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Abstract.
Background: The recent failure of clinical trials to treat Alzheimer’s disease (AD) indicates that the current approach of
modifying disease is either wrong or is too late to be efficient. Mild cognitive impairment (MCI) denotes the phase between
the preclinical phase and clinical overt dementia. AD mouse models that overexpress human amyloid-� (A�) are used to
study disease pathogenesis and to conduct drug development/testing. However, there is no direct correlation between the A�
deposition, the age of onset, and the severity of cognitive dysfunction.
Objective: To detect and predict MCI when A� plaques start to appear in the hippocampus of an AD mouse.
Methods: We trained wild-type and AD mice in a Morris water maze (WM) task with different inter-trial intervals (ITI) at 3
months of age and assessed their WM performance. Additionally, we used a classification algorithm to predict the genotype
(APPtg versus wild-type) of an individual mouse from their respective WM data.
Results: MCI can be empirically detected using a short-ITI protocol. We show that the ITI modulates the spatial learning
of AD mice without affecting the formation of spatial memory. Finally, a simple classification algorithm such as logistic
regression on WM data can give an accurate prediction of the cognitive dysfunction of a specific mouse.
Conclusion: MCI can be detected as well as predicted simultaneously with the onset of A� deposition in the hippocampus
in AD mouse model. The mild cognitive impairment prediction can be used for assessing the efficacy of a treatment.

Keywords: Alzheimer’s disease, amyloid-�, genotype detection, logistic regression, MCI detection, MCI prediction, mild
cognitive impairment, water maze

INTRODUCTION

The National Institute on Aging and Alzheimer’s
Association (NIA-AA) task force classifies
Alzheimer’s disease (AD) into three phases:
preclinical phase, mild cognitive impairment (MCI),
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and dementia due to AD [1]. MCI is defined as
the transitional phase between cognitive changes
of normal aging and AD [2, 3]. The main clinical
criterion for diagnosing MCI is the observable
cognitive loss without being demented [4]. However,
the identification and distinction of MCI from the
preclinical phase of AD remain challenging [5] and
impedes the investigation of early pathology. Trans-
genic animal models that overexpress amyloid-�
(A�) and presenilin 1 (PS1) are used to study the
pathogenesis of AD. In this model, the severity of
damage induced by A�, the age of onset, and the
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severity of memory impairment are key criteria to
discriminate MCI from AD [5]. However, we have a
limited understanding of MCI in AD mouse models.

The APPPS1-21 model [6] carries human trans-
genes for both amyloid precursor protein (APP) and
presenilin 1 (PS1) that cause AD-like amyloidosis in
mice [6–9]. In this specific AD mouse model, A�
deposits, the first visible pathological insult, appear
in the neocortex at approximately 45 days of age
[10] and in the dentate gyrus of the hippocampus
by 3 months of age [6]. Historically, focal lesions
have been used to study particular functions of brain
regions [11–13]. However, the cognitive loss in this
animal model was reported to be detectable only from
6.5 months of age in the water maze task [14], months
after the first A� deposition in the hippocampus.
Recently, we reported that early cognitive training
rescues remote spatial memory but reduces cognitive
flexibility in this model [15].

In the present study, we aim to assess the cog-
nitive change at the same time as the pathological
insult starts to appear in the hippocampus. The Morris
water maze (WM) task is a popular test for assessing
spatial learning and memory, which is affected by
hippocampal function [11, 16, 17]. Any insult in the
hippocampus may produce cognitive artifacts. Here,
we also show that MCI can be detected using a WM
task in this specific mouse model when A� plaques
first start to appear in the hippocampus. Moreover, we
show that the genotype of an individual mouse can
be reliably predicted from WM data using a simple
logistic regression algorithm.

METHODS AND MATERIALS

Animals

We used 3-month-old, non-transgenic (APPtg–/–,
referred to as APPwt) and hemizygous transgenic
APPPS1-21 littermate mice (APPtg+/–, referred
to as APPtg) [6]. APP mice were maintained on
a C57BL/6J background. They co-express human
KM670/671NL-mutated amyloid precursor protein
(APPK670N,M671L) alongside with L166P-mutated
presenilin 1 (PS1L166P) under the control of the
Thy1 minigene promoter. Mice were group-housed at
21–22◦C and 12 h/12 h light/dark cycle and were pro-
vided food (RM3P- Product code: 801/700; Scanbur
AS Norway) and water ad libitum. Further, all exper-
iments were approved and conducted according to
the EU (Directive 2010/63/EU) and local guidelines.

