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SUMMARY

Cerebral cavernous malformation (CCM) is a common vascular dysplasia that affects both 

systemic and CNS blood vessels. Loss of function mutations in the CCM2 gene cause CCM. Here 

we show that targeted disruption of Ccm2 in mice results in failed lumen formation and early 

embryonic death through an endothelial cell autonomous mechanism. We demonstrate that CCM2 

regulates endothelial cytoskeletal architecture, cell-cell interactions and lumen formation. 

Heterozygosity at Ccm2, a genotype equivalent to human CCM, results in impaired endothelial 

barrier function. Because our biochemical studies indicate that loss of CCM2 results in activation 

of RHOA GTPase, we rescued the cellular phenotype and barrier function in heterozygous mice 

using simvastatin, a drug known to inhibit Rho GTPases. These data offer the prospect for 

pharmacologic treatment of a human vascular dysplasia using a widely available and safe drug.

INTRODUCTION

Cerebral cavernous malformations (CCM) are common vascular malformations that affect 

the systemic and CNS vasculature with a prevalence of 1:200-2501,2 in unselected 

populations. CCM consist of enlarged microvascular channels lined by a single layer of 

endothelium without smooth muscle support. Those who harbor these vascular lesions are 
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subject to an unpredictable risk of hemorrhage for which no pharmacologic therapy 

currently exists3. Even prior to overt hemorrhage, all lesions are surrounded by hemosiderin, 

the iron-laden deposits that result from extravascular blood that can be sensitively detected 

by MRI4 and suggest abnormal endothelial barrier function5. Although lesions have been 

described in a variety of vascular beds6, clinical manifestations are most common in the 

CNS, where the consequences of leak and hemorrhage can be stroke, seizure, or even death. 

A large proportion of cases are familial, following an autosomal dominant inheritance 

pattern. Genetic studies have shown that heterozygous loss of function mutations in CCM2 - 

also known as Osmosensing scaffold for MEKK3 (OSM), Malcavernin, or MGC4607 - cause 

cavernous malformations7,8. Two other structurally unrelated genes, KREV1 interaction 

trapped-1 (KRIT1) - also known as CCM19,10 - and Programmed cell death 10 (PDCD10) - 

also known as CCM311 - have also been associated with CCM. Even with the hindsight 

afforded by the human genetic studies, there is little to recommend these genes as obvious 

candidate genes for any vascular disease.

CCM2 (OSM) was identified in a screen for genes involved in the cellular response to 

osmotic shock12. These stress-activated pathways include a signaling cascade involving 

Rho-family GTPases such as RHOA, RAC1 and CDC42, and MAP kinases such as p38 and 

JNK. In fibroblasts, CCM2 (OSM) was required for the assembly of a complex between the 

kinase MEKK3 and its substrate MKK3 to phosphorylate p38 in response to signaling from 

the GTPase RAC1.

Efforts to incorporate these biochemical insights into a molecular model to explain the 

pathogenesis of CCM have been plagued by controversy over the cell specificity of the 

CCM2 requirement. Though a compromised vasculature defines CCM, there are compelling 

data that suggest a neuronal role in the etiology of the disease. First, the expression of the 

three genes involved in CCM is neither specific nor selective for the endothelium in culture 

or in animal models13-15. Second, there is precedence that neural deletion of Alpha-V 

integrin disrupts the cerebral vasculature and causes hemorrhage in mice16. Conversely, it 

has been observed that KRIT1 can act as an effector of the small GTPase RAP1A in 

cultured endothelial cells17. The tissue specificity of Ccm2 function remains unknown.

