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Drugs exert their function through binding to one or more 
protein targets. Early “one gene, one drug, one disease” 
paradigm considers the role of individual genes or pro-
teins and their changes in drug-perturbed states or disease 
states. These drug target-centric approaches largely ignore a 
target’s cellular and physiological context, making it difficult 
to address efficacy and safety problems in early stages of the 
drug discovery process.1 Meanwhile, disease gene-centric 
methods largely ignore the multi-factor-driven attribute of 
complex human diseases, which are accompanied by dis-
ruption of processes and networks at the cellular level.2 With 
the generation of rich and heterogeneous data resources for 
drug description and disease-induced perturbations, data 
integrative approaches and network techniques try to provide 
systemic insights into mechanisms of drugs and diseases.3

With this in mind, it is of great importance to investigate 
how drugs achieve their therapeutic functions via those gene 
modules, how pathophenotypes are influenced by the abnor-
mality of gene modules, and most notably, how drugs and 
disease phenotypes are associated on the basis of gene 
modules. Gottlieb et al.4 developed an efficient computational 
method PREDICT, to identify drug-disease associations and 
predict new drug indications. Wang et al.5 proposed NetPre-
dATC to introduce drug-target network to computationally pre-
dict drug’s anatomical therapeutic chemical codes. However, 
their methods are machine learning-based, and cannot reveal 
the molecular basis for the association between drugs and 
diseases. Sirota et al.6 combined disease and drug-induced 
gene expression profiles for rational drug repositioning via 
anticorrelated links. In our group, we identified meaningful 
“drug-gene-disease co-modules” from the neuro-endocrine-
immune system7 and traditional Chinese medicine such as 
a famous Liu-wei-di-huang herb formula.8,9 Recently, after 
establishing a disease gene prediction method CIPHER10 

and a drug target prediction method drugCIPHER,11 we fur-
ther developed a Bayesian partition method named comCI-
PHER12 to identify drug-gene-disease co-modules underlying 
the gene closeness data. Nevertheless, few existing studies 
attempt to identify gene modules important in associating 
drugs and diseases via transcriptional response analysis.

Here, we obtain drug-induced expression profiles and 
disease expression profiles from Connectivity Map13 and 
GEO,14 respectively. Interestingly, we find that drug targets 
and disease genes are not generally differentially expressed 
between case samples and control samples (Figure 1).

In this work, we try to shed light on the puzzle of nondif-
ferential expression of drug target or disease gene by propos-
ing a novel drug-gene-disease coherent subnetwork concept. 
Here, a coherent subnetwork concept is to naturally extend the 
existing co-module concept. It was defined as the subnetwork 
with drug, gene, and disease as nodes and their interactions 
coherently crossing three data layers as edges. Integrating 
disease and drug-induced expression profiles, we develop a 
multiple nonnegative matrix factorization method, named DGP-
subNet (here DGP denotes Drug, Gene and disease Pheno-
type, respectively), to identify drug-gene-disease coherent 
subnetworks, and additional heterogeneous data, including 
drug network, disease network, known therapeutic indications, 
and protein interaction network, are simultaneous integrated 
in a regularized manner. Meanwhile, the sparsity penalties 
are employed to achieve modular solutions (Figure 2). In our 
new method, we explicitly integrate the drug–drug, drug–gene, 
drug–disease, protein–protein, gene–disease, and disease–
disease interactions to find the drug-gene-disease coherent 
subnetwork (see Methods). As a result, our output is no longer 
a set of drug, gene, and disease nodes. Instead, we obtain a 
connected subnetwork among a set of drug, gene, and dis-
ease nodes. In addition, the coherent subnetwork is beyond the 
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Drug targets and disease genes may work as driver factors at the transcriptional level, which propagate signals through gene 
regulatory network and cause the downstream genes’ differential expression. How to analyze transcriptional response data to 
identify meaningful gene modules shared by both drugs and diseases is still a critical issue for drug-disease associations and  
molecular mechanism. In this article, we propose the drug-gene-disease coherent subnetwork concept to group the biological 
function related drugs, diseases, and genes. It was defined as the subnetwork with drug, gene, and disease as nodes and their 
interactions coherently crossing three data layers as edges. Integrating differential expression profiles of 418 drugs and 84 
diseases, we develop a computational framework and identify 13 coherent subnetworks such as inflammatory bowel disease 
and melanoma relevant subnetwork. The results demonstrate that our coherent subnetwork approach is able to identify novel 
drug indications and highlight their molecular basis.
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usual subnetwork which is limited with single node type in one 
biomolecular data layer, such as subnetwork in protein inter-
action network. Coherent network emphasizes the crossing 
interactions among three types of nodes, i.e., drug, gene, and 
disease from chemical, protein, and phenotype levels. They 
perform their biological function coherently by tightly connec-
tion across biomolecular levels.

