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Since it emerged in December 2019, severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) has spread to all parts

of the world, infecting more than 5 million people and directly

causing more than 340 000 deaths.1 Coronavirus disease 2019

(COVID-19), the disease caused by SARS-CoV-2, was initially

viewed as primarily a respiratory disease, in some cases

leading to a viral pneumonia. It is now recognised as a com-

plex disorder affecting many body systems, which, especially

in older males, can require treatment in ICUs. Amongst those

admitted to intensive care, a substantial proportion will die.

This new disease has generated a surge of research, withmore

than 4000 papers published in 1 week in May 2020.2 Here, we

attempt to summarise emerging evidence for anaesthetists
For Permissions, please email: permissions@elsevier.com
and intensive care specialists caring for patients with COVID-

19.
Infection and host defence

COVID-19 starts when SARS-CoV-2 is transmitted from one

human to another via inhalation or oral ingestion of virus-

containing droplets. The virus likely enters epithelial cells in

the nasal or oral cavity through SARS-CoV-2 spike protein

binding with the angiotensin-converting enzyme 2 (ACE2) re-

ceptor (Fig 1). Virusereceptor binding results in fusion of the

viral envelope and cell membranes with entry of the viral

nucleocapsid into the cell enabling viral mRNA to hijack host
238

mailto:mike.grocott@soton.ac.uk
mailto:permissions@elsevier.com
https://doi.org/10.1016/j.bja.2020.06.013
https://doi.org/10.1016/j.bja.2020.06.013


Fig 1. SARS-CoV-2 spike protein binding with angiotensin-

converting enzyme 2 (ACE2) receptor enables viral envelope

fusion with the host cell membrane and subsequent entry of the

viral nucleocapsid into the cell.
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cell ribosomes to translate viral code, thereby leading to gen-

eration of viral proteins and ultimately virus replication.3

Initially, there is local propagation of the virus and a limited

innate immune response, but at this stage, infected in-

dividuals can already infect others. Viral load is highest

around the time of symptom onset and decreases over the

following 5e7 days, with viable virus no longer cultivable

beyond 10 days from symptom onset.4 These features likely

account for the high transmissibility of the virus. SARS-CoV-2

propagates and travels down the respiratory tract, and a more

robust innate immune response is triggered, characterised by

the occurrence of systemic pro-inflammatory cytokines and

activated immune cells. By then, COVID-19 may clinically

manifest with, in most cases, self-limiting mild-to-moderate

symptoms of an upper respiratory tract infection and general

symptoms, such as myalgia and fatigue. In about 20% of pa-

tients, the virus will infect alveolar cells, once again via the

ACE2 receptor.

In the most severely affected patients, an exaggerated

immune response occurs as a cytokine ‘storm’, charac-

terised by extreme concentrations of pro-inflammatory cy-

tokines (such as tumour necrosis factor-a and interleukins),
Fig 2. (a) Plain chest radiograph of COVID-19 pneumonia. (b) Chest CT of

