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Abstract: Ellagic acid has recently attracted increasing attention regarding its role in the prevention
and treatment of cancer. Surface functionalized nanocarriers have been recently studied for enhancing
cancer cells’ penetration and achieving better tumor-targeted delivery of active ingredients. Therefore,
the present work aimed at investigating the potential of APA-functionalized emulsomes (EGA-EML-
APA) for enhancing cytototoxic activity of EGA against human breast cancer cells. Phospholipon®

90 G: cholesterol molar ratio (PC: CH; X1, mole/mole), Phospholipon® 90 G: Tristearin weight
ratio (PC: TS; X2, w/w) and apamin molar concentration (APA conc.; X3, mM) were considered
as independent variables, while vesicle size (VS, Y1, nm) and zeta potential (ZP, Y2, mV) were
studied as responses. The optimized formulation with minimized vs. and maximized absolute ZP
was predicted successfully utilizing a numerical technique. EGA-EML-APA exhibited a significant
cytotoxic effect with an IC50 value of 5.472 ± 0.21 µg/mL compared to the obtained value from the
free drug 9.09 ± 0.34 µg/mL. Cell cycle profile showed that the optimized formulation arrested MCF-
7 cells at G2/M and S phases. In addition, it showed a significant apoptotic activity against MCF-7
cells by upregulating the expression of p53, bax and casp3 and downregulating bcl2. Furthermore,
NF-κB activity was abolished while the expression of TNfα was increased confirming the significant
apoptotic effect of EGA-EML-APA. In conclusion, apamin-functionalized emulsomes have been
successfully proposed as a potential anti-breast cancer formulation.

Keywords: nanotechnology; phospholipon; tristearin; apamin; emulsomes; ellagic acid; central
composite design; cytotoxicity; breast cancer

1. Introduction

Breast cancer is considered the most frequent form of malignancy in women and
the leading cause of cancer mortality among women in the globe, claiming the lives of
685,000 women in 2020 [1,2]. Breast cancer was diagnosed at an estimated rate of 14 new
cases per 100,000 people in women over 20 years old. These data were obtained from
the National Institute of Statistics and Geography in 2020 [2]. The treatment of breast
cancer is usually a multimodal approach that could possibly include surgery, radiation,
chemotherapy and hormonal therapy [3]. Furthermore, the efficacy of the aforementioned
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therapeutic strategies is increasingly reduced; this is owed to the phenomenon of multidrug
resistance (MDR) exhibited by various cancer types, and the incidence of dramatic adverse
effects caused by the lack of selectivity of chemotherapeutic agents [4,5]. This situation
necessitates further research into more efficient breast cancer preventive and treatment
options with fewer adverse effects.

Recently, there has been increasing evidence that substances originating from natural
sources possess dual advantages of having anticancer potential with reduced side effects [6].
Many naturally originating compounds can reduce breast cancer’s aggressiveness, limit
malignant cell growth and modify cancer-related pathways. Thus, several studies are
currently focusing on natural and dietary substances in the hope of discovering new and
more successful treatment techniques for breast cancer patients [5,7].

Ellagic acid (EGA), a member of the ellagitannin family, was discovered in various
berries, including strawberries, cranberries, blackberries, raspberries and goji berries, as
well as in grapes, pomegranates, nuts, green tea, and Eucalyptus globulus’s stem and
bark [8,9]. It is a natural phenolic component present in free and glycosylated forms, or
as complex polymers esterified with a sugar known as ellagitannins [10]. Owing to its
antioxidant and antiproliferative characteristics, EGA has attracted increasing attention
in the medical field with versatile therapeutic applications [11]. It has been successfully
applied for alleviating inflammation, treatment and protection against cardiovascular dis-
eases and neurodegenerative disorders [12,13]. Moreover, it has demonstrated anti-aging,
antiviral and antimicrobial activity [14,15]. Recently, EGA has drawn an immense attention
for the prevention and management of malignancy [16]. Despite these merits, EGA suffers
from drawbacks, including poor aqueous solubility (9.7 µg/mL), that could result in poor
biological performance and limited clinical use [17,18]. Implementing nanotechnology for
the development of EGA formulation could offer a viable means to surpass the previously
mentioned hurdles.

Various nanocarriers, including lipid-based, polymer-based and inorganic-based ones,
are nowadays utilized in cancer therapy for achieving enhanced solubility, anticancer activ-
ity and targeted delivery [19,20]. Because of their lipophilicity, lipid-based nanocarriers
have a higher capacity to overcome biological barriers than other nanocarriers [21]. Further-
more, they are appealing due to their well-established biodegradability, biocompatibility
and their capability to encapsulate both hydrophilic and hydrophobic molecules [22].

Emulsomes (EML) are novel lipid-based nanocarriers made up of solid lipid core
surrounded by a phospholipid bilayer [23]. They combine the benefits of nanoemulsion
formulations as well as liposomes [24]. A key feature of EML is the existence of the lipid
core as a solid or liquid crystalline state instead of oil in a liquid state. Interestingly, this
allows EML to entrap larger amounts of lipid-soluble medicines with a more sustained
release profile [25]. The outermost structure of EML, the phospholipid bilayer, eliminates
the need for stabilization by surfactant; this feature offers a high level of stability and
biocompatibility with minimized toxicity. The phospholipid sheath also imparts the ability
to encapsulate the hydrophilic molecules in the aqueous parts of the surrounding phospho-
lipid layers and/or load the lipophilic molecules into their inner core [24,26]. Furthermore,
the nanosize of the formulation might substantially increase the emulsomal dispersions’
drug targeting impact [27]. Because of these features, EML might be regarded as promising
stable surfactant-free alternatives to the first generation lipid-based nanocarriers that could
safely and efficiently deliver various drugs [28].