Only female animals were used for experiments and
were gavaged for at least three weeks before the WM
task to habituate them to human handling.

Water maze task

A WM task was performed to assess spatial learn-
ing and spatial memory. It consisted of several days
of training trials, probe trials, and visual cue trials,
respectively. During a training trial, a mouse was
given a maximum time of 90 seconds (s) to find the
hidden plexiglass platform. In an unsuccessful trial,
it would be guided to the platform using a guiding
tool and would be rescued from the platform after
additional 10 s. Probe trials were conducted for 30 s
in the absence of the plexiglass platform. Probe trials
were always conducted as first trial on the specific
experimental day. On the last day of a WM task, four
consecutive visual cue trials were performed. During
a visual cue trial, all distal spatial cues were removed,
and instead a proximal cue was introduced on top of
the hidden platform. The platform was relocated after
each visual cue trial and the locations were different
from those during the training trials.

Each mouse was allowed to swim for four train-
ing trials per day with either long intertrial interval
(ITI) (spaced trials/15–40 min) or short ITI (massed
trials/1 min) for eight consecutive days. Three inde-
pendent probe trials (30 s each) were inserted before
normal training trials on day 4, day 6, and day 9. On
day 9, four visual cue trials were performed 1 h after
the final probe trial session to assess any visual or
motor defects.

The WM task was conducted inside a WM area that
was carefully designed (Supplementary Figure 1) and
the detailed sequence of trials of a WM task can be
found in Supplementary Table 1.

Experimental design

The number of animals in each group are summa-
rized in Table 1. Importantly, nine APPwt and ten
APPtg mcie were also included in the data analysis
of 1 min ITI groups from Set-up I experiment of [15].

Exclusion of non-performers

A mouse was excluded from further data analysis
only if all three criteria are met: 1) If more than 50%
of trials were unsuccessful 2) if more than 50% of
trials had a wall factor (% time spent in closer wall
zone) of more than 60, and 3) if latency was more
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than 30 s in at least three trials of the visual cue trial
experiment.

Video analysis and search classification

WM read-out was collected using the Viewer
software (Version 3.0, Biobserve GmbH, Germany).
Multiple variables (latency, proximity, track length,
Wishaw’s error, heading-angle error, wall factor,
swim-speed, and % target quadrant occupancy) were
defined and assessed. Latency is defined as the time
(s) to reach, climb, and sit on the platform. Proxim-
ity is defined as the average distance (cm) between
a mouse’s position and the platform. Track-length is
defined as the distance (cm) a mouse swims before it
sits on the platform. Heading-angle error is defined
as the misalignment (degree) between a centerline

Table 1
Summary table showing the number of animals used in the different
groups for final data analysis of the WM experiments. 2D cues
consisted of geometrical shapes printed on A3 size paper. ITI is
inter-trial interval. The average age of animals when they entered

the WM task was 3 months (94 ± 5 days)

Group Genotype Age ITI Trials No. of
(mo) per day mice

15 min-ITI-APPwt APPwt 3 Long 4 20
15 min-ITI-APPtg APPtg 3 Long 4 15
1 min-ITI-APPwt APPwt 3 Short 4 23
1 min-ITI-APPtg APPtg 3 Short 4 26

(mouse starting position and the platform position)
and the mouse’s orientation when it leaves the start-
ing position. Wall factor is defined as the percentage
of time spent (% s) in the wall area (10 cm from the
pool wall). Swim-speed is defined as the quotient of
track length and latency. Finally, % target quadrant
occupancy is defined as the percentage of time (% s)
in a given target quadrant of the pool. For more details
of video analysis, see Supplementary Figure 2.

The software automatically classifies each trial into
one of the pre-defined search strategies (Fig. 1).

