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Abstract: In this study, we synthesized polyacrylic acid (PAA)-Ca (Eu) nanoclusters as a lumines-
cence sensor of phosphate ion by a complex method, and we aimed to achieve the quantitative
detection of PO4

3− based on the sensitivity of the charge transfer band of Eu3+ to anionic ligand.
The resulting PAA-Ca(Eu) nanoclusters showed a well-dispersed and a dot-like morphology, with
an ultra-small diameter (the average size of 2.17 nm) under high resolution transmission electron
microscopy(HRTEM) observation. A dynamic light scattering particle size analyzer (DLS) showed a
hydrodynamic size of 2.39 nm. The (PAA)-Ca (Eu) nanoclusters as a luminescence sensor showed
a significantly higher sensitivity for PO4

3− than other anions (CO3
2−, SiO3

2−, SO4
2−, SO3

2−, Br−,
Cl−, F−). The luminescence intensity displayed a linear increase (y = 19.32x + 74.75, R2 > 0.999) in
a PO4

3 concentration range (0–10 mM) with the concentration of PO4
3− increase, and the limit of

detection was 0.023 mM. The results showed good recovery rates and low relative standard deviations.
These (PAA)-Ca (Eu) nanoclusters are hopeful to become a luminescence sensor for quantitatively
detecting PO4

3−.

Keywords: nanoclusters; Eu3+ luminescence sensor; PO4
3− detection; charge transfer band

1. Introduction

Europium element with a unique 4f electron layer structure is a commonly used
luminescent probe [1–3] due to its good optical stability, high thermal and chemical stability,
narrow emission band, high resistance to photobleaching, and light quenching [4–6]. The
excitation wavelength of Europium mainly includes the 350–475 nm band of energy levels
transition and the charge transfer band (CTB) in the ultraviolet region [5,7]. The energy
level transition excitation can obtain better near-infrared emission luminescence, which is
mainly used in the biomedical field [6,8–12]. The CTB has unique properties, Eu3+ binds
to the anionic ligand to form a CTB. The position of the charge transfer transition band
depends on the ligand [13–18]. Therefore, the CTB of Eu3+ can be used for qualitative
and quantitative analysis of the types and contents of anionic ligands. For example, CTB
formed with phosphate in hydroxyapatite is at 254 nm, while CTB formed with anionic
ligand in LaOF is at 285 nm [7,19].

Phosphorus plays an important role in organisms and the environment [20,21]. Exces-
sive phosphate content in water can cause water pollution [22,23]. Phosphate in organisms
participates in a variety of metabolism processes. Phosphate content is one of the important
indicators of human health, and its quantitative detection is of great significance [24,25].
In this study, inspired by the biomineralization process of calcium phosphate, we used
polyacrylic acid (PAA) to complex Ca2+ and Eu3+ ions to obtain PAA-Ca (Eu) nanoclusters
as a sensor for the quantitative detection of PO4

3− based on the sensitivity of charge transfer
band of Eu3+ to anionic ligand. The morphology, size, ion selectivity and luminescence of
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PAA-Ca (Eu) nanoclusters were characterized, and the mechanism of quantitative phos-
phate radical detection was analyzed and explained by luminescence spectra and molecular
dynamics simulation (MDS).

2. Materials and Methods
2.1. Synthesis of PAA-Ca (Eu) Nanoclusters

The PAA-Ca(Eu) nanoclusters were prepared by a complex method. An aqueous
Ca(Eu) solution (20 mL) was prepared using CaCl2·2H2O (99.42 mg, Sinopharm, Beijing,
China) and Eu(NO3)·6H2O (33.52 mg, Aladdin, Shanghai, China) with a concentration of
37.575 mM in which the Eu3+/(Ca2+ + Eu3+) molar ratio was 10%. The solution was stirred
vigorously to make it fully dissolved. An aqueous solution of PAA (average molecular
weight of ~1800 g/mol, 216.43 mg, 20 mL, Sigma, St. Louis, USA) was quickly added to the
aqueous Ca(Eu) solution, and the pH was adjusted to 7.5–8.0 using NH3·H2O (Sinopharm,
Beijing, China) to yield the PAA-Ca(Eu) nanoclusters. The temperature of all the above
solutions was room temperature (25 ◦C).

2.2. Characterization

High resolution transmission electron microscopy (HRTEM, Talos F200S, Waltham,
MA, USA) was used to observe and to analyze the microstructure of the materials. Fourier
transform infrared spectroscopy (FT-IR, Nicolet6700, Waltham, MA, USA) was used to
record the spectra of the near infrared region (4000~400 cm−1), analyze and study the
vibration mode of the characteristic peak of the material, identify the substance, and
determine the chemical composition or relative content of the substance. A dynamic light
scattering particle size analyzer (DLS, Malvern, UK) was used to measure the particle
size distribution and the dispersion coefficient of solution. Luminescence excitation and
emission spectra of samples were measured by luminescence spectrophotometer (970CRT,
Shanghai Sanco, Shanghai, China).