In this manuscript we demonstrate that Ccm2 is required for the first essential angiogenic 

event during development, the formation of the first branchial arch artery. We also show by 

tissue specific ablation of Ccm2 that vascular defects associated with Ccm2 mutations are 

endothelial autonomous. Cultured endothelial cells with reduced CCM2 expression have 

intrinsic impairment of lumen formation and bear many hallmarks of RHOA GTPase 

activation, including functional, morphologic, and biochemical changes. Furthermore, 

CCM2 is shown to bind to RHOA, and Rho inhibition can reverse many of the endothelial 

changes. Decreased endothelial barrier function is observed in cultured cells and in mice 

with heterozygous mutations of Ccm2, which genocopy human CCM. Impaired barrier 

function can be rescued in vitro by RHOA inhibition, and in vivo by pre-treatment with 

simvastatin, an indirect inhibitor of Rho GTPases. This work demonstrates that CCM2 is 

critical for vessel integrity and modulates RHOA signaling. To the extent that this pathway 

also leads to vascular dysplasia in human CCM, our studies open up the possibility of 

targeted pharmacologic therapies to address vascular defects in this common condition.
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RESULTS

Ccm2 is required for angiogenesis

A putative null allele of Ccm2 was identified from a collection of gene trap induced 

mutations (Bay Genomics consortium). This allele has been termed Ccm2Gt(pGt0Lxf)1Dmar 

(hereafter designated Ccm2tr), and consists of the gene trap vector inserted into exon 6 of 

Ccm2 along with a 45 nucleotide deletion of genomic sequence14, disrupting transcription 

of Ccm2 (Supplementary fig. 1a-c). Mice heterozygous for Ccm2tr are viable and fertile as 

previously reported14. We observed no homozygous mutant mice at weaning. We identified 

mutant embryos in Mendelian ratios until the ninth day postcoitum (E9.0). Starting at E9.0 

we began to recognize a gross phenotype in mice lacking Ccm2 (Supplementary table 1). 

The homozygous mutant embryos failed to organize the yolk sac vasculature and showed 

evidence of growth arrest at E9.0. Pericardial effusions subsequently developed prior to 

embryo resorption at E11.5. No viable mutants were observed at E9.5 or beyond. The timing 

of death in these embryos is consistent with failed angiogenesis.

We studied embryos at E8.5 before the mutant phenotype could be grossly detected. 

Embryos were stained with antibodies against the endothelial cell surface protein CD31 

(PECAM) or alpha-smooth muscle actin and observed by whole mount confocal 

immunofluorescent microscopy or sectioned and studied by immunohistochemistry. The 

initial patterning of the dorsal aorta (Supplementary fig. 1d, e) and yolk sac primary vascular 

plexus (data not shown) by vasculogenesis18 is intact in mutants. Heart development is also 

normal (data not shown). After the initial vascular pattern is established, however, profound 

defects occur in the development of subsequent vessels by angiogenesis (Fig. 1a, b). The 

first defects observed in mutant embryos included abnormalities of the first branchial arch 

artery and the intersomitic arteries at E8.5 (Fig. 1a, b and Supplementary fig. 1e, f). The first 

branchial arch artery, required to connect the dorsal aorta to the heart, fails to form a proper 

lumen in mutants. Adjacent portions of the aorta are also narrow and irregular, whereas the 

previously normal caudal portion of the dorsal aorta becomes enlarged (Supplementary fig. 

1d). Yolk sac vascular remodeling is abnormal (data not shown). The failure of the branchial 

arch arteries has profound physiologic consequences on the embryo. In vivo ultrasound 

studies demonstrate that despite normal frequency of cardiac contractions, circulation is not 

established in homozygous mutants (Fig. 1c and Supplementary movies 1 and 2). Branchial 

arch artery failure is not confined to the arteries of the first arch. The second and third pair 

of branchial arch arteries should normally form by E9.5. We injected India ink into the 

ventricles of mutant embryos at E9.5 and did not observe passage of ink into the dorsal aorta 

of mutants (Fig. 1d). Unlike the anterograde flow observed in wild type littermates, ink 

passed retrograde from the ventricle through the atrium and into the common cardinal vein 

in mutant embryos. Growth arrest and embryonic death resulted from failed circulation at 

E8.5.

Ccm2 is required in the endothelium

Mice with gene trap mutations in Ccm2 establish an essential role for this protein in 

angiogenesis. This mutation is present in all cells of the embryo and thus does not 

distinguish which tissues require Ccm2 for normal function. To determine tissue specificity, 
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we developed mice with a conditional mutation in Ccm2 using CRE-Lox technology 

(Supplementary fig. 2). This allele is termed Ccm2tm1Kwhi (hereafter referred to as Ccm2fl). 