We apply the proposed method to 418 drugs and 84 
diseases, and identified 13 coherent subnetworks. Then, 
we assessed the statistical significance of (anti-)correlation 
between drugs and diseases within a coherent subnetwork. 
Eleven subnetworks are statistically significant. Furthermore, 
we studied the biological significance of the coherent sub-
networks, including known therapeutic indication enrichment 
and Gene Ontology (GO) enrichment analysis. Eleven sub-
networks each have at least a known therapeutic role in a 
disease for a drug. After multiple testing corrections, eleven 
subnetworks are enriched in GO biological process (BP) 
terms. Case studies show that our coherent subnetwork 
approach is able to identify novel drug indications and high-
light their molecular mechanisms. The data and Matlab code 
for our subnetwork detection algorithm are freely available 
from http://bioinfo.au.tsinghua.edu.cn/software/DGPsubNet 
and http://doc.aporc.org/wiki/DGPsubNet.

RESULTS
Drug targets and disease genes are not generally 
differentially expressed
The gene expression profiles of drugs and diseases were 
extracted from Connectivity Map and GEO, respectively. To 
investigate the differential expression state of drug targets 
and disease genes, the drug targets and disease genes infor-
mation were extracted from DrugBank15 and OMIM,16 respec-
tively. It is noted that some drugs in Connectivity Map were 
tested with multiple dosages on different cell lines. Here, we 
treated them as different drug cases. Similarly, some dis-
eases were studied by different GEO data sets with different 
tissue types or cell types, and we treated them as different 
disease cases. We obtained drug targets of 871 drug cases 
(275 distinct drugs) from DrugBank, and disease genes of 83 
disease cases (57 distinct diseases) from OMIM. To deter-
mine if the differential expression for drug targets or disease 
genes between case samples and control samples is statisti-
cally significant, we calculated P values for drug targets and 
disease genes by comparing each to the distribution of dif-
ferential expression values for all genes.

Figure 1 shows the pie plots of P values for drug tar-
gets and disease genes, in which drug targets and disease 
genes are not generally differentially expressed between 
case samples and control samples. Whereas, we noticed 
that their interacting subnetwork genes are differentially 
expressed. Thus, drug targets or disease genes may work 
as driver factors in transcriptional level, which propagate 
signals through gene regulatory network and cause the 
downstream genes’ differential expression. Meanwhile, 
some works on driver genes and differential expression of 
their cascade genes can further support our explanation. 
Li et al.17 identified several modules in which each module 
contained the genes of a signature and their direct interact-
ing partners that are cancer driver-mutating genes. Aka-
via et al.18 postulated that driver mutations coincide with 
a “genomic footprint” in the form of a gene expression sig-
nature, and developed an integrative approach to identify 
drivers of cancer. Here, we employ drug-gene-disease 
coherent subnetwork to understand the puzzle of nondif-
ferential expression of drug target or disease gene.

Figure 1 The pie charts for P values to assess if the gene is 
differentially expressed. (a) The pie plot of P values for evaluating 
the differential expression of drug targets. (b) The pie plot of P values 
for evaluating the differential expression of disease genes.
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Figure 2 The flowchart of identifying drug-gene-disease coherent 
subnetworks. The multiple nonnegative matrix factorization 
framework decomposes the two expression profile matrices (X1 
and X2) into a common basis matrix W and different coefficient 
matrices (H1 and H2). Furthermore, additional heterogeneous data 
are simultaneously integrated in a regularized manner, and sparsity 
penalties to the variables (W, H1, and H2) are employed to achieve 
modular solutions. Based on the column of W and the row of H1 and 
H2, the shared gene elements, drug elements, and disease elements 
can be assigned to a certain coherent subnetwork, respectively. 
The crossing interactions among these three type elements are 
determined by the differential gene expression.
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Drug-gene-disease coherent subnetwork analysis
We ran DGPsubNet on the heterogeneous data, and 13 non-
empty subnetworks across all three data layers, i.e., drug, 
disease, and the shared genes, were identified. There were 
seven empty subnetworks left, suggesting the number of K 
(predefined subnetwork number) is sufficient. The 13 drug-
gene-disease subnetworks identified in this study have an 
average of 22 drug cases, 141 genes and 4 disease cases 
per subnetwork, and each subnetwork is described in detail 
on our website. In the following, we assess the statistical and 
biological significance of the selected subnetworks.