2.3. Detection of PO4
3−

An aqueous solution of phosphate ion was prepared by Na2HPO4·12H2O and added
to the PAA-Ca(Eu) nanoclusters solution. Finally, NH3·H2O was used to adjust the pH to
9.0–9.5 for luminescence detection.

2.4. Preparation of Buffer Solution

A total of 1.07 g of NH4Cl (Sinopharm, Beijing, China) was added to 100 mL of
deionized water. After it was fully dissolved, ammonia was added to adjust the pH of the
aqueous solution to 8.0 to obtain the buffer solution.

2.5. Molecular Dynamics Simulation

All MDS employed the AMBER/general AMBER force field. In the cubic simulation
unit with an initial size of 10 nm, the step change was set to 1 fs, and all simulations were
run for 50 ns in real time using Gromacs 2018 software package [26,27].

3. Results and Discussion
3.1. Structure Characterization

First, the microstructure and the particle size of PAA-Ca (Eu) nanoclusters were
characterized (Figure 1). Through HRTEM, it can be seen that the nanoclusters present
dot-like particles, and the nanoclusters do not gather directly. The particle size also presents
a relatively uniform distribution. Through the statistics of the nanoclusters in the HRTEM
image, their particle size is concentrated in the range of 1.8–2.4 nm (this particle size range
accounts for 88% of the total particle size), with an average particle size of 2.17 nm. DLS
test results also showed a similar hydrodynamic size (2.39 nm).
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pure PAA, the C=O absorption peak shifts to a low frequency and the C-O absorption 
peak shifts to a high frequency, which νas(COO−)–νs(COO−) is approximately 150 cm−1, in-
dicating that the coordination between carboxylic acid and the metal ions in PAA is a 
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and it has the highest luminescence intensity. The luminescence emission peak with the 
maximum luminescence intensity (617 nm) was selected for comparison, as shown in Fig-
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Figure 1. (a) High-resolution transmission electron microscopy image of PAA-Ca (Eu) nanoclusters;
(b) Particle size statistics of (a); (c) Hydrodynamic size of PAA-Ca(Eu) nanoclusters.

In addition, FT-IR spectra of PAA-Ca (Eu) nanoclusters and samples with different
PO4

3− additions are shown in Figure 2. The absorption peak at 3478 cm−1 is the O-H
stretching vibration peak in PAA molecule [28]. The absorption peaks at 1556 cm−1 and
1401 cm−1 are the asymmetric stretching vibration peak (νas(COO−)) and the symmetric
stretching vibration peak (νs(COO−)) of COO− in the PAA molecule, respectively. Com-
pared with pure PAA, the C=O absorption peak shifts to a low frequency and the C-O
absorption peak shifts to a high frequency, which νas(COO−)–νs(COO−) is approximately
150 cm−1, indicating that the coordination between carboxylic acid and the metal ions in
PAA is a bridge coordination compound [29,30]. After adding PO4

3−, the absorption peak
of the phosphate ion appeared obviously in the infrared spectrum, which was located at
1104 cm−1, 1072 cm−1 and 536 cm−1, belonging to the asymmetric stretching (ν3) and the
asymmetric angle change (ν4) of PO4

3− [31,32].
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Figure 2. Fourier transform infrared spectroscopy spectra of PAA-Ca (Eu) nanoclusters with different
PO4

3− concentration. I–III are 0 mM, 2 mM, and 7.5 mM.

3.2. Luminescent Characterization
3.2.1. Ion Selectivity

PAA-Ca(Eu) nanoclusters were used as sensors to detect common anions (the anion
concentration was 10 mM). As shown in Figure 3a, PO4

3− is the most sensitive to the
sensor, and it has the highest luminescence intensity. The luminescence emission peak with
the maximum luminescence intensity (617 nm) was selected for comparison, as shown
in Figure 3b. It can be more intuitively observed that the sensor is sensitive to PO4

3−.
Figure 3c shows that CTB positions and intensities are different for different anionic ligands.



Nanomaterials 2022, 12, 2398 4 of 7

The CTB of PO4
3− position is unique, and it is the strongest. All of the above indicated that

PAA-Ca (Eu) nanoclusters could be used for the detection of PO4
3− concentration.
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Figure 3. (a) Emission spectra (λex = 254 nm) of different anions at the excitation wavelength of
254 nm; (b) Luminescence intensity of the characteristic emission peak at 617 nm was selected for
comparison; (c) Excitation spectra (λem = 617 nm) of different anions at emission wavelengths of
617 nm.