Various approaches have emerged for surface modification of nanocarriers used
in cancer therapy with the aim of prolonging circulation time, enhancing cancer cells
penetration and achieving better tumor-targeted delivery [29]. Amongst these approaches,
conjugation with peptides has recently attracted great attention. Apamin (APA), a natural
toxin, accounting for approximately 2–3% of the bee venom (BV) dry weight, is a small
peptide which is structurally made of 18 amino acids [30]. It has many pharmacological
effects which could be tailored for many key therapeutic, including anti-inflammatory,
anti-fibrotic and anti-atherosclerotic actions [31,32]. In addition, it has been successfully
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applied in targeted drug delivery [33]. It is worth noting that cytotoxic activity has been
reported for bee venom components [31].

Therefore, the present work aimed at exploring the potential of APA-functionalized
emulsomes (EGA-EML-APA) as a peptide-mediated vesicular delivery approach for en-
hancing cytotoxic activity of EGA against human breast cancer cells. Central composite
response surface design was implemented for optimization of the proposed emulsomal for-
mulation with minimized vesicle size (VS) and maximized absolute zeta potential (ZP). The
optimized formulation was tested for cytotoxic and proapoptotic activity against human
breast cancer cells.

2. Results and Discussion

Several nano-sized formulations such as liposomes, nanoemulsions, niosomes, pro-
niosomes, nanoparticles and ethosomes have gained a lot of attention in the field of drug
delivery. Nevertheless, emulsomes possess unique characteristics that impart potential ad-
vantages to this system compared to others. The most unique characteristic of emulsomes,
compared to other vesicular systems including liposomes and niosomes, is the solid fat core
enclosed by phospholipid. This allows for enhancing the solubility of poorly soluble drugs
and entrapping high amounts of such drugs within the core. The enclosed drug exhibits
prolonged drug release and consequently extended efficacy. Second, an emulsomes-based
system showed adequate potential for targeting by virtue of their nano-size. Another re-
ported advantage is surpassing the development of multi drug resistance, often associated
with over expression of a cell membrane glycoprotein, which causes efflux of the drug
from the cytoplasm and results in an ineffective drug concentration inside the cellular
compartment [34]. Accordingly, emulsomes were chosen for investigation in this work.
In addition, apamin was used for surface-functionalization of the optimized mulsomal
formulation to provide additional advantage of enhancing uptake of EGA by cancerous
cells [35]. It is worth noting that the reported cytotoxic activity of bee venom components
including apamin could also augment the cytotoxicity of EGA [31].

2.1. Face-Centred Central Composite Design Analysis
2.1.1. Model Fit Statistics

Fit statistical analysis results for the responses, namely, vs. and ZP are presented in
Table 1. Based on the highest R2 and the least PRESS, the vs. data fitted the quadratic
model, while the ZP fitted the two-factor interaction (2FI) model. The adjusted R2 and
the predicted R2 for each response exhibited appropriate coincidence with a difference of
less than the permissible limit of 0.2 verifying the model validity. Moreover, the selected
model for each response exhibited adequate precision value higher than the desirable value
of 4 indicating appropriate signal-to-noise ratio. According to the previously computed
parameters, the selected models could be adequately utilized for the exploration of the
experimental design space.

Table 1. Fit statistics of EGA-EML-APA responses according to the best fitting model.

Responses Model Sequential
p-Value

Lack of Fit
p-Value R2 Adjusted R2 Predicted R2 Adequate

Precision PRESS

Y1: vs. (nm) Quadratic 0.0001 0.1448 0.9972 0.9936 0.9806 53.49 3218.55
Y2: Absolute ZP (mV) 2FI <0.0001 0.1997 0.9640 0.9425 0.8605 26.28 93.61

Abbreviations: EGA, ellagic acid; EML, emulsomes; APA, apamin; VS, particle size; ZP, zeta potential.

Furthermore, verification of the goodness of fit of selected models was carried out
via developing diagnostic plots illustrated in Figures 1 and 2. Box–Cox plot for power
transforms, seen in Figures 1A and 2A, show the best lambda (λ) value of 1.52 and 0.87
(represented by the green line) for vs. and absolute ZP, respectively. The computed confi-
dence intervals (represented by the red lines) around these lambdas comprise the current λ
value of 1 (represented by the blue line); therein, no specific transformation for observed vs.
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is suggested [28]. The computed maximum to minimum measured vs. and absolute ZP
ratio of 2.28 and 2.44, respectively, supports the absence for necessity of transformation,
where a ratio exceeds 10 calls for a transformation requirement. Studentized residual is a
good criterion for identifying potential outliers that could influence the regression model.
In our study, the colored dots that symbolize the measured vs. and absolute ZP in the
externally studentized residuals vs. predicted response plot, Figures 1B and 2B, shows
randomly scattered points within the boundaries implying the absence of constant error.
In addition, the colored points in the externally studentized residuals vs. run plots, and
Figures 1C and 2C show that no lurking variable could influence the determined responses
as evidenced by random scatter of points and absence of trends that could possibly indicate
a time-related variable lurking in the background. Additionally, the predicted versus actual
plots, illustrated in Figures 1D and 2D showed a highly linear pattern, indicating that the
observed responses are analogous to the corresponding predicted values [36,37].
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acid; EML, emulsomes; APA, apamin.