Data analysis and data visualization

The average WM performance was assessed for
each mouse per day. The statistical evaluation was
performed using a linear mixed model for repeated
measures longitudinal data [15, 18] in which prox-
imity is a function of day and group. A day was
considered a categorical variable and an animal’s
variation was considered a random effect. The statis-
tics were performed using the nlme package in R (v
3.6.1). Similarly, post hoc Tukey’s comparison was
performed using the emmeans package in R.

mixed model<− lme (data = WM training, proximity
∼ group ∗ day, random = ∼1|animal)

For probe trials, we also performed a one-way
ANOVA analysis using the lm function. Here, a group

Fig. 1. Classification of a mouse trajectory into search strategies. The software algorithm defines the following nine search strategies:
thigmotaxis: >35% of time (90 s) within closer wall zone (10 cm from the pool wall) and <65% time in wider wall zone (16 cm from the
pool wall); random search: >70% surface coverage; scanning: <70% surface coverage, >15% surface coverage, and <0.7 standardized mean
distance to the pool center; chaining: >65% of time within the annulus zone; perseverance: <0.45 standardized error body angle, <0.40
standardized mean distance to the previous goal; directed search: >80% of time in the goal corridor; focal search: <0.35 standardized error
body angle, <0.25 standardized mean distance to the present goal; and direct swim: 100% in the goal corridor; unclassified: the algorithm
could not classify into above mentioned categories. We further grouped the search strategies into thigmotaxis, non-spatial search strategies
(random, scanning, and chaining) and spatial search strategies (focal, directed, and direct). Each column in the figure is a discrete search
strategy that consists of two representative mice trajectories (blue lines) from training trials for visualization. The platform is represented by
a red circle. Note: The details of key words described can be found in BIOBSERVER water maze manual.
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denotes the group, based on a probe trial.

probe trial <−1m (data = WM probe, proximity ∼
group)

All figures were created using either GraphPad
Prism software 8.0.1 or ggplot2 package [19] and
ggpol [20] in R.

Learning score determination

A learning score system, an extension of the Gal-
lagher learning index [21, 22], was also developed
and has been explained in detail before [15]. In brief,
the mouse was considered to have learned a task if its
average position from the platform (proximity) was
30 cm or less in each of the four-training trials of a
given day. When a mouse passed this criterion, a TTC
(trials-to-criterion) value was given. For instance, if a
mouse passed the criterion for the first time on day 5,
it would be awarded a TTC value of 17 as trial no. 17
was the first trial of that day. Then M (multiplier) was
determined as a quotient between initialization value
(an arbitrary value and in our setup, we have a total
of 32 training trials hence we used 33 as initialization
value) and TTC. Finally, the learning score of each
mouse is the sum product of M and proximity value
of a probe trial.

Creation of a spatial intensity map from trail
trajectories of the mice

The spatial intensity map of mice trajectories was
created from a point pattern map of mice trajectories.
A spatial intensity is a function of the spatial location
[23]. The point pattern map of mice trajectories was
previously applied in similar experiments and details
can be found elsewhere [15, 23].

In brief, the mouse trajectory during a WM probe
trial was saved as bitmap (bmp) image file (768 × 629
points) by the Viewer software (Version 3.0, Biob-
serve GmbH, Bonn, Germany). Next, all images of
a specific group were merged at an offset value
(0,0) using the pillow library in Python (v3.7.4). The
pixel coordinates (x,y) of mice trajectories were later
extracted to a csv file using the NumPy library in
Python. The point pattern analyses were then con-
ducted using the spatstat package in R (v3.6.1) [24].

A circular frame of observation (radius = 330 units,
and center = 330, 315 units) was used to create a
window area of 301,982 square units. Now 48,000
pixel coordinates were randomly selected from a csv
file and were dumped into a window of observation

covering 78.5% of frame area with an average inten-
sity of 0.14 per square unit. Next, a spatial map was
generated using “density” function from randomly
selected pixel points using the spatstat package in
R [24] that reveals the spatial features. The default
Gaussian kernel smoothing was used as an algorithm
along with edge correction [23]. The hotspot was
visualized with a chosen smoothing sigma parameter
(σ = 8).

Principal component analysis (PCA) of WM
data-set

PCA is a statistical method that reduces the
dimensionality of complex data by geometrically
projecting into lower dimensions called principal
components (PCs) while maintaining trends and pat-
terns [25]. Here, we also performed PCA on our
WM data to reveal the summary of features of cog-
nitive performance. Features, both memory-related
and non-memory-related, were carefully selected in
a way that all possible features that may affect cog-
nitive performance were covered. Memory-related
features included latency, proximity, track-length,
Wishaw’s error, heading-angle error, and % target
quadrant occupancy. Similarly, non-memory-related
features included wall factor and swim-speed. PCA
was performed in R (version 3.5.1) and the package
FactoMineR [26, 27].