3.2.2. Detection of PO4
3− Concentration

In the emission spectrum excited at 254 nm, Eu3+ showed characteristic emission at
594 (5D0 → 7F1), 617 (5D0 → 7F2), 654 (5D0 → 7F3), and 699 nm (5D0 → 7F4) (Figure 4a).
Figure 4b shows that with the increase of PO4

3− concentration, the increase of luminescence
first increased and then remained basically unchanged. The linear fitting of PO4

3− con-
centration in the range of 0–10 mM showed that the linear equation was y = 19.32x + 74.75,
and its R2 was 0.999, indicating that PAA-Ca(Eu) nanoclusters can quantitatively detect
PO4

3− in this concentration range. In the excitation spectrum, Eu-O CTB gradually moved
to the left from 273.7 nm to 258.6 nm with the increase of PO4

3− concentration, indicating
that the anion ligand connected to Eu3+ changed during this process.

LOD = 3σ/K (1)
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Figure 4. (a) Emission spectra (λex = 254 nm) of PAA-Ca(Eu) nanoclusters and PO4
3− at different

concentrations; (b) The relationship between luminescence intensity increase rate and PO4
3− concen-

tration at 617 nm emission peak; (c) Excitation spectra (λem = 617 nm) of PAA-Ca(Eu) nanoclusters
and PO4

3− at different concentrations.

The detection limit of the fluorescent sensor is calculated using Formula (1), where
LOD is limit of detection, σ is the standard deviation of the blank, and K is the slope of
the linear relationship. We tested six groups of blank samples, obtained their standard
deviation, and calculated that the detection limit of the luminescence sensor for PO4

3−

was 0.023 mM. It shows that the sensor can be used to detect PO4
3− in serum and other
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samples [33]. We added a known concentration of PO4
3− to the sample, which reacted

with PAA-Ca(Eu) nanoclusters, and then tested its luminescence at 254 nm excitation
wavelength. According to the emission peak intensity at 617 nm and the linear equation
in Figure 4b, the spiked recovery rate of PO4

3− in the sample was calculated. The results
are shown in Table 1. Overall, all samples showed good recovery rates and low relative
standard deviations (RSD) within the linear range, making PAA-Ca(Eu) nanoclusters a
sensor for PO4

3− quantitative detection.

Table 1. Results and recovery of samples (n = 3).

PO4
3− Spiked (mM) PO4

3− Found (mM) Recovery (%) RSD (%)

1 1.060 106.0

4.2
4 4.200 105.0
5 4.793 95.9
8 7.951 99.4
10 9.914 99.1

3.2.3. Buffer Solution

It can be seen from Figure 5 that in an aqueous solution and a buffer solution, the
luminescence intensity of the PAA-Ca(Eu) nanoclusters is basically the same after reacting
with PO4

3− of the same concentration. It proved that the luminescence sensor also has a
good sensing function in the buffer solution.
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3.3. Mechanism of PO4
3− Concentration Detection

After adding PO4
3− to PAA-Ca(Eu) nanoclusters, the vibrational peak of PO4

3−

appeared in FT-IR, and the peak position and intensity of CTB changed in the excitation
spectra (λem = 617 nm), indicating that the anions bonded with Eu changed in this process.
In addition, MDS showed that Eu3+ combines with the oxygen anion of the PAA carboxyl
group in PAA-Ca(Eu) nanoclusters, showing Eu–O1 CTB (Figure 6a). When PO4

3− was
added to the PAA-Ca(Eu) nanoclusters, the COO– bonded Eu3+ was bound by the oxygen
anion of PO4

3−, displaying a new Eu–O2 CTB (Figure 6b). This change in the bonding state
of Eu3+ caused an increased energy state, corresponding to the shift to a low wavelength and
an increased luminescence intensity. Based on this mechanism, the quantitative detection
of PO4

3− can be realized.
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Figure 6. (a) The bonding of Eu in PAA-Ca(Eu) nanoclusters; (b) The bonding of Eu after
adding PO4

3−.

4. Conclusions

In conclusion, we synthesized ultra-small PAA-Ca(Eu) nanoclusters with an average
particle size of 2.17 nm under HRTEM observation. The nanoclusters are sensitive to PO4

3−,
and they can be used for quantitative detection of PO4

3− in a certain concentration range
(0–10 mM), with good linear correlation. The LOD is 0.023 mM. Based on the sensitivity of
CTB of Eu3+ to anionic ligand, the quantitative detection of PO4

3− can be carried out. In
addition, the detected concentration range by the PAA-Ca(Eu) nanoclusters sensor covers
the content of PO4

3− in serum, urine, and sewage. So, it is hoped that it can detect PO4
3−

in physiological conditions and a natural environment.
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