Assessing the statistical significance of (anti-)correlations 
between drugs and diseases within a coherent subnetwork. 
We expect that within a coherent subnetwork, drugs and 
diseases are highly (anti-) correlated based on differential 
expression profiles. In order to determine whether such rela-
tions are statistically significant, we performed the follow-
ing assessment. First, to reduce the bias caused by genes 
which received differential expression values with small 
variations across drugs (diseases), we filter out those that 
had a standard deviation smaller than 1 both in drug and 
disease expression data, leaving r = 3460 genes and result-
ing in reduced drug and disease expression matrices rX

1 and 
rX2 with dimensions r × n1 and r × n2, respectively. Second, 
we define the correlation S between the drugs and diseases 
within a subnetwork (correspond to expression submatrices 

sX1 from rX1 and sX2 from rX2, and their dimensions are r × 
ns

1  and r × ns
2 , respectively) as the sum of the absolute val-

ues of Pearson’s correlations between any two columns, one 
from each matrix, i.e., S si j= ∑ , , where s x xi j i j, | ( , ) |= corr 1 2 , 
“corr” represents the Pearson’s correlation coefficients. We 
derive the statistical significance (P value) of the correlation 
between sX1 and sX2 by comparing it to the distribution of 
correlations between 1,000 random matrix pairs. Each pair 
is composed of two matrices with dimensions identical to 
sX1 and sX2, whose elements are extracted from randomly 
permuted drug and disease expression matrices based on 
reduced drug and disease expression matrices rX1 and rX2. 
The drug-gene-disease coherent subnetworks with P values 
smaller than 0.01/20 were considered significant. Results 
show that the (anti-)correlations between drugs and diseases 
are statistically significant in 11 of the 13 coherent subnet-
works (permutation test with P < 0.01/20) (Table 1).

Biological significance of the coherent subnetworks. We 
analyzed the known therapeutic indications in each coher-
ent subnetwork based on CTD database19 and literature 
reference. There are 11 coherent subnetworks each having 
at least one known therapeutic role in a disease for a drug 
(Supplementary Table S1).

We also performed functional enrichment analysis for 
genes in the identified subnetworks by g:Profiler.20 For the 
identified 13 nonempty subnetworks, 11 subnetworks have 
at least one overrepresented GO BP term with a 0.01 false 
discovery rate (FDR) control (Benjamini-Hochberg correc-
tion). Table 2 lists the top three enriched GO BP terms for 
selected subnetworks. Furthermore, we sampled equivalent 
gene module number and their gene module size with the 
real gene modules from the genes in subnetworks for 100 
rounds. The mean number of gene modules with at least one 
overrepresented GO BP term (FDR < 0.01) is 4.91, which 
is much less than 11 significant subnetworks found by our 
algorithm. These observations demonstrate the power of our 
method in categorizing genes that participate in the same 
processes or pathways.

It is noted that we integrated additional heterogeneous data 
and employed sparsity penalties in our multiple nonnegative 
matrix factorization framework. To show the importance of 
these operations to find functionally related coherent subnet-
works, we set all weight parameters in Eq. 1 (see Methods) 

Table 1 Statistical significance of (anti)-correlations between drugs and 
diseases within a coherent subnetwork

No. No. of drug cases No. of disease cases P value

1 10 5 4.02e-19

2 34 2 1.98e-41

3 14 3 1.70e-3

4 31 4 6.85e-11

6 3 6 2.99e-6

8 18 5 6.33e-117

9 23 4 1.51e-6

10 28 5 4.65e-266

12 42 4 5.37e-53

15 31 4 6.42e-103

17 25 1 3.72e-12

18 14 1 9.10e-1

20 13 2 3.91e-9

Table 2 The enriched GO BP terms within each of 11 significant subnetworks identified by DGPsubNet

