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Sex-biased analyses still remain as one of the biggest limitations to obtain

universal conclusions. In biomedicine, the majority of experimental analyses

and a significant amount of patient-derived cohort studies exclusively

included males. In nutritional and molecular medicine, sex-influence is also

frequently underrated, even considering maternal-inherited organelles such

as mitochondria. We herein illustrate with in-house original data examples

of how sex influences mitochondrial homeostasis, review these topics and

highlight the consequences of biasing scientific analyses excluding females as

di�erentiated entities from males.
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Introduction

Role of women in history and society

The organization of mutual aid, care, empathy, and cooperation is the order

of a social network that became strong and resilient for millennia of prehistory,

where women sought the wellbeing of group members (1). In fact, the existence of

pre-patriarchal matrilineal societies in prehistory, from the Paleolithic period of 6,500

Before the Common Era (BCE) to 3,000 BCE, is well-established by many studies in

archeology. These original matrilineal societies were organized around motherhood and

the offspring. Additionally, bone remains with deformities have been found in these

societies, confirming that the disabled and sick were not abandoned or eliminated. These

cultures were peaceful, woman-centered based on reciprocity rather than asymmetry,

and in communities of up to 15,000 members (2). In this context, the construction of

relations among the community members, such as symbiosis, is crucial.

Despite this lack of historic trail, materno-linearity is known as the social architecture

in ancient civilizations and, still today, ranks as the preferred structure in some societies.

Usually, these societies rely on cooperative networks and equitable social roles, in all life
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aspects including medicine. In the rest of societies, for the last

5 millennia, the paradigm of a predominantly male perspective

invaded most aspects of life, including medicine and research.

The aim of this perspective is to highlight the relevance

of understanding sex-specific conditions in health and disease,

specifically in bioenergetics and nutritional matters, and

the adverse consequences of biasing scientific and medical

conclusions underscoring women’s needs. In this sense, and

according to the World Health Organization (WHO), sex refers

to the biologically determined characteristics of females and

males, whereas gender refers to the social construction as a

learned behavior or identity (3). Given the biological nature of

the concepts herein treated, the present work will be focused on

the sex bias in relation to the study cohorts included traditionally

in clinical and biomedical research, and thus human beings will

be referred as males or females in this perspective.

The endosymbiotic theory

Cooperation and networking are the aspects that have led

us to move forward successfully as a species. Both aspects

were highlighted, at social level, by materno-linial cultural

structures as mentioned in the introduction, and at biological

level, by the endosymbiotic theory postulated by Lynn Margulis

(4). This theory explains the relevance of symbiotic unions in

understanding the origins and the evolution of living things.

The endosymbiotic theory postulates that current eucaryotic

cells and other forms of life evolve together by symbiogenesis,

in mutual cooperative benefit terms. Endosymbiotic theory is

in contraposition to some aspects of the classical competitive

Darwinian evolution, based on the survival of the fittest, and

the competition to gather resources and leave genes and traits

into the next generation offspring, which are currently being

questioned (5, 6).

At a cellular level, symbiogenesis would explain the

incorporation of plasts or mitochondria, and even a

symbiogenetic origin of flagella and cilia has been suggested

(undulipodia), despite there is no evidence so far (7). In the case

of mitochondria, endosymbiosis is the most accepted theory to

explain how we acquire mitochondrial organelles, responsible

for food metabolism and energy supply. For the mitochondria,

this theory postulates that the ancestral eukaryotic cell that

forms our bodies engulfed, millions of years ago, an ancient

proteobacterium to obtain the ability to metabolize nutrients

through aerobic metabolism (thus, consuming oxygen) while

providing the bacteria with food and environmental protection.

Both cooperated to live together from that moment to mutually

benefit from obtaining energy through the consumption of

nutrients and oxygen (4).

Interestingly, mitochondria are transmitted exclusively

through the maternal lineage, because during fetal conception

and egg fertilization, sperm only provides half of the genetic

material of the nucleus of the former embryo, while the female

oocyte provides the other half of nuclear genes and all the rest

of embryo components, thus including embryo mitochondria.

Remarkably, mitochondria are the unique organelle of our cells

that have their own genetic material that is, therefore, maternally

inherited. Thus, natural selection onmitochondria operates only

in females. Consequently, most of our genetic material (half

the nuclear and all the mitochondrial genome) is transmitted

through the maternal lineage.