The Ccm2 gene remains intact until the allele is exposed to CRE recombinase which deletes 

exons 3-10 of Ccm2. Mating Ccm2fl/+ mice with HPRT-CRE mice19 resulted in a new, 

heritable mutant allele termed Ccm2tm1.1Kwhi (hereafter referred to as Ccm2-). Homozygous 

mutant (Ccm2-/-) mice phenocopy the gene trap (Ccm2tr/tr) mutants (Supplementary fig. 2e). 

CRE recombinase can also be expressed in a tissue specific manner, under the control of a 

variety of promoters. We subsequently examined a number of tissue-restricted, somatic 

mutants for defects in angiogenesis. Mice lacking Ccm2 in the endothelium 

[Ccm2fl/-;Tg(Tie2-CRE)]20 resemble germline mutants with similar vascular defects and 

timing of embryonic death (Table 1 and Fig. 2). Endothelial cell specific deletion of Ccm2 is 

uniformly lethal in development.

The expression of Ccm2 in neural tissues and the predominance of CCM lesions in the 

central nervous system suggest a possible role for Ccm2 in neural cells. Mice lacking Ccm2 

in neural tissues were generated with CRE driven by a Nestin promoter [Ccm2fl/-;Tg(Nes-

CRE)]21. These mutants had no defects in angiogenesis at E9.0 and were found in expected 

ratios at birth (Table 1 and Fig. 2). Another important contributor to the milieu of 

endothelial cells in vivo is the smooth muscle cell. Mice lacking Ccm2 in smooth muscle 

cells were generated with a Transgelin-CRE [Ccm2fl/-;Tg(Tagln-CRE)]22. Smooth muscle 

mutants were also found at birth, with normal vasculature at E9.0 (Table 1 and Fig. 2). 

These data indicate an essential role for Ccm2 in endothelial cells for the initial events of 

angiogenesis.

CCM2 regulates lumen formation via the actin cytoskeleton

Our genetic studies led us to evaluate the function of CCM2 in endothelial cells. We 

observed CCM2 expression by real time quantitative RT-PCR in all endothelial cell types 

studied. A single siRNA construct was able to decrease CCM2 transcripts by 80-90% in 

human microvascular (dermal) endothelial cells (HMVEC) and human umbilical vein 

endothelial cells (HUVEC) (Fig. 3a).

Endothelial cells in three-dimensional culture spontaneously develop tube-like structures 

that resemble the microvasculature and model events in developmental angiogenesis23. We 

tested the role of CCM2 in lumen formation in vitro by comparing HUVEC cells treated 

with CCM2 siRNA with either a luciferase or non-sense control siRNA in a three-

dimensional assay of tube morphogenesis (Fig. 3b, c and Supplementary movies 3 and 4). 

Control HUVECs form vacuoles that coalesce into tube-like structures over the course of 24 

h, whereas CCM2-depleted HUVECs formed fewer lumens with much smaller lumen cross-

sectional area (Fig. 3d, e). This defect was observed at the single cell stage prior to the 

formation of multicellular structures (Fig. 3d). These observations suggest a central and 

endothelial intrinsic role for CCM2 in the development of precursor vacuoles as well as the 

coalescence and expansion of these structures to form the vascular lumen. Consistent with 

this hypothesis, we observed up-regulation of CCM2 mRNA by RT-PCR in a time course 

parallel with lumen formation in control HUVECs (Fig. 3f). Lumen failure is not a 

consequence of insufficient endothelial migration, or the ability to form filopodial sprouts. 
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HUVECs treated with CCM2 siRNA have increased sprouting of cell processes when 

initially plated in three-dimensional culture (Fig. 3g). Similarly, HMVECs treated with 

CCM2 siRNA have increased haptotactic migration (Fig. 3h).

Lumen formation is dependent upon the cellular cytoskeleton24. The CCM2-deficient 

HMVECs had a striking increase in actin stress fibers traversing the cell, with less cortical 

actin at the cell periphery (Fig. 4a). Actin redistribution was correlated with a decrease in 

barrier function and increased permeability of the endothelial monolayer (Fig. 4b, c). We 

observed decreased electrical resistance and increased transit of macromolecules (HRP) 

across CCM2-deficient monolayers compared to control.