No. No. of genes Enriched GO BP terms

1 166 Extracellular matrix organization; extracellular structure organization; cellular component movement

2 171 Skin development; extracellular matrix organization; extracellular structure organization

3 141 RNA metabolic process; nucleic acid metabolic process; regulation of RNA metabolic process

4 5 Digestion; polysaccharide digestion

9 156 Peptidyl-arginine modification; peptidyl-arginine methylation; histone arginine methylation

10 186 Cell–cell signaling; neurological system process; system process

12 202 Diencephalon development

15 26 Microtubule cytoskeleton organization; spindle organization; cell cycle process

17 132 Cellular response to chemical stimulus; cellular response to stress; response to stress

18 210 Skeletal system development; anion transport; lipoprotein transport

20 228 Regulation of developmental process; negative regulation of peptidase activity; negative regulation of endopeptidase activity

BP, biological process; GO, Gene Ontology.
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as zero and ran the model. As a result, 18 nonempty coher-
ent subnetworks were found, and among them the number of 
coherent subnetworks with at least one overrepresented GO 
BP term (FDR < 0.01) is 6, which is less than 11 significant 
subnetworks found by our integrative framework. This dem-
onstrates the utility of this integrative framework for grouping 
genes that participate in the same processes or pathways. 
See Supplementary Material for more details about advan-
tages of considering network information in our approach.

Case studies
A coherent subnetwork relevant to inflammatory bowel dis-
ease and melanoma. The permutation test for (anti-)corre-
lations between drugs and diseases within the subnetwork 
no. 9 is P = 1.51e-6. There are 23 drugs, 4 diseases, and 
156 subnetwork genes. Inflammatory bowel disease (IBD) 
consists of Crohn’s disease (CD) and ulcerative colitis. 
Figure 3a shows the coherent expression patterns of sub-
network genes from the diseases in the subnetwork. The 
expression profiles of IBD are anti-correlated with those of 
melanoma. Long et al.21 pointed out the risk of melanoma 
among patients with IBD, which validate the strong associa-
tions among diseases in our subnetwork. We map the sub-
network genes, drug targets (extracted from DrugBank), and 
disease genes (extracted from OMIM) onto the PPI network, 
and consider the functional significance for the major com-
ponent (67 remaining genes) (Figure 4a). The differentially 
expressed genes are defined with the statistical significance 
(P < 0.05). We analyze the enriched Kyoto Encyclopedia 

of Genes and Genomes pathways and GO BP terms for 
the major component using g:Profiler. Melanoma pathway 
is significant for the major component (FDR = 3.14e-4). 
Deregulation of multiple elements of the mammalian target 
of rapamycin pathway (FDR = 2.38e-4) has been reported 
in many types of cancers, particularly in melanoma, where 
alterations in major elements of the mammalian target of 
rapamycin pathway were reported to have significant effects 
on tumor progression.22 Patients with IBD are at increased 
risk of colon carcinogenesis.23 The colorectal cancer pathway 
(FDR = 2.51e-3) is significant for the coherent subnetwork’s 
major component. Chemokine signaling pathway (FDR = 
5.61e-3) plays central roles in the pathogenesis of IBD24 and 
melanoma.25 AKT/PI3K pathway (FDR = 7.41e-03) impli-
cated in both IBD and melanoma regulate cell growth, pro-
liferation and cell death. The five most significantly enriched 
GO BP terms are negative regulation of protein binding (FDR 
= 2.66e-7), intracellular signal transduction (FDR = 1.07e-
6), regulation of organelle organization (FDR = 1.12e-6), 
programmed cell death (FDR = 7.22e-6) and regulation of 
apoptotic process (FDR = 8.61e-6). Furthermore, we ana-
lyze the competence of identifying novel drug indications. 
As shown in Figure 3a, the differential expression extents 
of different diseases in the subnetwork genes are obviously 
distinct. For each disease, here we simply use the mean of 
differential expression values of subnetwork genes to evalu-
ate the fold change of the disease in the subnetwork genes. 
The fold change values of ulcerative colitis, Crohn’s disease, 
melanoma and melanocytic nevi are −2.83, −1.72, 3.47, and 

