IGF-1R), in addition to intracellular oncogenes

such as RAS [41]. In turn, activated PI3K induces Akt to
phosphorylate and activate mTOR, which promotes cell di-
vision. PI3K activation is regulated by tumor suppressor
phosphatase and tensin homolog (PTEN), and loss of PTEN
function has been detected in prostate cancer [42–44]. Pre-
clinical studies suggest that loss of PTEN function and/or
activation of the PI3K–Akt–mTOR pathway can result in
androgen-independent prostate cancer growth [45, 46].
Furthermore, deletion of PTEN has been associated with
earlier disease progression in patients with prostate cancer
[47, 48] and greater AR expression and cancer-associated
mortality in patients with CRPC [49].

Several mTOR inhibitors have been developed. In
mouse studies, everolimus (RAD001) inhibited the growth
of prostate cancer cells in bone and effects were augmented
by combination treatment with docetaxel and zoledronic
acid [50]. In a phase I dose-escalation trial of everolimus
plus docetaxel in chemotherapy-naïve patients with meta-
static CRPC and a positive fluorodeoxyglucose positron
emission tomography scan, there were no dose-limiting
toxicities. Of 14 evaluable patients, 10 had metabolic SD
and four had a metabolic PR [51]. In a phase I trial of
everolimus plus docetaxel and bevacizumab in patients
with metastatic, chemotherapy-naïve CRPC, 50% PSA de-
clines were seen in 10 of 12 patients [52]. In a phase II,

Figure 2. Molecular targets of agents being investigated for the treatment of castration-resistant prostate cancer.
Abbreviations: AR, androgen receptor; BCL-2, B-cell lymphoma 2; EGFR, epidermal growth factor receptor; HSP90, heat-

shock protein 90; IGF-1R, insulin-like growth factor-1 receptor; mTOR, mammalian target of rapamycin; PDGFR, platelet-
derived growth factor receptor; PI3K, phosphoinositide-3-kinase; VEGF, vascular endothelial growth factor; VEGFR, VEGFR
receptor.

269Aggarwal, Ryan

www.TheOncologist.com



single-arm, Simon two-stage study of everolimus mono-
therapy in 19 patients with CRPC, most of whom were do-
cetaxel refractory, the median TTP was 85 days and no PSA
or tumor responses were recorded [53]. In preclinical stud-
ies, temsirolimus (CCI-779) inhibited the growth of pros-
tate cancer cell lines and xenografts, and had greater
activity in combination with docetaxel [54, 55]. In addition,
phase I studies of ridaforolimus (AP23573) in patients with
advanced solid tumors have successfully been completed
[56, 57]. A single-arm, phase II trial of ridaforolimus mono-
therapy in taxane-resistant CRPC patients has completed
enrollment and results are pending (ClinicalTrials.gov
Identifier, NCT00110188). Clinical studies with everoli-
mus, temsirolimus, and ridaforolimus in CRPC are summa-
rized in Table 1.

Chaperone Proteins
Chaperone (heat-shock) proteins have antiapoptotic prop-
erties and are an established target for anticancer therapy.
Although heat-shock protein 90 (HSP90) was an early fo-
cus for study, no HSP90 inhibitor has so far proved to be
therapeutically viable for prostate cancer, although work is
ongoing [58]. Clusterin, an alternative chaperone protein, is
a novel target. In prostate cancer cell lines, clusterin over-
expression resulted in androgen-independent growth [59]
and clusterin gene silencing induced apoptosis and signifi-
cantly reduced growth [60]. Clusterin expression is upregu-
lated in patients with prostate cancer who have received
androgen-deprivation therapy (ADT) [61].

Custirsen (OGX-011) is an antisense inhibitor of clus-
terin that suppresses clusterin expression in tumor tissue
when administered to patients with localized prostate can-
cer [62]. In vitro, custirsen was found to resensitize do-
cetaxel-refractory prostate cancer cell lines to docetaxel
[63]. A randomized phase II study of docetaxel plus pred-
nisone with or without custirsen in patients with metastatic
CRPC (n � 82) has been completed, and showed a longer
median overall survival time in the custirsen arm (24
months versus 17 months; HR, 0.61; p � .06), although
rates of PSA and tumor response were similar [64]. Based
on these findings, phase III trials of OGX-011 plus do-
cetaxel and prednisone are planned.