2.1.2. Influence on vs. (Y1)

Invading cancerous tissues is considered a significant problem in the development of
formulations for moieties with anticancer activity. This needs ongoing research to alter the
features of drug delivery systems in order to improve tumor accessibility [38]. Because of
their preferential distribution within solid malignant masses, nanoparticulate formulations
of average sizes being less than 400 nm have lately gained an enormous amount of attention
in the arena of malignant tumors therapy [39,40]. Despite this discovery, it has been reported
that ineffective tumor tissue penetration, resulting from the pathological situation generated
by malignancy progression, could overcome the preferential accumulation of nano-sized
delivery systems within the malignant tissues and their related therapeutic efficacy [41].
Accordingly, it is possible to verify tumor penetration enhancement by lowering the size
to the smallest achievable value, which in turn leads to a higher surface area available
for penetrating the tissues [42]. Accordingly, minimized size was set as a goal to increase
surface area available for permeation, and thus to ensure effective tumor penetration.

In our study, the VS of the prepared EML ranged between 263.7 ± 7.9 and 601.8 ± 18.9 nm
(Table 2). On the basis of analysis of variance (ANOVA) provision for VS, the significance
of the quadratic model was confirmed as evidenced by the F-value of 265.35 (p = 0.0001).
The lack of fit F-value of 6.32 (p = 0.1448) shows a non-significant lack of fit; thus, fitting of
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the observed vs. to the recommended model is ensured. The equation demonstrating the
quadratic model in terms of coded factor was generated by the software is given as:

Y1 (vesicle size) = 391.15 + 93.50 X1 + 51.69 X2 + 20.95 X3 + 58.71 X1X2 + 13.69 X1X3 − 36.04 X2X3 + 50.68 X1
2 −

28.47 X2
2 − 16.07 X3

2

Table 2. Independent variables’ levels in EGA-EML-APA experimental runs and their measured
responses.

RUN Number

Independent Variables Dependent Variables

PC: CH Molar
Ratio (X1)

PC: TS Weight
Ratio (X2)

APA Molar
Concentration

(X3, mM)

VS * ± SD
(Y1, nm)

ZP * ± SD
(Y2, mV)

1 6:1 2:1 1.5 601.8 ± 18.9 −21.9 ± 0.7

2 4:1 1.5:1 0.5 364.9 ± 11.2 −35.5 ± 1.5

3 6:1 1:1 1.5 453.1 ± 13.7 −20.8 ± 1.2

4 4:1 1.5:1 1.0 382.1 ± 9.8 −28.5 ± 0.9

5 4:1 2:1 1.0 423.9 ± 12.6 −28.3 ± 1.1

6 4:1 1.5:1 1.0 389.3 ± 11.1 −27.9 ± 1.3

7 4:1 1.5:1 1.0 387.6 ± 10.6 −26.9 ± 1.1

8 4:1 1.5:1 1.5 392.5 ± 12.5 −23.5 ± 1.2

9 6:1 1:1 0.5 311.1 ± 10.8 −35.8 ± 1.8

10 2:1 1:1 0.5 263.7 ± 7.9 −28.1 ± 1.2

11 2:1 2:1 1.5 264.8 ± 8.8 −18.9 ± 0.6

12 6:1 2:1 0.5 598.1 ± 14.9 −46.1 ± 1.9

13 2:1 1:1 1.5 356.8 ± 13.1 −27.3 ± 0.9

14 2:1 1.5:1 1.0 356.5 ± 12.1 −30.3 ± 1.4

15 6:1 1.5:1 1.0 534.4 ± 16.1 −31.1 ± 1.3

16 2:1 2:1 0.5 321.7 ± 10.5 −33.9 ± 1.5

17 4:1 1:1 1.0 308.7 ± 8.9 −28.7 ± 1.2

Abbreviations: EGA, ellagic acid; EML, emulsomes; APA, apamin; PC: Phospholipon 90 G; Cholesterol: CH; TS;
Tristearin; VS, particle size; ZP, zeta potential; SD, standard deviation. * Data are expressed as mean ± SD of five
determinations.

As per ANOVA results, all the linear terms belonging to the analyzed factors had
a significant effect on the emulsomal vs. (p < 0.0001 for all terms). Furthermore, the
interaction terms as well as the quadratic terms were also significant at the 95% level of
significance. The perturbation graph, displayed in Figure 3A, demonstrates the influence
of the investigated factors on the VS, while the 3D-response and the 2D-contour plots,
displayed in Figure 4, demonstrate the interaction between them. The illustrations show
that the EML vs. significantly increases at higher PC: CH molar concentration, PC: TS
weight ratio and APA molar concentration. Clearly, the positive sign associated with the
linear term coefficients; X1, X2 and X3 supports this finding. The most influential factor
was PC: CH molar ratio as indicated by the highest coefficient of its linear term X1 in the
developed equation, followed by PC: CH molar ratio, then the APA molar concentration.