Prediction of the genotype from a phenotype

We used a logistic regression analysis to predict the
genotype of a mouse from its phenotype. The pheno-
typic values were obtained from WM performance
features. Features such as latency and proximity were
chosen empirically for creating a statistical prediction
model. A rule-based approach was used to convert
longitudinal data into a single numeric value. First,
both proximity and latency data from training trials
were used. Next, a rule/criteria was defined which
assumes that a mouse learns the task if the proximity
value for each trial in a given training day is 30 cm or
less or if the latency value is less than 25 s for each
trial in a given day. For each mouse, a TTC value was
given for both proximity and latency.

Next, a binomial logistic regression model was
applied for 2-category classification as APPtg or
APPwt. The numeric data were partitioned into train
data and test data (60:40) on a defined random state.
To tune the model, the train data were further divided
into two subsets (k = 2) in which a model was trained
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Fig. 2. MCI was not detected using the long ITI (spaced trials) protocol. Learning and memory were assessed via proximity during training
trials and probe trials. a) ANOVA on a mixed model repeated measures did not show any statistically significant group effect. b) Probe trials
were conducted on day 4, day 6, and day 9 to assess memory. The proximity values were evaluated and showed that both groups decreased
their proximity values as a function of probe trial-day. However, APPwt performed statistically better than APPtg on day 6 (two-tailed
unpaired t-test - proximity: p = 0.01. The figure is a half-boxplot with jitter points. A horizontal line is a median, a black circle indicates
a mean, a box shows interquartile range (IQR), and the whiskers are 1.5 X IQR. Additionally, individual points are shown as jitter points
in a separate vertical column alongside boxplot. c) at the end of the WM task, visual cue trials were conducted to assess visual acuity and
motor performance (two-tailed unpaired t-test - latency: p = 0.24; speed: p = 0.94). Values are shown as mean ± 95% CI (confidence interval).
∗p < 0.05; ns: non-significant; APPwt N = 20 and APPtg N = 15 animals.

on k-1 of the dataset and then tested on the k-2 dataset.
The iteration was repeated ten times. During each iter-
ation, the metrics of the model performance such as
sensitivity and specificity were computed. The final
average of k-performances’ estimates was assessed.
This method of assessing the performance of the
model is called k-folds repeated cross-validation [28].
Finally, the model was tested on previously untrained
data (test data) for its general applicability. A confu-
sion matrix was computed to assess the prediction
generated by the model. Logistic regression, k-folds
repeated cross-validation, and confusion matrix were
all conducted using the package caret [29] in R.

RESULTS

Inter-trial-interval (ITI) variation affects the
spatial learning of APPtg mice

To detect if hippocampal A� plaques induced any
MCI, we performed the WM task for several days
employing protocols with different ITI. First, we
completed the WM task for nine consecutive days
using long ITI (spaced trials) protocol. Here, APPwt
and APPtg mice showed a statistically significant
group difference during the probe trial on day 6
(Fig. 2b and Supplementary Figure 3d). However,
there was no statistical group difference during train-
ing trials or probe trials on day 4 and day 9 (Fig. 2a
and Supplementary Figure 3a–c).

The long-ITI protocol was described to enhance
learning in WM task [30]. With the agreement, the
long-ITI protocol also did not reveal differences
between the groups during training trials (Fig. 2), we
shortened the ITI to 1 min (short ITI/massed trials)
and trained another cohort of mice for nine consecu-
tive days. Using this protocol, APPwt mice performed
significantly better than APPtg mice as revealed by
the statistical differences during the probe trial on
day 6 (Fig. 3b and Supplementary Figure 4d) as well
as during training trials (Fig. 3a and Supplementary
Figure 4a–c).

Non-cognitive factors, especially swim-speed, can
introduce errors in the cognitive assessment using
the WM task. Hence, we investigated swim-speed
for both ITI protocols as a function of training
trials/days. We found that ITI shortening induced
a typical “seesaw” pattern of swim-speed when
assessed across training trials (Fig. 4c). Similarly,
swim-speed showed a positive trend when assessed
across training days (Fig. 4d). Two-way repeated
ANOVA between groups did not show any significant
difference for short ITI (Fig. 4d), whereas a group
difference was detected with long ITI (Fig. 4b).