IGF-1R Pathway
IGF-1R has antiapoptotic and transforming activities, and
IGF-1R–mediated signaling can be detected during several
stages of metastasis, including adhesion, migration, and in-
vasion [65]. In vitro models suggest that increased IGF-1R
expression in prostate cancer cells can lead to androgen in-
dependence [66, 67]. In a recent study using frozen tissue
specimens, IGF-1R was more frequently expressed in stro-

mal tissue surrounding malignant than surrounding nonma-
lignant tissue and in high-grade than in low-grade tumors
[68]. Studies of IGF-1R ligands have provided further evi-
dence for the oncogenic role of IGF signaling. In transgenic
mice expressing human IGF-1 in the basal prostate epithe-
lium, spontaneous tumorigenesis was seen [69]. In a study
of prostatic tumor tissue, expression of IGF-1 and IGF-2
was higher in high-grade than in low-grade tumors [70].
Furthermore, in a meta-analysis of clinical studies, elevated
circulating concentrations of IGF-1 were associated with a
greater risk for prostate cancer [71].

Three monoclonal antibodies against IGF-1R, cixutu-
mumab (IMC-A12), figitumumab (CP-751,871), and
AMG-479, are being assessed in CRPC patients and have
demonstrated good tolerability in phase I studies [72–75].
In a phase II study of cixutumumab in men with asymptom-
atic metastatic CRPC, nine of 31 patients achieved SD for
�6 months (range, 7.4–12.5 months) [76]. Further studies
of IGF-1R antibodies are in progress (Table 1). The devel-
opment of figitumumab was suspended after an unexpected
finding of a higher treatment-related mortality rate when
this agent was added to standard chemotherapy.

VEGF
VEGF, stimulated by such factors as hypoxia, low pH, and
growth factor receptors, plays a key role in promoting an-
giogenesis and tumor progression in various tumor types.
VEGF expression has been found in both localized and met-
astatic prostate cancer specimens, and higher plasma VEGF
levels have been correlated with disease severity [77] In
preclinical models, antibodies directed against VEGF in-
hibited the growth of prostate cancer tumors [78].

Bevacizumab, a humanized monoclonal antibody di-
rected against VEGF, has been evaluated in prostate cancer
in several clinical trials. In a phase II trial of 15 patients with
CRPC, after 12 weeks of therapy with bevacizumab dosed
at 10 mg/kg every 2 weeks, no patients experienced an ob-
jective response or PSA decline �50% [79]. In a random-
ized, double-blind, placebo-controlled phase III trial of
docetaxel plus prednisone with or without bevacizumab in
1,050 men with chemotherapy-naïve CRPC, the median
overall survival time was not significantly longer with the
addition of bevacizumab; however, the median progres-
sive-free survival interval was longer—7.5 months in the
control arm and 9.9 months in the bevacizumab-containing
arm (stratified log-rank p-value �.0001) [80].

Aflibercept, a VEGF trap consisting of the Fc portion of
human IgG1 fused to the extracellular ligand-binding do-
main of VEGF receptor (VEGFR)-1 and VEGFR-2, is cur-
rently being evaluated in a placebo-controlled, randomized
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phase III trial in combination with docetaxel plus predni-
sone (ClinicalTrials.gov Identifier, NCT00519285).

Sunitinib, a small molecular tyrosine kinase inhibitor of
VEGFR-1 to VEGFR-3, along with multiple other recep-
tors including PDGF receptor (PDGFR)-� and PDGFR-�,
inhibits angiogenesis and has shown promising activity in
prostate cancer, especially in the postdocetaxel setting. In a
single-arm, phase II trial of sunitinib in 36 men with meta-
static CRPC previously treated with docetaxel, seven pa-
tients (21.2%) had a PSA decline �30% and two patients
had an objective response [81]. A phase III trial, however,
of sunitinib plus prednisone versus placebo plus predni-
sone, in men with CRPC and prior docetaxel and with a pri-
mary endpoint of overall survival, was terminated
prematurely as a result of futility in September 2010 (Clini-
calTrials.gov Identifier, NCT00676650).