CCM2 regulates actin and MAPK via RHOA

The Rho family of small GTPases are important regulators of the cellular cytoskeleton. 

Impaired lumen formation24, increased actin stress fibers and decreased barrier function25 

in endothelial cells suggest activation of RHOA. Consistent with the cellular phenotype, we 

observed increased active (GTP-bound) RHOA in CCM2-depleted HMVECs compared to 

control (Fig. 4d). We found no change in the activation of RAC1 and found less basal 

activation of CDC42. By immunoprecipitation we found that CCM2 binds to RHOA and 

RAC1 but not CDC42 (Fig. 4e). Inhibition of RHOA signaling either at the level of RHOA, 

with C3 transferase26, or downstream at the level of Rho-Kinase (ROCK), with the ROCK 

inhibitor Y-2763227, blocked the stress fiber response (Fig. 4f) of CCM2-depleted 

HMVECs. C3 transferase was also able to significantly rescue barrier function in these cells 

(Fig. 4g).

CCM2 has also been implicated in MAPK signaling12. We used phospho-specific 

antibodies to profile the activation state of MAPK families in the absence of CCM2 (Fig. 

4h). The main families of MAP kinases are the extracellular signal regulated kinases (ERK) 

and p38 and JNK, with p38 and JNK also being known as stress regulated protein kinases28. 

Reduction of CCM2 did not affect the levels of either phosphorylated ERK or p38, but did 

increase the phosphorylation of JNK and its upstream kinases, MKK4 and MKK7. As 

GTPases can stimulate MAP kinase signaling, we tested whether increased JNK activation 

was the result of increased Rho activity by treating cells with the ROCK inhibitor Y-27632. 

ROCK inhibition decreased the activation of JNK (Fig. 4i). These observations suggest that 

the loss of CCM2 leads to RHOA activation, causing activation of JNK with an associated 

change in endothelial phenotype including cytoskeletal changes, impaired lumen formation, 

and increased migration and vascular permeability.

Simvastatin rescues CCM2 deficiency in vivo

Humans with CCM have heterozygous mutations in CCM2 and suffer from clinically 

significant vascular hemorrhage or leakage, not from severe developmental angiogenic 

defects as observed in mice with homozygous mutations in Ccm2. To examine the role of 

Ccm2 in the disease state, we shifted our attention to mice heterozygous for Ccm2. We 

found no difference in vascular patterning (data not shown) or permeability to the 

intravascular dye, Evans blue (Fig. 5a, saline injections) between heterozygous mice and 

wild type controls. Clinical reports suggest that physiologic29-31 or genetic32 stressors may 
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play a role in disease pathogenesis. An association was observed between accelerated 

progression of CCM and increasing levels of VEGF29. Consistent with this clinical 

observation, we observed significantly increased permeability to Evans blue in Ccm2+/tr 

mice in response to VEGF across a range of doses (Fig. 5a). Increased permeability was also 

observed in mice with endothelial specific heterozygosity for Ccm2 (Fig. 5b). These results 

demonstrate a role for Ccm2 in the endothelium for the maintenance of normal in vivo 

barrier function in adults aside from its role in embryonic development.

Our observations in vitro suggested that Rho inhibition might rescue the increased 

permeability of Ccm2 heterozygous mice. Unfortunately, mice do not tolerate the ROCK 

inhibitor Y-27632 (data not shown), and the Rho inhibitor C3 transferase is not useful in 

vivo. Inhibitors of HMG-CoA reductase (statins) have pleiotropic effects that include the 

inhibition of Rho GTPases. Simvastatin disrupts the production of key intermediaries in the 

cholesterol synthesis pathway necessary for RHOA isoprenylation33,34 and has been used 

as an inhibitor of Rho in vivo35,36. In culture, we found that simvastatin reduced actin stress 

fibers in both control and CCM2 siRNA treated endothelial cells (Fig. 5c) and decreased the 

haptotactic migration of CCM2-depleted HMVECs (Fig. 5d). Simvastatin also decreased the 

phosphorylation of JNK in both control and CCM2 siRNA treated cells (Fig. 5e). In vivo, we 

found that pretreatment of mice with simvastatin significantly reduced the permeability 

response of Ccm2+/tr mice to VEGF with no effect on the induced permeability of Ccm2+/+ 

mice (Fig. 5f). These data suggest that abnormal Rho GTPase activity observed in cells 

depleted of CCM2 is also present in mice with reduced Ccm2.