Next, we performed statistical analysis between all
groups during training trials to observe the effect of
ITI on the cognitive performance of various groups.
We found that shortening the ITI mainly worsened the
performance of APPtg mice (Table 2) whereas we did
not see any worsening effect on the performance of
APPwt mice (Table 2).
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Fig. 3. MCI detection of mice using the short-ITI protocol. MCI was assessed via proximity in training trials and probe trials. a) ANOVA of a
mixed model repeated measure analysis showed a significant group effect. b) The memory of the platform location was assessed during probe
trials. The proximity value decreased gradually from day 4 to day 9 for both groups and showed statistically significant group differences on
day 6 (two-tailed unpaired t-test: p = 0.005). Here, a horizontal line is a median, a black circle is a mean, a box is an interquartile range (IQR),
and the whiskers are 1.5x IQR. Additionally, individual points are shown as jitter points in a separate vertical column alongside boxplot.
c) At the end of the WM task, visual cue trials were conducted to assess visual acuity and motor performance (two-tailed unpaired t-test -
latency: p = 0.94; speed: p = 0.76). Values are shown as mean ± 95% CI (confidence interval). ∗∗p < 0.01; ns: non-significant; APPwt N = 23
and APPtg N = 26 animals.

Fig. 4. Swim-speed as a function of training trials/ days. a, b) Speed was assessed across training trials or days for the long-ITI protocol (spaced
ITI). c, d) similarly, speed versus training trials (days) were plotted for short-ITI protocol (massed trials). Two-way repeated ANOVA was
performed using the lm function in R. The degree of freedom, residual, F-value, and p-value are reported. Values are shown as mean ± 95%
CI (confidence interval).

ITI variation does not affect the timeline of the
formation of spatial memory

We have demonstrated that increasing ITI pro-
moted spatial learning of APPtg mice (Table 2, row

6) and vice versa (Table 2, row 1). Next, we inves-
tigated the role of ITI on the timeline of spatial
memory formation. Our protocol included three inde-
pendent probe trials before normal training trials
on different training days. Performing a point pat-
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Table 2
Summary table showing linear mixed model followed by post hoc Tukey’s comparison on

repeated measures data. Proximity was used as a measure of WM performance and
values were taken from training trials of 3-month-old mice

Main effect on training trials: [F(3,80) = 14.94, p < 0.0001]
Group estimate t-ratio p

1 1-min-ITI APPtg versus 1-min-ITI APPwt 4.84 3.58 0.003
2 1-min-ITI APPtg versus 15-min-ITI APPwt 8.43 6.00 <0.0001
3 1-min-ITI APPtg versus 15-min-ITI APPtg 7.82 5.10 <0.0001
4 1-min-ITI APPwt versus 15-min-ITI APPwt 3.59 2.48 0.06
5 1-min-ITI APPwt versus 15-min-ITI APPtg 2.97 1.89 0.23
6 15-min-ITI APPtg versus 15-min-ITI APPwt 0.61 0.38 0.98

Fig. 5. Spatial intensity estimation of different groups during probe trials in 3-month-old mice. A single probe trial was conducted before
normal training trials on day 4, 6, and 9. Mouse trajectories from each group were combined to characterize the location of spatial hotspots.
To this aim, the pixel coordinates were extracted from an image and later dropped inside the circular window of observation where Gaussian
kernel smoothing was done to create a spatial hotspot. Each row is a group with long or short-ITI protocols. Left, accumulated mice trajectories
per group (blue lines) with indicated platform position (red colored circle). Right, color-coded spatial rate map with peak rate (Scale bar).
Purple arrows show the location of spatial hotspots.

tern analysis of mice trajectories on each probe trial
allows us to observe the evolution of spatial mem-
ory formation during the WM task. Here, we found
that spatial memory formation in both APPwt and
APPtg mice was not affected by ITI modulation
(Fig. 5). However, we found that spatial memory

formation occurred earlier in APPwt (by day 6) as
compared with APPtg mice (by day 9) irrespective
of ITI (Fig. 5). These results suggest that ITI mod-
ulation only affects spatial learning and does not
affect the timeline of spatial memory formation in
APPtg.
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Fig. 6. Effect of inter-trial-interval in the learning score of 3-month-old mice. The learning score (LS) of each mouse was determined for
probe trial 1, probe trials 1 and 2, probe trials 2 and 3, and probe trials 1, 2, and 3, respectively. The LS data were log10 transformed and
visualized as violin plot combined with boxplot in which a circular dot (cyan color) represents the mean and the horizontal line inside the
boxplot denotes the median. For probe trial(s), a Kruskal-Wallis test was performed on log10 transformed LS data. In case of significant group
differences, a post hoc Dunn’s test with Bonferroni correction was performed for multiple pairwise comparisons at alpha level of 0.05. The
significant adjusted p-value is denoted alongside the figure. Details: We found a significant group difference for probe trial 1 [χ2(3) = 23.25,
p = 0.00003], for probe trials 1 and 2 [χ2(3) = 23.42, p = 0.00003], for probe trials 2 and 3 [χ2(3)=21.96, p = 0.00006], and for probe trials
1,2, and 3 [χ2(3) = 23.41, p = 0.00003]. No. of animals per group: Long-ITI APPwt N = 20, Long-ITI APPtg N = 15 Short-ITI APPwt N = 23,
Short-ITI APPtg N = 26. p is adjusted p-value and χ2 is chi-squared. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001.