Endothelin
The endothelin family of peptides, mediated mostly by endo-
thelin-1 binding to the endothelin-A receptor, modulates va-
somotor tone, nociception, and cellular proliferation in a
variety of tissues [82]. Endothelin-1 acts via the endothelin-A
receptor to promote prostate cancer progression via several
mechanisms, including acting as a mitogen for both prostate
cancer cells and osteoblasts, which are responsible for the os-
teoblastic metastatic lesions common in metastatic prostate
cancer [83, 84]. Selective endothelin-A receptor antagonists
block the proliferation of prostate cancer cells and osteoblasts
in the presence of exogenous endothelin [84].

Atrasentan is a potent and highly selective inhibitor of the
endothelin-A receptor, and was shown in a randomized phase
II trial, at a dose of 10 mg/day, to produce a trend towards a
longer TTP than with placebo in a study of 288 men with met-
astatic CRPC (median TTP, 183 days versus 137 days; p �
.13) [85]. However, two subsequent, randomized, placebo-
controlled, phase III trials of men with either nonmetastatic or
metastatic CRPC failed to demonstrate a significantly longer
time to disease progression in patients treated with atrasentan
than in those treated with placebo [86, 87]. A randomized
phase III trial comparing prednisone plus docetaxel with or
without atrasentan has finished accrual, with final results
pending (ClinicalTrials.gov Identifier, NCT00134056).

Zibotentan is a nonpeptide, orally bioavailable selective
inhibitor of endothelin-A receptor that was well tolerated in
a phase I trial, with a maximum-tolerated dose of 15 mg/day
[88]. In a randomized, phase II trial with three treatment
arms consisting of men with metastatic CRPC treated with
zibotentan 10 mg/day, zibotentan 15 mg/day, or placebo,
the primary endpoint of a longer time to disease progression
was not significant; however, there was a trend toward lon-
ger overall survival in both zibotentan arms, compared with

placebo, with a median follow-up of 22 months (HR, 0.76;
p � .103 for the 15-mg arm. HR, 0.83; p � .254 for the
10-mg arm) [89]. Based on these results, three phase III tri-
als of zibotentan in men with CRPC are ongoing (Table 1).

INDIVIDUALIZED TARGETED THERAPY FOR CRPC

Individual Tumor Gene/Protein Expression to
Guide Therapy
Because of biological heterogeneity, including the potential
for continuing AR-mediated signaling or androgen inde-
pendence, it is likely that no single agent will be uniformly
effective for treating CRPC. This hypothesis is supported
by the variable efficacy observed in clinical trials of the se-
lected novel agents outlined above. A more individualized and
arguably more rational approach to treatment is currently be-
ing investigated in CRPC, which involves using genomic and
proteomic analyses to assess the involvement of specific mo-
lecular pathways. The aim is to tailor treatment based on indi-
vidual tumor characteristics and thereby select patients who
are most likely to respond to different therapies. The benefits
of individualized therapy have already been demonstrated in
other tumor types, particularly in breast cancer using human
epidermal growth factor receptor 2 testing and trastuzumab
therapy. Predictive markers of response to secondary hor-
monal therapy in CRPC have already been identified. For ex-
ample, CRPC tumors with AR gene amplification respond
better to secondary hormone therapy (combined androgen
blockade) than tumors without AR amplification [90].

Recent studies in CRPC have further evaluated a
genomic-guided approach to treatment [91]. Using an an-
drogen-sensitive prostate cancer cell line (LNCaP), a tran-
scription signature for AR activity was identified, which
was confirmed to be robust in independent data sets of pros-
tate cancer cell lines and human tumors. When the AR sig-
nature was investigated in patient samples, AR activity was
generally higher in localized, untreated tumors and lower
after neoadjuvant hormone therapy and in CRPC, seem-
ingly representing declining AR activity with prostate can-
cer progression. However, AR activity was heterogeneous
in CRPC patients, with approximately one third of patient
samples showing persistent AR activity, which could help
to explain the variable responses to AR-directed therapies
observed in trials. To identify novel therapeutic options that
may be most useful for patients with low AR activity, sam-
ples were compared with published signatures for other mo-
lecular targets [91–93]. Of those tested, the signature for
Src activity most consistently correlated with low AR activ-
ity, both in localized (p � .0071) and metastatic (p � .0033)
disease. Similarly, low AR activity correlated with a signal
predicting sensitivity to the Src inhibitor dasatinib (p � .019).
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These findings suggest that patients with CRPC who have low
AR activity detected in tumor samples might benefit more
from Src inhibitor treatment than AR-directed therapy.