distress syndrome.
granulocyte colony-stimulating factor, and several chemo-

kines.5 This pattern mimics secondary haemophagocytic

lymphohistiocytosis, an under-recognised hyper-

inflammatory syndrome characterised by fulminant hyper-

cytokinaemia and multiorgan failure. It also resembles the

cytokine release syndrome that is seen as a complication of

chimaeric antigen receptor T-cell therapy for lymphoproli-

ferative malignancies and other forms of cancer. Because of

the prominent role of the cytokine interleukin-6 (IL-6) in

these processes, treatment of severe COVID-19 with mono-

clonal anti-soluble IL-6 receptor antibody (tocilizumab) has

been proposed.6
COVID-19 coagulopathy and
thromboembolic complications

Severe COVID-19 causes a specific coagulopathy that is remi-

niscent of, but also distinct from, other systemic coagulo-

pathies associated with severe infections, such as

disseminated intravascular coagulation or thrombotic micro-

angiopathy.7 Pro-inflammatory cytokines, in particular IL-6,

stimulate mononuclear cells to express tissue factor, leading

to thrombin generation, thereby initiating a systemic coagul-

opathy. Superimposed on this low-grade coagulation activa-

tion, direct infection of endothelial cells causes release of

plasminogen activator (explaining the very high D-dimer

concentrations in severe COVID-19) and large von Willebrand

factor multimers.8 The massive release of these multimers

overwhelms the cleaving capacity of its physiological regu-

lator ADAMTS13 (a disintegrin and metalloprotease) resulting

in high concentrations of uncleaved von Willebrand factor

mediating the consequent deposit of microvascular platelet

thrombi, especially in affected pulmonary vessels.9

Direct viral infection of endothelial cells, which express

ACE2 enabling entry of the virus, can result in widespread

endothelial dysfunction associated with recruitment of a

vascular inflammatory response, which is more exaggerated

in patients with pre-existent vascular disease.8 The simulta-

neous presence of vascular inflammation and coagulopathy

might explain the high incidence of thromboembolic compli-

cations in patients with COVID-19. Indeed, markers of coa-

gulopathy, such as D-dimer, have been closely associated with

thrombotic complications and increased mortality.10

These systemic inflammatory responses manifest as a

varied and wide-ranging clinical syndrome. Lung, heart, brain,
COVID-19 pneumonitis. (c) Chest CT of COVID-19 acute respiratory
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and kidneys are the organs with major clinicopathological

manifestations requiring ICU management to support life.
COVID-19 and the lungs

SARS-CoV-2 infection is associated with three main types of

lung damage. The typical clinical manifestation is viral

pneumonia, seen in the early stages on CT imaging as small

focal areas of ground-glass opacity (GGO). These changes are

typically prominent in the peripheral lung bases and are

bilateral in 75% of patients. Lymphadenopathy, pleural effu-

sions, and lung nodules are uncommon (<5%).11 Patients can

exhibit significant hypoxaemia but with preserved lung

compliance, a low ventilation-to-perfusion ratio, and low lung

recruitability.12 Dual-energy CT findings of preferentially

increased perfusion surrounding areas of lung opacification

support the notion that loss of regional pulmonary vasocon-

striction contributes to these pathophysiological changes, but

themechanism is still unclear. Clinically, ‘tachypnoea without

dyspnoea’ is observed, a feature also described in other severe

viral pneumonias, including pandemic influenza (H1N1) in

1918. Figure 2 illustrates a plain chest radiograph of COVID-19

pneumonia and CT of COVID-19 pneumonitis and acute res-

piratory distress syndrome (ARDS).