Fig. 7. Search strategies of mice in different protocols in the WM task. Search strategies were qualitatively classified into thigmotaxis,
non-spatial search, and spatial search. Non-spatial search strategies included unclassified, random, scanning, and chaining. Spatial strategies
included direct, directed and focal search. Search strategy for each trial was determined as described above (refer to “Methods section: Video
analysis and search classification”).

Learning score as an alternative measure of
spatial learning and memory

Since we analyzed spatial learning (training tri-
als) and spatial memory (probe trials) discretely, it
is difficult to interpret WM results. Therefore, we
amalgamated both training trial and probe trial(s) per-
formance of each mouse into a single numeric value
called learning score (LS). Using this approach, we
found that the LS of short-ITI APPtg mice was sig-
nificantly lower than that of other groups (Fig. 6).

Thigmotaxis is inversely associated with ITI
duration

To find out how MCI in APPtg mice could
only be detected in the short-ITI protocol, we
analyzed the evolution of search strategies as a
function of training days in the different ITI pro-
tocols. We found that non-spatial search (chaining,
scanning, and random) dominated in both short
ITI as well as in long ITI (Fig. 7). Interest-
ingly, thigmotaxis was more pronounced for both
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Fig. 8. Logistic regression of WM data. a) The WM data were randomly divided into training (60%) and test dataset (40%) The training
dataset was further divided into training and validation dataset as two subsets. Next, k-folds repeated cross-validation was performed. b)
Average values of various metrics of model evaluation on train data set. c) Model evaluation on previously untrained dataset (test data).

Table 3
Principal component analysis (PCA) of various features in the short-ITI protocol. From a combined

dataset of 1,566 trials (APPwt and APPtg animals), about 72% of the behavioral variability was
contributed by PC1. Similar results were obtained for APPwt and APPtg mice. PC1 is principal

component 1 and PC2 is principal component 2

APPwt and APPtg APPwt APPtg
(1566 trials) (736 trials) (830 trials)

Features PC1 PC2 PC1 PC2 PC1 PC2

Latency 16.18 1.39 15.97 1.10 16.41 1.26
Proximity 16.71 0.005 16.58 0.03 16.87 0.0005
Track length 14.01 2.68 13.91 0.54 14.13 4.86
Wall factor 13.45 0.14 13.15 0.002 13.65 0.17
Wishaw’s error 16.08 0.93 15.88 1.05 16.29 0.95
% target quadrant occupancy 15.40 0.01 15.29 0.09 15.48 0.006
Swim-speed 5.90 1.11 6.51 1.28 5.37 7.25
Heading-angle error 2.22 93.70 2.67 95.88 1.77 85.47
Variance 5.75 0.90 5.81 0.87 5.69 0.94
% Variance 71.97 11.29 72.63 10.94 71.18 11.77

APPwt and APPtg mice upon shortening of ITI
(Fig. 8).

Consequently, we aimed to investigate the con-
tribution of thigmotaxis in the short-ITI protocol.
Selected features were extracted from the WM-
dataset and principal component analysis (PCA) was
performed. First, the combined contribution of prin-
cipal component 1 (PC1) and principal component 2
(PC2) accounted for more than 80% of the variance
for both the combined and separate group analyses
(Table 3). Second, neither the wall factor nor the
swim-speed was dominant in PC1 (Table 3). Third,
our data indicates that WM performance in the WM
task was a combined effect of multiple variables such
as latency, proximity, track length, wall factor (thig-
motaxis), etc.