The effect of PC: CH ratio could be attributed to the possible creation of numerous
bilayers, which results in greater vs. [25]. Nonetheless, a comparable increase in vs. of
zidovudine EML was previously reported upon increasing the phospholipid relative to the
solid lipid and cholesterol. On the other hand, the VS was inversely proportional to the
level of cholesterol. In fact, given that, at increased cholesterol levels, the EML acquires a
stronger lipophilic property, which encourages inhibition of water uptake across the lipid
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bilayer; this explains the observed reduction in VS. This observation is consistent with
Sudhakar and Chaitanya’s [43] work, who found an inverse association between vs. and
cholesterol level of ritonavir liposomes.
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2.1.3. Influence on Zeta Potential (Y2)

The surface charge of the vesicles is described by ZP, which reflects their physical
stability, where higher surface charge results in electrostatic repulsive forces that prevent
particles coalescence and aggregation. Generally, nano-formulations with ZP values of
about or greater than ±30 mV are considered stable [23]. The prepared EGA-EML-APA
exhibited negative ZP values ranging from −18.9 ± 0.6 to −46.1 ± 1.9 mV, Table 2. The neg-
ative charge could be credited to the negatively charged phospholipid that forms the lipid
bilayer surrounding emulsomal core. It is worth noting that, although a negatively charged
surface might slightly affect the cellular internalization, the stability of nano-systems against
aggregation is crucial for benefiting from the nano-size. In addition, many studies have
reported enhanced anticancer activity for negatively charged nanoformulation [44–47].
Accordingly, the study aimed at maximizing the absolute ZP value.

Based on Analysis of variance (ANOVA) for absolute ZP, the significance of the two-
factor interaction model was confirmed, as depicted by the corresponding F-value of 44.69
(p < 0.0001). The lack of fit F-value of 4.37 (p = 0.1997) reflects non-significant lack of fit;
thus, the fitting of absolute ZP values to the proposed model is confirmed. The equation
generated by the software demonstrates the suggested model for the ZP in terms of coded
factor as given below :

Y2 (zeta potential) = 29.03 + 1.72 X1 + 0.84 X2 − 6.70 X3 + 1.75 X1X2 − 2.92 X1X3 − 2.92 X2X3

The statistical analysis demonstrated that the linear terms X1 and X3 corresponding to
PC: CH molar ratio and APA molar concentration exhibited a significant effect on absolute
ZP (p = 0.0057 for X1 and p < 0.0001 for X3). Additionally, all the interaction terms were
significant at p < 0.05. Figure 3B depicts the perturbation graph that demonstrates the main
effects of the investigated variables on the absolute ZP, while Figure 5 illustrates the 3D-
surface plots and the 2D contour plots that show the interaction between the variables. The
illustrations reveal higher ZP absolute values, with considerable increase in the negativity
of the emulsomal surface, which were observed when the PC: CH molar ratio was increased.
On the other hand, the absolute ZP decreases at higher APA concentrations. The positive
sign of X1 and the negative sign of X3 coefficients support this observation. The observed
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interlink between increased negativity with the concomitant increase in PC: CH molar
ratio could probably be a result of an increase in the proportion of a negatively charged
phospholipid in the outer layers [3,21]. On the contrary, the observed reduced negativity at
higher APA molar concentration could be credited to the possible interaction between the
positively charged lysine moieties present in APA structure with the negatively charged
phospholipid of the emulsomal vesicles.
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2.2. Optimization of EGA-EML-APA

Numerical optimization and the desirability techniques were implemented for predict-
ing the optimized variables’ levels that, upon combination, could result in minimized vs.
and maximized absolute ZP. The ramp graphs presented in Figure 6A depict the optimized
levels and the predicted responses, while the desirability for each response and the overall
desirability are graphically illustrated in Figure 6B. The measured vs. of 267.6 nm and
absolute ZP of 32.1 mV coincide well with the predicted ones showing relative percentage
error of 1.47% and 4.17%, respectively. Furthermore, the measured vs. is less than 400 nm
indicating adequate preferential distribution within solid cancerous tissues [39,40], and the
absolute ZP is greater than 30 mV, indicating adequate repulsive forces that guard against
aggregation [23]. The relatively small computed percentage errors prove the reliability of
the optimization process. It is worth noting that the PS and ZP values of the optimized
formulation are in good agreement with those reported previously for other nanocarriers
with enhanced cytotoxicity against various cancer cells. Barani et al. reported enhanced
anticancer activity for paclitaxel loaded niosomes with an average size of 240 nm [48]. The
reported size was sufficient for tumor-specific accumulation. Abbas et al. reported an
enhanced cytotoxic effect for optimized curcumin bilosomes with maximized negative
absolute zeta potential of −27.05 mV [46]. On the other hand, previous studies that involve
vesicles with higher size in the micro range exhibited low cytotoxicity profiles on differ-
ent cell lines. Lai et al. developed oleic acid containing vesicles with an average size of
2.35 ± 0.9 µm for transdermal delivery [49]. Cytotoxicity studies of such vesicles in various
skin cell lines demonstrated no loss of cell viability in all concentrations indicating high
safety profile and appropriateness for transdermal use with no side effects on the skin.
However, the diminished cytotoxicity of the micro-sized vesicles could indicate poor ability
to accumulate within the cells, thus highlighting the benefit of the nano-size in our study.
This indicates the importance of developing a carrier to improve delivery of loaded active
ingredients [50].

2.3. Characterization of Optimized EGA-EML-APA

The shape of the optimized EGA-EML-APA was visualized using TEM as illustrated
in Figure 7. The TEM micrograph reveals spherical vesicles that possess even rounded
contours and adequate uniform distribution. The average size of the vesicles is in good
agreement with that measured by the dynamic light scattering technique. Zhou and
Chen [23] reported a similar spherical shape for silybin nanoemulsomes.