Notably, the crosstalk between the nuclear and the

mitochondrial genome is crucial for the cellular regulation of

mtDNA integrity, copy number and, overall, mitochondrial

homeostasis. Among others, because the nucleus encodes

for 1,500 proteins of mitochondrial location, including those

responsible of mtDNA replication and maintenance. The

intergenomic communication is an additional example of

bilateral cooperation regulated by many actors, including

nutrients and sex-hormones (8).

Mitochondria as an endosymbiotic
evolution: A metabolic perspective

Despite these maternal-related mitochondrial genetic and

organelle transmissions involved in nutrition and health, little

interest is given in understanding sex’s role in mitochondrial

or nutritional pathophysiology or, in general, in females’

specific biomedical needs. Accumulated knowledge stands for

sex-dependent metabolism of nutrients and mitochondrial

bioenergetic regulation (9–15). We herein present, as a proof

of concept, novel data confirming differential sex-mitochondrial

performance, in this case, related to mitochondrial DNA content

(mtDNA; Figure 1). Mitochondrial DNA is present in multiple

copies per mitochondria (10, 16) and, since there are thousands

of mitochondria per cell, mitochondrial genome content per cell

can vary from thousands to millions of copies per cell, and varies

depending on the tissue considered (13). Higher mtDNA levels

have been associated with more active mitochondrial function

and, usually, are present in those tissues that mostly rely on

oxidative metabolism, which also show a higher number of

mitochondrial genomes. Conversely, low mtDNA content has

been associated with disease and is usuallymeasured for research

and diagnosis of mitochondrial pathologies and associated

disorders. Interestingly, their levels have rarely been associated

with sex condition. We herein present original data suggesting

that mtDNA levels may depend on sex assignment and that, at

least in our cohort, mtDNA levels are significantly lower in the

skeletal muscle of studied females (Figure 1A). When we stratify

mtDNA content according to patients’ age (Figure 1B), we

observe that the significant differences observed in the mtDNA

content between males and females, are apparently associated

with the age of menopause onset (established in 52 years old)

(17). This age-dependent mtDNA decline in females, although
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not statistically significant in this small cohort (p= 0.08),

may be part of the metabolic reprogramming associated with

physiologic aging, frailty, and disease (18).

As previously mentioned, levels of mtDNA content have

been related to mitochondrial activity and disease (16).

Consequently, the relevance of finding fewer mtDNA genomes

in skeletal muscle of studied females, if confirmed in larger

cohorts, might contribute to the understanding of differential

sexual behavior in cell bioenergetics, nutrient consumption,

and, eventually, health and disease. Similarly, mtDNA decrease

in females according to menopause onset might confirm

hormonal regulation of mitochondria or, the same way

around, a potential mitochondrial contribution in menopause

regulation. In this line, estrogens have been demonstrated to

regulate mitochondrial function through direct and indirect

mechanisms (19). In fact, they are synthetized from cholesterol

in the mitochondria, together with the other steroid hormones

(progestins, glucocorticoids, mineralocorticoids and androgens)

(20). Consequently, estrogens are not the unique hormones

related to mitochondrial function and metabolism. In fact, most

of these hormones and others (such as catecholamines) have

been shown to participate in a complex feedback conditioning

most of the mitochondrial functions (21), related to health and

disease (22).

Globally, these findings suggest differential metabolic sex

and aging reprogramming of mitochondria. However, in this

analysis other clinical aspects such as BMI or body fat

and lifestyle choices have not been considered, and might

potentially influence our results. In consequence, further

studies should deepen on this topic, considering all potential

confounders, as one example of how sex influence may underlie

physiologic and physiopathological responses. In this setting, sex

differences are frequently ignored in pursuit of simplification

and understanding. In accordance with the predominant male

perspective, females are usually excluded to meet this aim,

leading to biased interpretation of derived conclusions.

Despite past and current literature still exhibits a clear

sex bias in clinical and experimental research, there is a

growing body of evidence that sexual dimorphism and gender

disparity regulate mitochondrial function, metabolism, and,

consequently, the response to diet and nutrition. For instance,

it has been established that muscle fiber type distribution

(greater for type I fibers in females), substrate availability or

consumption (higher for lipids and lower for carbohydrates and

amino acids in females), as well as ROS production or ADP

and oxygen-sensibility (lower in females), are different between

sexes (23–28), thus conditioning mitochondrial function and

metabolism in physiologic conditions or exercise (glucose

turnover, glycogen use, lipid sources, AMPK signaling, lipid

droplets metabolism and metabolic gene expression among

others) (28, 29). Additionally, the regulation of such metabolic

and mitochondrial functions also differs among sexes. For

instance, higher levels of circulating adipokines (as adiponectin

and leptin) in females, or the presence of 17-β estradiol receptors

in muscle (the most important female sex hormone), provide

evidence of differential sexual regulation (23), that could vary

depending on the menstrual cycle phase (28). Interestingly,

such differential sexual metabolic performance in physiologic

conditions can constrain the response to disease, for instance in

metabolic complications including type 2 diabetes mellitus (30),

steatosis or even hepatic failure (31–33), but also in response to

exercise (34) or aging (35).