Genotype can be reliably predicted

The PCA analysis suggested that WM perfor-
mance might be affected by a combination of multiple
features. To test this hypothesis, we chose popular
learning variables, latency and proximity, and created
a simple statistical model based on the logistic regres-
sion algorithm to predict the binary classification of
mice as either APPtg or APPwt. Here, we randomly
trained our model on the WM-data set. Additionally,
k-folds repeated cross-validation was performed on
a training dataset (Fig. 8b). Finally, we evaluated the
model on a previously untrained dataset (test data)
and showed that the genotype of a mouse can be
predicted with 82.3 % accuracy and 80% sensitivity
(Fig. 8c).
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DISCUSSION

Cognitive decline is a defining symptom of AD
and mouse models have been generated to recapitu-
late different aspects of cognitive changes observed
in AD patients. However, an enormous heterogene-
ity has been observed between the time course and
the progression of cognitive change across different
AD mouse models [31]. Foley and colleagues per-
formed a systematic review of different AD mouse
models and found no statistically significant corre-
lation between quantified A� levels and the early
cognitive decline/mild cognitive impairment [32].
They surmise that the quantified A� levels were not
“high” enough to detect the cognitive change [32].
The present study aimed to identify early cogni-
tive changes in an AD mouse model, specifically
APPPS1-21 mice. To attain this goal, we performed
a WM task using different ITI versions of our proto-
col, compared with wild-type littermates, and showed
that MCI can be detected simultaneously when A�
plaques start to appear in the hippocampus. How-
ever, we did not provide the immunohistochemistry of
A� plagues on the hippocampus in this study. There
are two main reasons: First, this mouse model has
been thoroughly characterized previously by Radde
and colleagues. They assessed the spatiotemporal
progression of A� production from early age using
immunohistochemistry and found out that the A�
plaques in hippocampus region appear from 3 months
of age [6]. And second, our group has also been using
this specific mouse model for more than a decade
and found consistently that A� plaques indeed start
to appear in hippocampus from 3 months of age [10].

The detection of MCI is important because the clin-
ical benefit of treatment seems unachievable when
the disease is already progressed in the late stage
of AD [33, 34]. Several agents have been tested for
AD to modify the disease progression without any
success [35]. Hence, understanding early stage of
AD such as MCI is vital not only for preventing the
deterioration of AD pathogenesis but also for finding
potential treatment strategies. Since the WM task is a
popular test of spatial learning and memory, we inves-
tigated different ways of detection and visualization
of MCI using this task. Consequently, we provided
additional approaches to MCI visualization such as a
spatial learning index (Fig. 6) and the spatial inten-
sity map (Fig. 5). This study not only focuses on
the detection but also the prediction of MCI with the
intention of drug screening. To achieve this goal, one
avenue can be the use of classification algorithms

such as decision trees, logistic regression, random
forest algorithms etc. to predict the genotype of a
mouse. To implement classification algorithms, the
complex behavior of a mouse should be reduced into
a single number system. However, there are two main
difficulties: First, the WM-data is a longitudinal time-
series data in which the subsequent trial is affected
by the performance of the previous trial [18]. Second,
multiple variables (latency, track-length, proximity)
have been used to describe spatial cognition [11, 30].

The problem of longitudinal data can be solved
by converting the WM-data into a single numeric
value. Historically, Gallagher et al. [21] developed
a learning index/score as a new measure of spatial
learning for group comparison. This approach amal-
gamated the time-series data into a single numeric
value. The idea of converting WM-data into single
number has been used by others as well [36]. In this
study, we also reduced all training trials into a single
number so that classification algorithms can be eas-
ily applied. Similarly, we performed PCA analysis to
solve the second problem. PCA is a statistical proce-
dure to determine the important contributing features
in a given dataset. Studies have shown that perfor-
mance in a WM task can be modulated by multiple
factors [17, 30, 37–39]. Here, using PCA, we also
determined the most contributing features of training
trials (Table 3).

Finally, we used a simple logistic regression algo-
rithm as a tool for predictive analysis of a mouse
into APPtg or APPwt. Because of small animal size
(total 49 mice), some animals had to be included in
this study from a previous study (9 APPwt and 10
APPtg were also included in this data analysis from
Set-up I experiment [15]). Again, we used repeated
k-folds cross-validation on training datasets to han-
dle small datasets. In this approach, the training data
will be randomly partitioned into training and valida-
tion datasets and the average performance-matrices
such as sensitivity and specificity were assessed from
the n-th iteration. The simple binary logistic regres-
sion algorithm later predicted APPtg and APPwt with
high-performance matrices (Fig. 8c), especially con-
sidering the relatively low amount of input data. Such
an approach can be further extended to test the phar-
macological effect of a putative cognitive enhancer,
anti-Alzheimer’s drug, etc., as misclassification of
APPtg as APPwt will be increased in case of true
positive effects.