The optimized formulation showed high entrapment efficiency of 93.7 ± 4.1%. The
high entrapment ability of the proposed formulation could be due to the solid lipid core
enclosed by the lipid bilayer which aids in increasing the entrapping of poorly soluble
active ingredients [34]. It is worth noting that this feature contributes to the superiority of
emulsomes over other vesicular carriers including niosomes; for example, pH-responsive
niosomes showed entrapment of less than 80% for paclitaxel in a previous study [48].

2.4. EGA-EML-APA Inhibited the Viability of MCF-7 Cells

Breast cancer is the most commonly occurring cancer in women and the second most
common cancer overall, specifically estrogen receptor positive (ER) breast cancer. Ellagic
acid has been demonstrated to have antitumor and anti-apoptotic effects in several cancer
cells [8]. However, in MCF-7, the anti-proliferative effect of ellagic acid was observed
in only high concentrations [6,51,52]. Therefore, MCF-7 cells were selected to examine
the anti-proliferative effect of the optimized EGA-EML-APA formula. EGA-EML-APA
was found to significantly inhibit MCF-7 cell viability, and in a manner that seems to be
dose-dependent, more than EGA. As shown in Figure 8, the IC50 value for EGA-EML-APA
in MCF-7 was 5.472 ± 0.21 µg/mL compared to 9.09 ± 0.34 µg/mL for EGA. Furthermore,
there was no effective cytotoxic effect of blank EML-APA when compared with the EGA and
EGA-EML-APA in MCF-7 cells. The observed cytotoxic activity of the EGA-EML-APA is in
line with the previously reported cytotoxicity of EGA against breast cancer cells including
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MCF-7 cells [6,53]. However, EGA-EML-APA showed significantly improved cytotoxic
activity against MCF-7 cells compared to EGA. This promising effect may be to the result
of the enhanced cellular penetration and accumulation of EGA in MCF-7 cells by virtue of
the optimized formulation. The ability of EML to enhance cellular uptake of actives has
been previously reported [54–56].
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Figure 8. Cell viability evaluation using the MTT assay after 24 h of treatment with EGA and EGA-
EML-APA. Data are expressed as mean ± SD. Abbreviations: EGA, ellagic acid; EML, emulsomes;
APA, apamin.

2.5. EGA-EML-APA Modulated MCF-7 Cell Cycle

To determine the mechanism by which EGA-EML-APA exerts its cytotoxic influence
against MCF-7 cells, the effect on cell cycle phases was investigated. While untreated
MCF-7 cells exhibited quick growth properties, treatment of the cells with the EGA, and



Int. J. Mol. Sci. 2022, 23, 9440 13 of 22

EGA-EML-APA resulted in altered cell cycle progression and increased cell fraction in the
pre-G1 phase (Figure 9C–E). The percentages of cells accumulated in the pre-G1 phase were
21.57 ± 0.69% and 28.42 ± 0.94% when cells were treated with EGA and EGA-EML-APA,
respectively. As can be seen from Figure 9E, the most significant increase in cell fraction
of the pre-G1 phase was associated with EGA-PHM-APA. Additionally, EGA-EML-APA
caused a marked reduction in cell population in G0/G1 phase in comparison with other
groups (p < 0.05) (Figure 9C,E). Furthermore, the fractions of cell in G2/M and S phases
significantly increased when compared to the control and EGA (p < 0.05). These data
suggest that EGA-EML-APA caused sequential cell cycle arrest at G2/M and S phases,
followed by apoptosis, which is represented by the increase in apoptotic pre-G1 population.
A previous report demonstrated a comparable ability of EGA to interfere with the cell
cycle especially by increasing the population of cells at the pre-G1 phase [57]. However,
treatment with EGA-EML-APA resulted in a significant increase in the S, G2-M and pre-G1
phases compared to EGA. Hence, the abovementioned results highlight the improved
cytotoxic activity of the optimized formulation.
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Figure 9. Flow cytometric analysis of MCF-7 control cells (A), or treated with blank EML-APA (B),
EGA (C) and EGA-EML-APA (D) and the cellular fractions in the phases of the cell cycle (E). Data are
expressed as mean ± SD. * Significantly different from the control at p < 0.05, # significantly different
from blank EML-APA at p < 0.05. $ Significantly different from EGA at p < 0.05. Abbreviations: EGA,
ellagic acid; EML, emulsomes; APA, apamin.
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2.6. EGA-EML-APA Induced Apoptosis in MCF-7 Cells

The increased cellular fraction in the pre-G1 phase strongly indicates that the optimized
EGA-EML-APA exhibited a significant apoptotic activity. Thus, annexin-V staining was
utilized to determine the percentages of apoptotic cells associated with blank EML-APA,
EGA and EGA-EML-APA. As can be seen from Figure 10B,C,E, treating MCF-7 cells with
EGA-EML-APA formula resulted in the most significant increase in early, late and total
apoptotic cell death when compared to EGA (p < 0.05). Necrotic cell death showed a
similar pattern in which the most significant increase was associated with EGA-EML-APA
(Figure 10C,E). This apoptotic effect produced by EGA-EML-APA could be due to the
ability of EGA to alter the expression of cellular components involved in apoptosis and cell-
cycle regulation. Therefore, the expression of apoptosis markers involved in the intrinsic
mitochondrial mediated apoptosis pathway such as bax, bcl-2, p53 and casp-3 is investigated.
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Figure 10. Assessment of apoptosis in MCF-7 control cells (A), or treated with blank EML-APA (B),
EGA (C) and EGA-EML-APA (D) and the percentages of early and late apoptotic cells (E) following
annexin V staining. Data are expressed as mean ± SD. * Significantly different from control at p < 0.05,
# significantly different from blank EML-APA at p < 0.05, $ significantly different from EGA at p < 0.05.
Abbreviations: EGA, ellagic acid; EML, emulsomes; APA, apamin.
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2.7. EGA-EML-APA Apoptotic Effect Evidenced by MMP Loss and Apoptotic Markers