DISCUSSION

Here, we provide the first in vivo evidence that any of the genes causing CCM are required 

in the endothelium. Previously, the cellular basis of CCM disease was not clear. The 

extensive neural expression13-15, the CNS predilection of lesions, and lessons learned from 

Alpha-V integrin targeted mice16 suggested that CCM might be caused by an intrinsic 

neural cell defect. We demonstrated that mice lacking Ccm2 die in midgestation from failed 

angiogenesis and that these vascular defects are endothelial autonomous. Using two distinct 

mutations we have shown that Ccm2 is not required for the initial differentiation of 

endothelial cells from angioblast precursors (vasculogenesis)18, but rather, that subsequent 

vessel formation and remodeling (angiogenesis) is impaired at the earliest possible stages. 

Branchial arch arteries, the first essential angiogenic vessels, fail to form a stable lumen. As 

a result, the heart is not functionally connected with the vasculature and circulation fails to 

initiate. Subsequent growth and development of the embryo is severely impaired, and death 

ensues. Tissue specific mutants have shown that the selective endothelial deletion of Ccm2 

is sufficient to reproduce the vascular defects, whereas mice lacking Ccm2 in neural or 

smooth muscle cell lines develop normally. Thus, Ccm2 is required in the endothelium for 

angiogenesis.

The recognition of essential endothelial autonomous functions for Ccm2 allowed us to 

examine previous biochemical studies in a new light. Previous studies in fibroblasts and 

other non-endothelial cell types suggested a role for CCM2 as a scaffold tying RAC1 

GTPase activity to p38 activation in response to osmotic stress12. Endothelial cells face 
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stressors in the context of a monolayer of interacting cells. In addition to the maintenance of 

individual cell size and shape in the face of stress, endothelial cells must also maintain 

contact and barrier function with adjacent cells in the monolayer. One might expect that 

CCM2, as an important molecule in response to stress, would play a role in maintaining 

stable endothelial cytoskeletal architecture and cell-cell interactions. Our observations in 

CCM2-depleted HMVECs support this hypothesis. We observe a loss of cortical actin with 

increased actin stress fibers and decreased endothelial barrier function, changes that are 

typical of activated RHOA GTPase25, and which can be reversed by inhibitors of RHOA 

signaling.

Our observations suggest a model whereby there is dynamic equilibrium between vascular 

stability and instability. The endothelium of a stable blood vessel provides critical barrier 

functions by controlling fluid, nutrient and cellular transport between intravascular and 

extravascular compartments. The formation and maintenance of strong cell-cell contacts is a 

favorable characteristic of endothelial cells in a stable blood vessel. However, when 

challenged by injury or inflammation the endothelium alters its phenotype and temporarily 

disrupts cell-cell junctions. In this destabilized state the endothelium can initiate the required 

migration and angiogenesis responses to the stressor. In this model, CCM2 is required for 

endothelial cells to assume the stable phenotype, mediated at least in part by limiting RHOA 

activation24,37,38. Our cell culture data indicate that CCM2 regulates key aspects of the 

stabilized endothelium, including cellular architecture, barrier function, migration, and tube 

morphogenesis. Loss of CCM2 favors the destabilized phenotype. Normally, with two 

functioning alleles of CCM2, the intensity and duration of instability following insult is 

limited. In our heterozygous mice with only one functioning allele, there is a greater 

disruption of the stable state with increased permeability in response to VEGF. With the loss 

of both alleles of Ccm2 in the endothelium, stability cannot be achieved. Existing vessels 

enlarge, and exuberant but dysfunctional angiogenic sprouts form, unable to develop stable 

lumens to allow functional circulation. We speculate that this model also could explain the 

development of cavernous angiomas in familial CCM. Previously, a “two-hit” hypothesis 

involving biallelic somatic and germline mutations was proposed to explain the focal nature 

of vascular lesions in human CCM, supported by a single case report32. The focal loss of 

the only remaining allele of CCM2 would favor sustained instability of the affected 

endothelium, resulting in a cavernous angioma. Our in vivo experiments suggest the 

possibility that the second hit may not be limited to genetic disruptions and could take the 

form of recurrent exposure to cytokines such as VEGF that are released locally in response 

to stress or inflammation. The unique importance of strong cell-cell interaction in the central 

nervous system might render this vascular bed particularly sensitive to such perturbations. 