Our study provided important new insights into
spatial learning and spatial memory. We investigated
the MCI detection and visualization using different



S.P. Rai et al. / Detection and Prediction of MCI 1219

ITI protocols. To detect MCI, we used two different
ITI protocols: 1) Long ITI (spaced trials or 15–40 min
ITI) and 2) short ITI (massed trials or 1 min ITI).
We expected that mice, irrespective of its transgene,
tested in short ITI should perform poorly as compared
to long ITI [40]. However, a shortening of ITI only
worsened the spatial learning of APPtg but not APPwt
mice (Table 2). More interestingly, ITI variation does
not alter the formation of spatial memory in APPtg
mice and APPwt mice (Fig. 5). Spatial memory forms
earlier in APPwt than APPtg mice (Figs. 2, 3, and
5) suggesting that spatial learning can be modulated
by ITI, but the spatial memory formation cannot be
modulated by the ITI changes in APPtg.

Earlier studies have been performed to reveal the
causality of ITI modulation on the cognitive dif-
ference between groups. Prolonging ITI promotes
learning whereas shortening ITI decreases spatial
learning [40, 41]. Kogan and colleagues performed
a WM task in CREB��− mutant mice and found out
that increasing ITI from 1 min to 60 min completely
removed the spatial memory deficit in these mutant
mice [41]. It was initially surmised that stress and/or
fatigue could be a causal factor in the learning differ-
ence observed in short-ITI protocol [42]. Later, it was
shown that cold water (19◦C) significantly increased
circulating corticosterone level in rats [43]. Addition-
ally, Iivonen and colleagues reported that swimming
in water (20◦C) for 45 s for five trials with ITI of
30 s significantly dropped rectal body temperature
in mice. The hypothermia was then accompanied by
decreasing swim-speed [44]. We, therefore, assessed
swim-speed in this study and found a similar pattern
of slowing of swim-speed as a function of training
trials for a day during early training trials (Fig. 4c).
However, the “slowing of swim-speed” does not
explain the rationality behind the short ITI and the
cognitive difference between groups.

One of the least understood aspects in the field
of learning and memory is the spacing effect [45]
where increasing the ITI between two successive trial
is beneficial for memory [46]. This spacing effect has
been observed in diverse memory tasks in humans
[47] as well as non-humans [45]. However, the key
mechanism of underlying superiority of spaced train-
ing (long ITI) over massed training (short ITI) has
not been understood [45]. Few studies have been
performed to unravel the synaptic evidence for the
efficacy of spaced training. Kramár and colleagues
performed theta bursts stimulation (TBS) experiment
on hippocampal slices to study long term potentia-
tion (LTP), a key mechanism in learning and memory

[16], and showed that TBS with longer delays pro-
duces a greater degree of LTP as compared to shorter
delays [48].

There are several limitations to this study. First,
we have only used female mice and have not stud-
ied gender-specific performances. Female-specific
increased risk in AD is related to inherent biologi-
cal differences such as sex-specific gene-interaction,
hormonal changes as a function of aging, and sex-
ual dimorphism in brain structures [49]. Second,
mouse models of AD do not completely reflect the
full spectrum of human cognitive dysfunction. More-
over, transgenic animal models can produce several
artifacts due to artificial transgene overexpression
[50]. Despite these limitations, behavioral studies
in mice can give important information regard-
ing the cognitive dysfunction and pathogenesis of
AD [51].

This study unraveled early cognitive difference in
an AD mouse model via multiple approaches such
as experimental modulation as well as alternative
approaches of analyzing the complex data of WM
tasks such as learning score and classification algo-
rithm. Detecting MCI at a young age will open new
avenues of potential treatment strategies such as treat-
ment at a younger age and faster drug screening.

ACKNOWLEDGMENTS

This work was supported by: Deutsche
Forschungsgemeinschaft/ Germany (DFG PA930/
12); Ministerium für Wirtschaft und Wissenschaft
Sachsen-Anhalt/ Germany (ZS/2016/05/78617);
Leibniz Gemeinschaft/ Germany (SAW-2015-IPB-
2); Latvian Council of Science/ Latvia (lzp-2018/1-
0275); Nasjonalforeningen for folkehelse (16154),
HelseSØ/ Norway (2016062, 2019054, 2019055);
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