Figure 3 The coherent expression patterns of subnetwork genes (top area) from the diseases in three subnetworks: (a) the subnetwork no. 
9, (b) the subnetwork no. 1, and (c) the subnetwork no. 15.
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2.93, respectively. Then we consider that the larger the fold 
change of one disease is, the more likely the drugs in the 
same subnetwork could treat it. For the 23 drugs in the sub-
network, besides 5 known therapeutic indications recorded 
in CTD (Figure 4a), 13 drugs were validated by literature 
references to treat at least one disease in the subnetwork, 
and especially 12 drugs can treat melanoma (Table 3 and 
Supplementary Table S2). For instance, Capsaicin, a main 
natural product extracted from chili peppers, is found to have 
the potential to treat both Ulcerative colitis and melanoma, 
which is in agreement with CTD and validated by literature. 
Interestingly, we also found that some promising drugs for 

melanoma were validated to induce IBD, and these cases 
are coincidence with the anti-correlation between expression 
profiles of melanoma and IBD. For example, the nonsteroidal 
anti-inflammatory drug diclofenac induces apoptosis in mela-
noma cell lines,26 but induces clinical relapse in patients with 
IBD.27 Conversely, the drug azathioprine used for treating 
IBD21 increases the risk of melanoma in immunosuppressed 
patients.28 Based on this anti-correlation between melanoma 
and IBD, some drugs inducing one disease may be used to 
treat the other disease. For example, drug hesperetin may 
be hypothesized to treat IBD which originally induces mela-
nogenesis of murine melanoma cells.29 This is supported in 

Figure 4 The drug-gene-disease coherent subnetworks. (a) The subnetwork no. 9 is relevant to inflammatory bowel disease and melanoma. 
(b) The subnetwork no. 1 is relevant to gliomas, renal cell carcinoma, and actinic keratosis.
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part by the antiproliferative efficacy of hesperetin in colon 
cancer.30

A coherent subnetwork relevant to gliomas, renal cell car-
cinoma, and actinic keratosis. The permutation test for 
(anti)-correlations between drugs and diseases within the 
subnetwork no. 1 gives P = 4.02e-19. The subnetwork dis-
eases include gliomas, renal cell carcinoma, and actinic 
keratosis. According to different grades of gliomas, gliomas 
are further classified as glioblastoma, astrocytoma, and oli-
godendroglioma. In total, there are 9 drugs (10 drug cases), 
5 diseases, and 166 subnetwork genes. Figure 3b shows the 
coherent expression patterns of subnetwork genes from the 
diseases in the subnetwork. We map the subnetwork genes, 
drug targets, and disease genes onto the PPI network, and 
consider the functional significance for the major component 
(55 remaining genes) (Figure 4b). We found that pathways 
enriched in the major component include focal adhesion 
(FDR = 9.65e-9), extracellular matrix (ECM)-receptor interac-
tion (FDR = 5.18e-9), HIF-1 signaling pathway (FDR = 6.56e-
4), p53 signaling pathway (FDR = 2.01e-2), proteoglycans in 
cancer (FDR = 4.68e-4), PI3K-Akt signaling pathway (FDR 
= 1.82e-6), transcriptional misregulation in cancer (FDR = 
9.58e-3), and pathways in cancer (FDR = 7.98e-6). Among 
these pathways significantly enriched, focal adhesion and 
ECM-receptor interaction are the two most significant path-
ways. Focal adhesion plays a critical role in the pathogenesis 
of gliomas.31 The enrichment of the ECM-receptor interac-
tion detected in this study has been reported in gliomas.32 
Furthermore, focal adhesion and ECM-receptor interaction 
pathways which control cell communication were found to be 
significantly more likely to be disrupted in renal cell carci-
noma.33 The two most significantly enriched GO BP terms 
are extracellular matrix organization (FDR = 2.05e-13) and 
extracellular structure organization (FDR = 2.16e-13). ECM 
components control many aspects of cell behavior, such as 
differentiation, proliferation, cell morphology and attachment. 
The fold change values of glioblastoma, renal cell carcinoma, 
astrocytoma, oligodendroglioma, and actinic keratosis are 
3.29, 2.31, 2.80, 1.88, and 1.88, respectively. For the nine 
drugs in the subnetwork, six drugs were validated to treat 
at least one disease in the subnetwork via CTD database 
or literature reference (Table 3 and Supplementary Table 
S2), and especially six drugs can treat astrocytoma and 
three drugs can treat glioblastoma. Among the nine drugs, 

fenoterol, clenbuterol, and orciprenaline are β2-adrenergic 
receptor agonists, and were validated to inhibit the prolifera-
tion of astrocytoma cells.34