A prospective study is now in progress to test a genom-
ic-guided approach to treatment (ClinicalTrials.gov Identi-
fier, NCT00918385). Patients with metastatic CRPC will
be prescreened and those with tumors with high AR activity
will receive nilutamide, an AR-targeted agent, whereas
those with low AR activity will be treated with dasatinib.
Patients failing single-agent treatment will receive combi-
nation therapy. A study is also being performed with
everolimus that will examine gene expression profiles and
molecular characteristics in patients with CRPC to deter-
mine any possible association with treatment responses,
which could potentially inform a future genomic-guided
trial (ClinicalTrials.gov Identifier, NCT00636090).

A key question in the development of genomic-guided
clinical trials centers around the type of specimen that is
used to molecularly define an individual patient’s tumor.
Prior comprehensive gene expression analyses that com-
pared localized prostate cancers with metastatic tumors
found wide variability in the expression of various subsets
of genes, including those involved in cell cycling, cell ad-
hesion, and signal transduction [94]. Given the molecular
heterogeneity of prostate cancer, there has been consider-
able interest in developing techniques to molecularly char-
acterize metastatic prostate cancer tissue rather than
specimens obtained from prior prostate biopsies or prosta-
tectomy specimens containing localized prostate cancer. In
the aforementioned phase II trial of nilutamide and dasat-
inib (ClinicalTrials.gov Identifier, NCT00918385), fresh
tissue obtained via biopsy of a metastatic site will be used to
molecularly characterize a patient’s tumor.

Circulating tumor cells (CTCs) potentially represent an
alternative, less invasive means to obtain gene expression
data. Techniques to identify and isolate these cells with in-
creasing sensitivity and purity are actively being refined
[95]. Enumeration of the number of CTCs pre- and postini-
tiation of chemotherapy was shown to be predictive of over-
all survival in a prospective study [96]. Needed, however,
are refinements in techniques used to not only count, but
also to characterize, CTC gene expression profiles, as well
as studies that compare molecular profiles among CTCs,
primary tumor samples, and metastatic sites within individ-
ual patients to assess for concordancy (or lack thereof) in
gene expression over time and location.

Pharmacogenetic Profiling
Recent data have established that pharmacogenomic fac-
tors, that is, genetic polymorphisms affecting proteins in-

volved in drug metabolism or action, may play a role in
determining response to targeted therapies, both in prostate
cancer and other solid tumors. For example, among 529 pa-
tients undergoing ADT, polymorphisms in three separate
genes involved in hormone synthesis (CYP19A1, HSD3B1,
and HSD17B4) were significantly (p � .01) associated with
a longer TTP, and best responses were observed in patients
with more than one polymorphism [97]. Furthermore, sur-
vival on docetaxel in patients with CRPC has been associ-
ated with specific genotypes of ABCB1 (encoding a drug
efflux protein) and CYP1B1 (encoding an enzyme involved
in estrogen metabolism) [98, 99]. Tailoring therapy based
on pharmacogenomic parameters is likely to be tested in fu-
ture prospective studies.

CONCLUSIONS

Traditional drug discovery methods have identified several
potential molecular targets for treating CRPC, including
those that inhibit AR-mediated and non–AR-mediated sig-
naling. In recent years, novel agents have shown promise in
clinical trials, including agents targeting the androgen axis
(e.g., novel AR antagonists and inhibitors of androgen pro-
duction) and agents with other targets (e.g., Src, IGF-1R,
mTOR, and clusterin). However, it is becoming increas-
ingly apparent that CRPC is a heterogeneous disease and
patient subgroups are likely to exist that are characterized
by the involvement of different signaling pathways in dis-
ease progression to different degrees. This suggests that a
more rational/individualized approach is required to maxi-
mize potential benefits from targeted therapy. Using
genomic signatures, a recent study showed that patients
with low AR activity are more likely to have high Src ac-
tivity and sensitivity to dasatinib, and an ongoing study will
provide an initial test of whether genomic-guided treatment
can increase response rates. Identifying patient populations
with a specific molecular subtype should hopefully im-
prove the chances of treatment response, and ultimately, a
scenario could be envisaged in which patients receive per-
sonalized targeted therapy based on their genomic profile,
using both the “real-time” tumor genotype/phenotype and
the pharmacogenetic profile of the patient. Discoveries in
CRPC could translate to other advanced cancers.
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