The importance of a physiologic response to stress as a second hit could explain the clinical 

association between elevated levels of VEGF and the rapid progression of CCM29. Thus, in 

retrospect, a gene originally identified for its role in the cytoskeletal response to stress 

should have been an obvious candidate gene for human vascular dysplasias. The efficacy of 

statins in rescuing Ccm2-related vascular pathology in mutant mice suggests a 

pharmacologic strategy for treating patients whose therapeutic options are currently limited 

to brain surgery or radiation.
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METHODS

Mouse strains

See supplementary methods.

Confocal immunofluorescence of embryos

See supplementary methods.

Fetal ultrasound

We studied pregnant mice under isoflurane anesthesia on a heated stage, with continuous 

monitoring of ECG and respiration. Following laparotomy, embryos were studied within 45 

min. The order of embryos was noted for genotype correlation. A Vevo 660 ultrasound 

machine (VisualSonics) with 40 MHz transducer was used for imaging. We used digital 

subtraction to illustrate circulating blood in static images (see supplementary methods). 

Heart rates were determined by M-mode ultrasound.

Ink injection

We injected India ink as previously described39.

Histology

See supplementary methods.

Cell culture

See supplementary methods.

EC vasculogenesis in 3D collagen matrices

HUVECs (passage 2-5) were suspended within 3.75 mg ml-1 of collagen type I matrices and 

allowed to undergo EC morphogenesis as described40. Cultures were fixed with 3% 

glutaraldehyde for 30 min. Some cultures were stained with 0.1% toluidine blue in 30% 

methanol and destained prior to photography and visualization. Time-lapse microscopy was 

performed as described41 using a Nikon TE2000U microscope with attached environmental 

chamber. Time lapse images were examined for total area of both vacuoles and lumens (n = 

5 independent fields), and total process length from all cells (n = 10 fields). The number of 

lumens per field was quantified at 24 h (n = 3). Metamorph (Molecular Devices) software 

was used to trace and quantify lumen area and process length.

Transfection of ECs with siRNAs

See supplementary methods.

Reverse transcription-polymerase chain reaction (RT-PCR)

See supplementary methods.
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Endothelial Cell Haptotaxis

Haptotactic migration was performed using a modified Boyden chamber assay (Neuro 

Probe). Polycarbonate membranes (8 μm pores) were coated with human fibronectin (1 μg 

ml-1, Biomedical Technologies, Inc.) on the lower surface. HMVECs were added to the 

upper well (20,000 cells well-1) in EGM-2 and allowed to migrate for 3 h. The membranes 

were fixed and stained (Hema3 kit, Fisher), non-migrated cells were removed, and the 

membrane was mounted on a glass slide. The number of migrated cells per high power field 

was counted for multiple fields and replicates (for control n = 12 fields, CCM2n = 8 fields). 

For simvastatin rescue experiments, cells were treated with either 10 μM simvastatin 

(Calbiochem) or carrier only for 24 h prior to the assay (n = 3 fields per condition).

Immunofluorescent Cell Staining

See supplementary methods.

HRP Permeability

Transwell inserts (Corning, 48-well, 3 μm pore) were coated with human fibronectin and 

were seeded at 30,000 cells well-1. Horseradish peroxidase (HRP 25 μg mL-1, Sigma) was 

added to the top of the insert. Solution from the bottom of the well was assayed 6 h later for 

HRP by colorimetric assay. The sample was mixed with guaicol (Sigma) and hydrogen 

peroxide (Fisher) and measured for absorbance at 490 nm (n = 6 wells each).