Upon exposure to apoptotic stimuli, damage to the mitochondrial membrane might
occur, resulting in the loss of MMP [58]. Hence, the change in MMP was measured in MCF-7
control cells, and after adding blank EML-APA, EGA or EGA-EML-APA. As shown in
Figure 11A, MMP was significantly compromised only when the cells were treated with the
optimized EGA-EML-APA (p < 0.05), leading to a significant loss of MMP in comparison to
raw EGA. Thus, an enhanced efficacy with EGA-EML-APA could be obviously shown and
can be attributed to the lipophilic nature of the delivery system, which plays a major role
in enhancing the delivery of EGA incorporated into this novel nanocarrier platform [59].
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Figure 11. Effect of the EGA-EML-APA on MMP in MCF-7 cells. (A), the mRNA expression on Bax
(B), Bcl2 (C), Casp3 (D), P53 (E). Data are presented as Mean ± SD (n = 3). *, # or $: Statistically
different from control, blank EML-APA or EGA, respectively at p < 0.05. Abbreviations: EGA, ellagic
acid; EML, emulsomes; APA, apamin.

The effect of ellagic acid through the intrinsic apoptotic pathway in MCF-7 cells was
successfully reported in several works [51,52,60]. The expression of multiple markers of
this pathway including Bax, Bcl2 and casp3 was also examined to confirm the apoptotic
activity of EGA-EML-APA. As depicted in Figure 11B, Bax mRNA was significantly higher
in EGA-EML-APA-treated cells relative to EGA. In contrast, EGA-EML-APA was associated
with the lowest expression level of Bcl2, Figure 11C. Additionally, MCF-7 cells treated with
EGA-EML-APA exhibited the most significant increase in casp3 expression compared to
EGA treatment (p < 0.05), Figure 11D. These findings highlight the superior activity of the
EGA-EML-APA in apoptosis induction relative to EGA, considering that increased Bax
levels and decreased Bcl-2 levels favor apoptosis [61]. It was reported that EGA exhibits
potent apoptotic activities by enhancing the expression of casp3, which is an apoptotic
transcription factor [62]. In this regard, EGA-EML-APA treatment increased the expression
of p53 by 8-fold compared to 5-fold increases associated with EGA (Figure 11E). This
further confirms that EGA-EML-APA significantly improved the cytotoxicity and apoptotic
activity EGA.

2.8. EGA-PHM-APA Induced Changes in the Expression of tnf-α and Nf-κb

TNF-α has been utilized as an inflammatory marker in wound healing studies [63]. It
has also been explored as an apoptotic marker; it is reported that TNF-α can induce apop-
tosis in breast cancer cells, and this process can be inhibited upon NF-κB activation [64,65].
As shown in Figure 12A, greater levels of TNF-α were detected with EGA-EML-APA
treatment. In addition, EGA-EML-APA produced the most significant decrease in NF-κB



Int. J. Mol. Sci. 2022, 23, 9440 16 of 22

activation (p < 0.05) (Figure 12B). Therefore, these findings further substantiate the superior
cytotoxic activity of EGA-EML-APA compared to the blank EML and EGA.
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Figure 12. Effect of the optimized EGA-EML-APA formula on the expression of tnf-α (A) and nf-κb
(B) in MCF-7 cells. Data are presented as Mean ± SD (n = 3). # or $: Statistically different from blank
EML-APA or EGA, respectively, at p < 0.05. Abbreviations: EGA, ellagic acid; EML, emulsomes;
APA, apamin.

3. Materials and Methods
3.1. Materials

Ellagic acid (EGA), Cholesterol (CH), Tristearin (TS) and Apamin (APA) were pur-
chased from Sigma-Aldrich Inc. (St. Louis, MO, USA). Phospholipon® 90 G (Purified
Phosphatidylcholine from Soybean Lecithin, content 90%, PC) was obtained as a gift
sample from Lipoid GmbH (Ludwigshafen, Germany).

3.2. Response Surface Methodology for Formulation of EGA-EML-APA

Response surface methodology was implemented for the formulation and optimization
of EGA-EML-APA. Specifically, three-level, three-factor, face-centred central composite
experimental design (α = 1) was utilized in this study. Phospholipon® 90 G: cholesterol
molar ratio (PC: CH; X1, mole/mole), Phospholipon® 90 G: tristearin weight ratio (PC: TS;
X2, w/w) and APA molar concentration (APA conc.; X3, mM) were considered as numerical
independent variables. Vesicle size (VS, Y1, nm) and zeta potential (ZP, Y2, mV) were
investigated as responses. The coded levels of the independent variables, represented
as –1, 0, +1 analogous to lower, middle and upper values respectively, along with the
corresponding actual values for each variable are listed in Table 3. Design-Expert software
(Version 12; Stat-Ease Inc., Minneapolis, MN, USA) was used to generate the experimental
runs. As per the selected design, 17 runs were generated including factorial points, axial
points and three replicated centre points to give appropriate prediction ability close to the
centre of the variable space; the variables’ levels represented in each run are compiled
in Table 2. The sequential model that best fits the data of each response was determined
according to the predicted and adjusted determination coefficients (R2), as well as the
predicted residual error sum of squares (PRESS) statistics. The equations expressing the
optimal model for the responses were then developed by the software. The significance of
the variables on the measured responses was analyzed using analysis of variance (ANOVA)
at p < 0.05. Perturbation and response surface plots were developed to display the influence
of the explored factors as well as their interactions.
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Table 3. Face-centred central composite design (FCCCD) coded and actual variables’ levels along
with the desirability constraints of the responses applied for optimization of EGA-EML-APA.