Herein presented data of lower mtDNA content in skeletal

muscle of human females, would reinforce the idea of sexual

dimorphism in bioenergetic and metabolic interplay, specially

studied during exercise (27–29, 33, 36–42), encompassing a wide

spectrum of physiologic adaptations, such as those concerning

gene expression (38). Moreover, apparent mtDNA decline in

females associated with the age of menopause onset may also

strengthen estrogen regulation of mitochondrial performance

(27–29, 36, 39). Notwithstanding, mtDNA is the unique genome

entirely dedicated to metabolic and bioenergetic performance

and estrogens, the master regulator of female metabolism and

the bioenergetic system (43), thus being the potential base of

further adaptations.

Although we have still a long path to explore, these examples

provide evidence that we won’t understand the basis of health

and disease unless sex influence is considered.

Sex bias in medicine research

In theory, biomedicine and medical research are aimed

at understanding health and disease processes, developing

new drug therapies, overall, with the objective to reduce

the burden of diseases, improve health, and increase lifespan

with a minimum quality of life for the overall population.

However, in (bio)medicine, most experimental designs (from

both cellular and animal models) and a significant amount

of patient-derived cohort studies, exclusively included males

[reviewed in (44–46)], which account for about only half

of the worldwide population (47). This male bias will

explain the poor knowledge in the biology and physiology of

females. Consequently, several guidelines still do not distinguish

differences in the manifestation and treatment of diseases

between males and females.

The arguments used to exclude females in its experimental

design are diverse and include both objective and subjective

approaches. As objective approaches, for instance, the systematic

exclusion of females at fertile age to “prevent” them from

being submitted to a potentially harmful intervention, or the

higher prevalence of a disease in males in a certain range

of age. The main subjective approach is the assumption that

what is observed in males can be extrapolated to females. The

latter two approaches can be easily refuted with the example,

for instance, of cardiovascular disease (CVD). CVD is more

prevalent in middle-aged male subjects, although overall, CVD

kills more females than males, being the first cause of death in
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FIGURE 1

Sex-di�erential mitochondrial DNA (mtDNA) content in skeletal muscle of a cohort of healthy subjects according to mean age of menopause

onset. (A) n = 53; 34 females and 19 males; mean age 55.94 ± 19.50 and 57.68 ± 15.06 years; (B) pre- and post-menopausal females (n = 13

and n = 21, respectively) and age-paired males (n = 8 and n = 11, respectively).

females, at least in Europe (48). Moreover, the physiopathology

of CVD differs between males and females. Stage 1 diastolic

hypertension has been associated with double the risk of an acute

coronary syndrome (ACS) in females compared with males (49),

and the symptoms of ACS largely differs between sexes, being

more often than desirable not identified as ACS symptoms in

females (50). Again, this responds to the assumption that the

symptoms in females are the same than in males. In addition,

the disparities in the prevention, diagnosis and treatment of ACS

have been recently brought to light (51), always in detriment of

females’ health.

Moreover, gender issues such as lifestyle, including nutrition

and stress, education and psychological aspects, might influence

the outcome of several pathologies. For instance, the prevalence

of coronary disease in females is higher and present worst

prognosis due to the double exposure to stress from work

and family (52). Besides CVD, females have increased risk of

experiencing adverse andmore severe drugs reactions compared

to males (53). A potential explanation of such phenomena might

be that female liver cells have increased cytochrome P450 (54),

which is the complex responsible of the metabolism of about half

of the drugs, thus reducing potential drug’s therapeutic efficacy.

In addition, among several others, simplification is another

argument used to exclude females from biomedical studies,

as half the sample size is then eventually required. In this

setting, the hormonal argument (the variability introduced by

the menstrual cycle) has been repeatedly used to justify the

exclusion of females in (bio)medicine studies. However, it has

been largely shown that interindividual variability is usually

higher in males (55). Interestingly, males are also subjected

to the effects of hormones that vary according to daily and

monthly rhythms and, longitudinally, along with their lives (56),

and this has not hampered their inclusion in clinical studies.