Transendothelial Resistance

An electrode culture array (Applied Biophysics) was coated with human fibronectin and 

seeded at 50,000 cells well-1. Three days after seeding, cells were serum-starved in EBM-2 

with 0.2% bovine serum albumin overnight. Transendothelial resistance was measured using 

an electric cell-substrate impedance sensing system (ECIS, Applied Biophysics). Cell-

permeable C3 transferase (1 μg ml-1) was added to inhibit RHOA. For basal resistance n = 

40 wells each; for Rho inhibition experiments, n = 6 carrier wells each and n = 10 C3 

transferase wells each.

GTPase Activation Assays

See supplementary methods.

Immunoprecipitation

See supplementary methods.

MAPK Profiling

See supplementary methods.

Miles assay

We performed tail vein injections of Evans Blue (0.5% in normal saline, Sigma) in 8-12 

week old mice. Thirty min later either saline or VEGF-165 (R&D Systems, 10 ng) was 

injected in multiple dermal sites. After an additional thirty min, animals were sacrificed, 

punch biopsies were performed and Evans Blue was eluted from the biopsies in formamide 
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(Invitrogen) overnight at 60°C. The absorbance of Evans Blue was measured at 620 nm, 

subtracting background absorbance at 740 nm. Simvastatin (20 mg kg-1) was given as an 

intraperitoneal injection 26 h before and 2 h before the intradermal stimuli. For the VEGF 

dose response experiment n = 5 mice per group. For the permeability experiment with 

conditional Ccm2, n = 5 Ccm2+/+, n = 9 Ccm2fl/-, n = 10 Ccm2fl/+;Tg(Tie2-Cre). For the 

simvastatin experiment n = 3 mice with control treatment, 4 mice with simvastatin 

treatment.

Statistics

For in vitro lumen formation and cell process formation in 3D culture, statistical 

comparisons between treatment groups were performed with two-tailed Paired Samples T-

test with an alpha value of 0.05. For transwell in vitro permeability, transendothelial 

resistance, endothelial cell migration, and the Miles assay of dermal permeability group 

comparisons were by two-tailed Student's T-test with an alpha value of 0.05.

Animal Experiments

All animal experiments were approved by the University of Utah Institutional Animal Care 

and Use Committee.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Ccm2 is required for circulation
(a) Whole mount confocal immunofluorescent micrographs of littermate embryos at E8.5 

show abnormal vasculature in Ccm2tr/tr (right). (b) Higher magnification of the first 

branchial arch arteries (BAA1) and dorsal aorta (DA). See diagrams below for orientation. 

The wild type vessels (double arrows) are shown in contrast to the Ccm2 mutant, which 

(right) has a narrow endothelial connection at BAA1 and adjacent portions of the dorsal 

aorta (single arrows). (c) Fetal ultrasound demonstrates no flow in a Ccm2tr/tr embryo 

(bottom row) at E8.5 despite normal frequency of cardiac contractions (middle panel). Flow 

(colorized pixels) was seen in wild type littermates (top row). See diagrams (left panels) for 

orientation; DA - dorsal aorta, YS - yolk sac (also see Supplementary Movies 1 and 2). (d) 

Ink injection into the cardiac ventricle demonstrates flow through the branchial arch arteries 

at E9.5 in a wild type embryo (upper panel) with no anterograde flow through the branchial 

arches (red arrow) into the aorta in a Ccm2tr/tr littermate (lower panel). Scale bars: 500 μm 

in (a), (c) and (d), and 200 μm in (b).
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Figure 2. Vascular defects are endothelial autonomous
(a) Whole mount immunofluorescence demonstrates normal, uniform caliber branchial arch 

arteries and aortae in all Ccm2fl/- embryos except the endothelial (Tie2-CRE) mutant, which 

has an irregular, narrow lumen (red arrowheads). Cartoons below are provided for 

orientation. BAA1 = first branchial arch artery, BAA2 = second branchial arch artery, VA = 

ventral aorta (or aortic sac), DA = dorsal aorta. (b) The narrow branchial arch arteries are 

well demonstrated on paraffin sections taken at E9.0. As opposed to the wild type embryo 

(left panel) the first branchial arch artery (arrowhead) is similarly narrowed and irregular in 

both the complete knockout (Ccm2tr/tr, middle panel) and the endothelial mutant 

(Ccm2fl/-;Tg(Tie2-CRE), right panel). Scale bars: 200 μm.
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Figure 3. CCM2 is required for endothelial tube morphogenesis
(a) CCM2 siRNA reduces the level of CCM2 transcripts in human dermal microvascular 

endothelial cells (HMVEC) and human umbilical vein endothelial cells (HUVEC) by 80%. 