Factors
Levels

−1 0 +1

X1: PC: CH molar ratio 2:1 4:1 6:1

X2: PC: TS weight ratio 1:1 1.5:1 2:1

X3: APA molar concentration (mM) 0.5 1.0 1.5

Responses Desirability constraints

Y1: Vesicle size (nm) Minimize

Y2: Zeta potential absolute value (mV) Maximize

Abbreviations: EGA, ellagic acid; EML, emulsomes; APA, apamin; PC: Phospholipon 90 G; Cholesterol: CH; TS;
Tristearin.

3.3. Optimization of EGA-EML-APA

A numerical optimization technique following a desirability approach was used
for prediction of the optimized EGA-EML-APA formulation; the desirability function
amalgamates both responses aiming at anticipating the optimized levels of investigated
factors [66,67]. The objective of the study was achieving minimized vs. and maximized ZP
absolute value as shown in Table 1.

3.4. Preparation of EGA-EML-APA

A previously reported method was utilized for the preparation of EGA-EML-APA [26].
Accurately weighed quantities of EGA (50 mg), Phospholipon® 90 G, cholesterol and tris-
tearin were solubilized in 15 mL of chloroform/methanol blend (2:1, v/v). Evaporation of
the solvent blend was done under reduced pressure using Rotavapor (BÜCHI Labortechnik
AG, Flawil, Switzerland) at 40 ◦C. By placing the formed film in a vacuum oven for 24 h,
any organic solvent residual was eliminated. Hydration of the films was then achieved
by mild agitation with 10 mL distilled water containing APA for 3 h at room temperature.
The resultant dispersion was ultra-sonicated for two cycles, each of 45 s with a time gap of
two minutes for vs. reduction [25,68].

3.5. Vesicle Size and Zeta Potential Determination

Mean vs. (z-average) as well as ZP of the proposed EGA-EML-APA were determined
by light scattering and electrophoretic techniques, respectively, using Nano ZSP (Malvern
Panalytical, UK) at 25 ± 1 ◦C. Adequate dilution with distilled water was done prior to
measurement. Data were expressed as the mean of five determinations.

3.6. Characterization of Optimized EGA-EML-APA

The optimized EGA-EML-APA were visualized using a JEOL GEM-1010 (JEOL Ltd.,
Akishima, Tokyo, Japan) transmission electron microscope (TEM) at 80 kV. One drop
of diluted formulation was placed on a carbon-coated grid, which was then left to dry
at temperature of 25 ± 0.5 ◦C. Furthermore, the sample was negatively stained with
1% phosphotungstic acid and then dried for 20 min at room temperature before being
visualized.

Entrapment efficiency of the optimized formulation was performed by an indirect
method. In addition, 1 mL of emulsomes dispersion was ultracentrifuged at 100,000 rpm
for 1 h at 4 ◦C. The residue was washed twice with phosphate buffer (pH 6.8) and subjected
to re-centrifugation for 1 h. The combined supernatant was diluted with phosphate buffer
(pH 6.8), and analyzed using the reported HPLC method of assay with UV detection at
254 nm. The procedure was repeated thrice [15].
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The entrapment efficiency was calculated using the following equation:

EE% = EGAt − EGAu/EGAt × 100

where EGAt represents the amount of total ellagic acid; and EGAu represents the amount
of unentrapped ellagic acid.

3.7. In Vitro Antitumor Activity of Optimized EGA-EML-APA on MCF-7 Cells
3.7.1. Cell Culture

Human breast cancer cell line (MCF-7) was obtained from the American Type Culture
Collection (Manassas, VA, USA). The cells were cultured in Dulbecco’s Modified Eagle
Medium (DMEM) containing 10% FBS, penicillin and streptomycin at a concentration of
1% v/v in a humidified atmosphere with 5% CO2 incubator and at 37 ◦C.

3.7.2. Cytotoxicity Assay

As directed by the manufacturer, the cytotoxic effect of EGA, blank EML-APA and
the optimized EGA-EML-APA on MCF-7 cells was evaluated using the MTT viability test
(ABCAM, Cambridge, UK). The cells were grown overnight at a density of 5 × 103 cells per
well in 96-well plates and further treated for 24 h with each treatment in a concentration
range of 0.4 to 100 µg/mL. EGA was dissolved in DMSO (final concentration 0.1% w/v). The
culture media were then aspirated and replaced with MTT solution at a final concentration
of 2 mg/mL. The cells were subsequently incubated for 3 h at 37 ◦C. Thereafter, removal of
the MTT solution was performed, then 100 µL of DMSO was added in order to dissolve
the formazan crystals. Measurement of the absorbance was then carried out at a 570 nm
wavelength using an Absorbance-based Spark® multimode microplate reader (Tecan Group
Ltd., Seestrasse, Maennedorf, Switzerland). The results were represented as a percentage
of cell viability relative to the control. Fitting of the dose response curves followed by
calculating IC50 values was undertaken using GraphPad prism software (GraphPad, Inc.,
La Jolla, CA, USA).