Fortunately, new policies and initiatives such as the Sex As a

Biological Variable (SABV) (57), or the GenderMedDB (58), are

increasingly being taken into consideration, and within the last

years, there is a growing body of research considering both sexes

and/or sex differences both in preclinical and clinical studies,

which will be further discussed.

Sex bias in nutritional studies

In nutritional and molecular medicine, sex influence is

also frequently underrated, even considering maternal-inherited

organelles such as mitochondria. The mitochondrial respiratory

chain is the final step for nutrient metabolism and energy

production, but sex-differences in nutrient metabolism are

largely unexplored, even considering that mitochondrial activity

and body fat distribution and percentage largely differs between

sexes (59), and that the nutritional requirements differ between

males and females (60). Additionally, nutritional requirements

within females also differ during pregnancy or after menopause

compared to the rest of the adult life. Several current studies

which consider the complexity of nutritional and mitochondrial

metabolic pathways are unable to consider sex influence on the

derived conclusions. Moreover, it has been recently outlined

that the micronutrient requirements differ between sexes and

across the lifespan (61), although current guidelines do not

distinguish between sexes, only having special guidelines for

childhood (of both sexes) and pregnancy. Interestingly, a very

recent review (62) shows that human breast milk contains lower

carbohydrates, lipids and energy for female-term compared

to male-term infants, again, showing different sex-associated

nutritional requirements even in newborns.
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A recent study has analyzed the sex specific effects of a

diet-induced obesity, and significant sex-differences in energy

expenditure in response to a high-fat diet were found (63). This

might have clinical and epidemiological implications, as (severe)

obesity is more prevalent in females (64), although a large body

of evidence relies on studies performed on males. Moreover,

a recent study observed that in children and adolescents with

type 1 diabetes, a higher dietary percentage of lipids was more

associated with higher levels of LDL cholesterol in girls than in

boys (15).

As previously stated, the hormonal argument is recurrent

to exclude females in experimental models or cohort studies.

This has been the case of the study of the effects of polyphenols,

in which, unfortunately, some authors of this perspective have

been contributors to this bias in the past (65, 66). Polyphenols

are bioactive compounds found in plants with antioxidant and

anti-inflammatory activities (67). Given its estrogenic activity

(68), it has been argued that the effects of polyphenols may be

dependent on the hormonal fluctuations in females, and this

may hinder the execution of studies and the interpretation of

the results. However, this argument should not be further used,

because the effects of nutrients, bioactive compounds, or even

dietary patterns might be sexually dimorphic independently of

the reproductive hormonal fluctuations in females. A recent

study has reported that a dietary pattern rich in energy-dense

foods at the age of 4 is associated with a higher body mass index,

a higher percentage of body fat, and insulin resistance at the age

of 10 in girls, whereas this association was not found in boys (14).

Finally, it is worth mentioning that adherence to

dietary patterns is different between males and females

(69), which might be also taken into consideration in

nutritional epidemiology.

Conclusion

Cooperation, synergy, and unbiased analysis should be

the three pillars in which science should approach any social

and health challenge, and sex-biased analyses remains as

one of the biggest challenges and limitations to obtaining

universal conclusions.

Sex bias in social and historic topics, as well as in medicine

and research, can no longer be justified in any circumstance.

Females are not a minority, they encompass, at least, half of

the human beings. If any bias may be relevant leading to

underrating and mistakes, ignoring sex differences in health can

cost lives due to the postulation of wrong clinical and therapeutic

interventions relying exclusively on man-based studies, thus

threatening woman’s health and life expectancy.

In this era of OMICs analysis, big data and

supercomputational studies, where covariates and confounding

factors are included in any calculation, modeling, and

conclusion, we can no longer admit studies where sex-based

differences are not considered.

In this brief perspective, we have discussed and exposed

the sex bias historically inherent to (bio)medical research and

nutrition. Considering the genotypic, phenotypic and metabolic

biological differences between females and males, and of

course, excluding sex-specific research (i.e., pregnancy), sex-

biased science should not be acceptable anymore. Therefore,

experimental design, at the cellular, animal, and human levels,

should include a balanced sex sample, and sex differences might

be analyzed and reported for the sake of the overall population.
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