(b) Treatment with CCM2 siRNA significantly reduces tube formation of HUVECs in three-

dimensional cultures in collagen. Two separate control siRNAs (luciferase siRNA, or a non-

sense control siRNA) do not affect endothelial tube formation. (c) Time-lapse photography 

of tube development in endothelial cells treated with CCM2 siRNA compared with 

luciferase siRNAs. (d) Quantitation of lumen and vacuole development over time in 

HUVECs treated with CCM2 siRNA as compared to luciferase siRNA control. (e) 

Quantification of lumen numbers at 24 h in HUVECs treated with CCM2 siRNA compared 

to luciferase or non-sense controls. (f) RT PCR for CCM2 in control HUVECs undergoing 

tube-formation at various stages of the assay. (g) Quantification of filopodial length in 

HUVEC treated with CCM2 siRNA compared to luciferase siRNA control. (h) Haptotactic 

migration of HMVEC to fibronectin in CCM2-depleted cells versus non-sense siRNA 

control. Scale bars: 100 μm. Values are ± s.e.m., except in (e) values are ± s.d..
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Figure 4. CCM2 deficiency alters endothelial cytoskeletal architecture and cell-cell interaction 
via activation of the small GTPase RHOA
(a) Comparison of cellular cytoskeleton (actin fibers) and cell junctions (β-catenin) in 

HMVEC treated with CCM2 or non-sense control siRNA. (b) Endothelial monolayer 

permeability to horseradish peroxidase (HRP) in HMVEC treated with CCM2 or non-sense 

control siRNA. (c) Decrease in transendothelial resistance in CCM2-depleted HMVECs 

compared to non-sense control. (d) Cells treated with CCM2 siRNA demonstrate increased 

active RHOA versus non-sense control siRNA, whereas there is little change in active 

RAC1, and a decrease in active CDC42. (e) CCM2 binds to RHOA and RAC1, but not 

CDC42. (f) Cytoskeletal changes with CCM2 siRNA are sensitive to inhibitors of Rho 

signaling. C3 transferase and Y-27632 both decrease cytoplasmic stress fibers in CCM2-

depleted HMVECs. (g) Treatment of HMVECs with C3 transferase improves the barrier 

function of CCM2-depleted cells but not control. (h) CCM2 deficiency activates the stress 

activated kinase, JNK and the JNK upstream kinases MKK4 and MKK7. p-Ab - 

phosphorylated (active) kinase, t-Ab - total kinase. (i) Treatment of cells with Y-27632 

decreases phosphorylated JNK (p-JNK) in CCM2-depleted HMVECs. Scale bars: 50 μm. 

Values are ± s.e.m.
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Figure 5. Heterozygous mice have permeability defects that can be rescued by treatment with 
Simvastatin
(a) Ccm2+/tr mice have increased vascular permeability in response to injected VEGF. The 

extravasation of Evans blue dye into the dermis was abnormally increased in Ccm2+/tr mice 

compared to Ccm2+/+ across a range of VEGF dosage. (b) Increased permeability is also 

observed in mice with endothelial specific heterozygosity for Ccm2 (Ccm2fl/+;Tg(Tie2-

Cre)). (c) Stress fibers are decreased in both control and CCM2-depleted HMVECs by 

treating the cells with simvastatin. (d) Simvastatin restores the migration response of CCM2-

depleted HMVECs back to the level of control. (e) Simvastatin also decreases the 

phosphorylation of JNK in both control and CCM2 siRNA treated HMVECs. (f) Pre-

treatment of mice with simvastatin decreased permeability in response to VEGF only in 

mice with mutations in Ccm2, not in wild type. Scale bars: 100 μm. Values are ± s.e.m.
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