3.7.3. Cell Cycle Analysis

Flow cytometry analysis was applied to analyze the effects of EGA, blank EML-APA,
and the optimized EGA-EML-APA on MCF-7 cell cycle phases using propidium iodide (PI)
Flow Cytometry Kit (ab139418, Abcam, Cambridge, UK). In addition, 3 × 105 cells/well
were seeded in a 6-well plate prior to their incubation for 48 h with each treatment. Sub-
sequently, the cells were rinsed, trypsinized and then centrifuged for 15 min at 1000× g.
The cells were then fixed using 70% ethanol and incubated at 4 ◦C for 2 h. The fixed
cells were then centrifuged at 1000× g for 15 min prior to staining with PI (10 g/mL) and
RNase treatment. A flow cytometer (FACScalibur, BD Bioscience, San Jose, CA, USA)
was used to assess cell DNA content, with a minimum of 20,000 events obtained for each
treatment. Analysis of the data was done using the CellQuest Software (Becton-Dickinson,
BD, Erembodegem, Belgium).

3.7.4. Apoptosis Assay

The Annexin V-FITC Apoptosis Detection Kit (BD Bioscience, San Jose, CA, USA) was
used to investigate the effects of EGA, blank EML-APA and the optimized EGA-EML-APA
on the apoptosis profile of MCF-7 cells. Briefly, in a 6-well plate, cells were plated at a
density of 1 × 106 cells per well and incubated for 48 h with each treatment. After that,
the cells were trypsinized and subjected to centrifugation at 10,000× g for 5 min. The
supernatant was then discarded; and the cells were rinsed in PBS and stained in dark
conditions for 30 min using annexin V-FITC/PI dyes, as directed by the manufacturer.
FACScalibur (BD Bioscience, USA) was used to evaluate stained cells, and a minimum of
20,000 events were obtained for each treatment.
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3.7.5. Mitochondrial Membrane Potential (MMP)

The determination of MMP was carried out as per the manufacturer’s directions
using the MitoProbeTM TMRM Assay Kit for Flow Cytometry (Thermo Fisher Scientific,
CA, USA). MCF-7 cells culture was performed at a density of 1 × 105 cells per well in
96-well plates. Cells were stained using 20 M tetramethylrhodamine, methyl ester (TMRM)
following 48 h of incubation with EGA, blank EML-APA, or optimized EGA-EML-APA and
then incubated for a period of 30 min at 37 ◦C. TMRM is a fluorescent, cell-permeant dye
that creates a strong bright signal upon its accumulation in active healthy mitochondria of
cells. TMRM buildup ends and the signal disappearing indicates that the mitochondrial
membrane potential is lost during apoptosis. The cells were subsequently washed in PBS,
loaded with live-cell imaging buffer and then analysed using flow cytometry (FACSCalibur,
BD Bioscience, USA).

3.7.6. Real-Time Polymerase Chain Reaction (RT-qPCR)
RNA Extraction

Qiagen’s RNeasy mini kit (Qiagen, UK) was used to extract RNA from MCF-7 cells
as per the manufacturer’s instructions. A Nanodrop spectrophotometer (ND-2000C,
Thermoscientific) was used to confirm the concentration and purity of RNA. A ratio
of A260 nm/A230 nm, not smaller than 1.8, and a A260 nm/A280 nm ratio, not smaller
than 1.9, were detected in all RNA samples.

cDNA Synthesis and PCR Amplification

RNA was normalized between samples and reverse transcribed to complementary
DNA (cDNA) as per the manufacturer’s instructions using the iScriptTM One-Step RT-PCR
Kit With SYBR® Green kit (BioRad, Hercules, CA, USA). Relative expression patterns of
p53, bcl2, bax casp3, tnfα and nf-κb were done utilizing 10 ng of RNA template in a 50-mL
reaction mixture of iScript one-step RT-PCR kit with SYBR® Green mix using a 7500 Fast
real-time PCR system (Applied Biosystems, Waltham, MA, USA).

4. Conclusions

Face-centred central composite design has been successfully employed for optimizing
EGA-EML-APA with minimized vs. and maximized absolute ZP. The use of APA in
formulating the emulsomes was proposed to provide additional advantage of enhancing
uptake of EGA by cancerous cells, in addition to the cytotoxic activity of bee venom
components including apamin. The measured responses of the optimized formulation
were 267.6 nm for vs. and −32.1 mV for ZP. The measured responses coincide well with the
predicted ones, confirming the validity of the numerical optimization adopted in this study.
The present work confirmed the increased percentage of cytotoxic activity and apoptosis of
EGA against the human breast cancer cell line (MCF-7) after the formulation EML-APA.
This was confirmed by observations in cell viability (MTT assay) as well as the changes in
the expressions of apoptotic markers and inhibiting NF-κB activity. Arresting G2/M and S
cell cycle phases by EGA-EML-APA is a superior finding with respect to the mechanism by
which the new formulation is inhibiting MCF-7 cell proliferation. These data demonstrate
that the proposed formulation could be a successful delivery platform to enhance the
cytotoxicity of EGA against MCF-7 cells. Thus, our study established the in vitro efficacy
of optimized EGA-EML-APA as a potential anti-breast cancer formulation. Further in vivo
investigation of such formulation following administration via non-invasive para-enteral
routes compared to intravenous and oral ones will be considered in future work.
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