A second manifestation that occurs in a minority of pa-

tients usually in the second week from symptom onset is a

dysfunctional immune response, in which massive activation

of cytokines is triggered. Markedly elevated concentrations of

pro-inflammatory cytokines and chemokines attract immune

cells to the lungs. The resulting lung damage, with desqua-

mation of alveolar cells, hyaline membrane formation, and

pulmonary oedema, is manifest as ARDS, with widespread

bilateral consolidation or GGO on imaging accompanied by

progression to hypoxaemic respiratory failure.11 This stage

corresponds with findings of decreased lung compliance, high

right-to-left shunting, and high lung recruitability.12 Postmor-

tem findings include diffuse alveolar damage with patchy

inflammation dominated by lymphocytes (CD3-, CD8-, and

CD4-positive T cells, and few CD20-positive B cells) and

thrombi in small pulmonary arteries.13

These different lung injuries warrant different manage-

ment strategies. Patients with viral pneumonia may tolerate

higher tidal volumes (7e9 ml kg�1) than recommended for

ARDS (6 ml kg�1) along with lower than recommended levels

of PEEP.14 In contrast, the ARDS-like clinical picture should be

managed with classical ARDS Network ventilation strategies,

including tidal volumes of 6 ml kg�1, higher levels of PEEP, and

trials of prone positioning.14 Considerable controversy exists

as to whether noninvasive ventilatory support, such as CPAP,

can enable some patients with viral pneumonia and relatively

normal lung compliance to avoid invasive mechanical venti-

lation with some centres claiming considerable success with

this approach. Prone positioning is widely practised and has

been shown to improve oxygenation, but impact on clinical

outcomes is uncertain.15 An unconventional approach that

has achieved widespread adoption during the COVID-19

pandemic is ‘self-proning’: the voluntary adoption of the

prone position, according to medical advice, in conscious pa-

tients receiving noninvasive respiratory support.15

The third type of lung injury arises from venous thrombo-

embolism (VTE), including pulmonary emboli. Despite routine

thromboprophylaxis, studies from France, Italy, and the

Netherlands report VTE in 35e47% of ICU-treated patients.16
The British Thoracic Society suggests higher doses of throm-

boprophylaxis for these patients, whilst noting the likely

increased risk of bleeding with such an approach and the

absence of clinical trial evidence. In the event of unexpected

clinical deterioration, a high index of suspicion for VTE is

warranted.
COVID-19 and the heart

The basic mechanisms for viral infection and replication

described previously have specific relevancewith regard to the

cardiovascular system. The two groups of patients particularly

at risk of severe disease are those with a history of either hy-

pertension or coronary artery disease.17 One explanation

might be that ACE2 is a functional receptor for the virus.

Whether angiotensin-converting enzyme or angiotensin re-

ceptor blocker drugs have an impact on COVID-19 disease re-

mains unclear, and at present, it is recommended that

patients continue these drugs.18 Cardiovascular manifesta-

tions occur in two forms: direct cardiac injury and indirect

damage secondary to haemodynamic compromise. Even dur-

ing the early phase of mild symptomatic disease, cardiac

enzyme release can be observed, indicating myocardial

inflammation and damage.19 This is usually subclinical, but

may present in its most extreme form as a myocarditis.20,21

Even in the subclinical form, cardiac enzyme release is a

strong predictor of mortality.19

COVID-19 myocarditis can mimic myocardial infarction,

and distinction of myocardial infarction and myocarditis can

be challenging with some patients presenting with chest pain

as the primary symptoms in the absence of pyrexia and other

disease manifestations.22 During the early experience of the

disease, patients underwent invasive coronary angiography,

but now that this phenomenon is recognised, the widespread

ST elevation allows clinical distinction from the more regional

ECG changes characteristic of a coronary artery occlusion.

Fatal ventricular arrhythmias in COVID-19 appear to be

directly linked to the degree of cardiac enzyme release, and

therefore related to myocardial damage rather than arrhyth-

mogenicity of the disease itself.23 Therapies that produce QT

prolongation have been associated with torsade de pointes.24

Around 19% of new intensive care admissions would be ex-

pected to develop new onset atrial fibrillation,25 but whilst

arrhythmias do occur in 16% of patients, atrial fibrillation only

makes up a proportion of this and is not a prominent feature in

COVID-19.26 This is remarkable given the haemodynamic and

inflammatory stress that COVID-19 presents.

Pulmonary embolus in COVID-19 is relatively frequent and

can cause catastrophic cardiovascular collapse. Patients with

ARDS are vulnerable to pulmonary oedema, but in COVID-19,

maintaining a negative fluid balance increases thromboge-

nicity and exacerbates the cardiovascular collapse associated

with pulmonary hypertension. As the right heart begins to fail

in the face of high pulmonary vascular resistance, high venous

filling pressures are necessary to maintain cardiac output.

Adequate hydration/fluid therapy may also mitigate risk of

renal failure, which results in 20e30% of these patients

needing renal replacement therapy.
COVID-19 and the kidneys

Renal damage may result from direct infection of kidney

cells by SARS-CoV-2 or indirect harm secondary to
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intensive care interventions required to manage failure of

other organs. Like endothelial cells, proximal renal tubular

cells have ACE2 receptors, and in the kidney, both may be

infected by SARS-CoV-2, creating direct and indirect

mechanisms of nephron injury.27 As elsewhere in the

body, endothelial injury is implicated in formation of

microvascular thromboses. Importantly, renal injury may

also be a consequence of several critical care in-

terventions,28 for example, where reduced oral or i.v. fluid

administration intended to minimise pulmonary vascular

congestion results in inadequate renal perfusion. Elevated

PEEP and high driving pressures (peakemean pressure) can

impair renal function as a result of reduced renal blood

flow caused by increased pressure in the renal veins.

Similarly, reduced cardiac output and blood pressure

reduce renal blood flow, an effect compounded by the

cardiovascular depressant effects of sedation/analgesia.
COVID-19 and the brain

Neurological complications of COVID-19 infection result from

a number of factors: direct invasion of neurological tissue by

the virus, virus-induced inflammatory changes (including

thrombosis), metabolic disturbance (such as hypoxaemia and

acidosis), and unintended consequences of medical in-

terventions ranging from sedativemedications to the pressure

effects of prolonged prone positioning. Direct invasion of

neurones could be facilitated via ACE2 receptors, but the

presence of these entry points in brain tissue is unconfirmed29

but has been inferred.30 Animal studies have documented

other coronavirus infections involving the CNS,31 and in

humans, SARS-CoV-1 was found in the brain in post-mortem

cases,32,33 whilst coronavirus antigen and RNA in the CSF and

brain tissue outside of epidemics has been confirmed in pa-

tients with primary neurological conditions, such as multiple

sclerosis.34 Several case histories from the current COVID-19

pandemic suggest direct viral invasion.

There is increasing recognition of manifestations of

neurological disease, reported in 36% of ICU patients in a series

from Wuhan with severe respiratory disease.35 The most

common presentation in the ICU setting is delirium, which,

although well reported in intensive care syndrome itself,36

appears to be even more common in COVID-19 ICU pa-

tients.37 Delirium may be associated with the primary disease

itself, or may result from the combinations of drug therapy

used for sedation in prolonged ventilation, particularly when

neuromuscular blocking agents are required to facilitate me-

chanical ventilation.

Early reports from China indicated a high incidence of

other neurological complications in COVID-19. Encephalopa-

thy, presenting as headache with delirium and coma, associ-

ated with cerebral oedema and non-inflammatory CSF, was

reported in about 20% of ICU patients in one series.38 The

aetiology is likely a combination of hypoxaemia andmetabolic

derangement. An inflammatory COVID encephalitis has also

been reported presenting as headache, fever, vomiting, and

reduced level of consciousness. Ischaemic stroke was reported

in around 5% of severely ill patients in aWuhan series35 and in

2.5% in a report from Italy.39 Stroke is thought to be related to

cytokine release and is associated with thrombocytosis.

Finally, there are an increasing number of case reports of other

associated neurological presentations, including

GuillaineBarr�e syndrome,40,41 Miller Fisher syndrome, men-

ingitis, and subarachnoid haemorrhage.
Conclusions

Early reports described COVID-19 as a respiratory illness, but

we now know that it is a much more complex multisystem

disorder. There is still a great deal to learn about why it affects

people in different ways, although by combining epidemiology

and basic science, some clues are emerging. Growing under-

standing points to potential therapeutic approaches. In-

terventions are likely to include some combination of antiviral

treatment, drugs to protect tissues targeted by the virus (such

as those that stabilise endothelium), drugs to manage

abnormal physiological states (such as hypercoagulability),

and drugs that treat the dysfunctional immune response that

is often the terminal event. Survival rates for those needing

ICU care are reported at about 50%, and UK Intensive Care

National Audit & Research Centre data for those needing

combined advanced respiratory, cardiovascular, and renal

support are a shocking 19%. There is still a great deal to learn.
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