A coherent subnetwork relevant to breast cancer and essen-
tial thrombocythemia. The permutation test for (anti)-correla-
tions between drugs and diseases within the subnetwork no. 
15 gives P = 6.42e-103. There are 20 distinct drugs (31 drug 
cases), 4 distinct diseases (4 disease cases), and 26 subnet-
work genes. Ductal carcinoma and lobular carcinoma are two 
main types of breast cancer. Figure 3c shows the coherent 
expression patterns of subnetwork genes from the diseases 
in the subnetwork. The 25 of the 26 subnetwork genes are dif-
ferentially expressed in ductal carcinoma (P < 0.05). Although 
these subnetwork genes are isolated in the PPI network, 
the enriched GO BP terms are detected among them using 
g:Profiler (FDR < 0.01). The five most significantly enriched 
GO BP terms are microtubule cytoskeleton organization 
(FDR = 4.57e-9), spindle organization (FDR = 8.49e-9), cell 
cycle process (FDR = 1.77e-7), cell cycle (FDR = 9.83e-7), 
and microtubule-based process (FDR = 2.16e-6). The aber-
rations of microtubule cytoskeleton organization have been 
found to be common phenotype in human breast carcinoma 
cells, and the drugs that suppress the microtubule dynamic 
instability were found to be effective for the treatment of met-
astatic breast cancer.35 The fold change values of essential 
thrombocythemia, melanocytic nevi, ductal carcinoma, and 
lobular carcinoma are 1.85, −1.50, 4.89, and 4.07, respec-
tively. For the 20 distinct drugs in the subnetwork, 11 drugs 
were validated to treat at least one disease in the subnetwork 
via literature reference (Table 3 and Supplementary Table 
S2), and especially these 11 drugs can treat breast cancer.

DISCUSSION

In this study, we elucidate drug-disease relationships and 
seek to decipher their molecular basis by exploring the drug-
gene-disease coherent subnetwork using optimization model. 
To the best of our knowledge, this is the first study to pres-
ent and investigate drug-gene-disease relationships using 
functionally related subnetworks based on transcriptional 
response analysis. Then, we develop a multiple nonnegative 
matrix factorization method to identify drug-gene-disease 
subnetworks from heterogeneous data. The approach used 

Table 3 The therapeutic indications of three subnetworks validated via CTD database or literature reference

No. Drugs Disease treated

9 Capsaicin; orlistat; NS-398; carmustine; perphenazine; haloperidol;  
flucytosine; danazol; etoposide; fluvastatin; diclofenac; MS-275

Melanoma

Capsaicin; azathioprine Ulcerative colitis

Azathioprine Crohn’s disease

1 Tretinoin; etoposide; podophyllotoxin; fenoterol; orciprenaline; clenbuterol Astrocytoma

Tretinoin; etoposide; podophyllotoxin Glioblastoma

Etoposide; podophyllotoxin Oligodendroglioma

Tretinoin; etoposide; podophyllotoxin Renal cell carcinoma

Tretinoin Actinic keratosis

15 Apigenin; daunorubicin; gefitinib; irinotecan; luteolin; MG-132; MS-275; 
trichostatin A; valproic acid; verapamil; vorinostat

Breast cancer

Vorinostat Essential thrombocythemia
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in the current study possesses several merits. First, we map 
the subnetwork genes, drug targets, and disease genes onto 
the PPI network, and the network analysis can be employed 
to illustrate the drug mechanisms or disease pathology. Sec-
ond, we find that drugs and diseases in each subnetwork 
tend to share differentially expressed genes and may there-
fore serve as another way to identify novel drug indications. 
Third, the multiple nonnegative matrix factorization frame-
work can be expanded to integrate other heterogeneous data 
such as the multiple level data produced by current omics 
and high throughput sequencing technologies.36

It is noted that our coherent subnetwork approach and 
result analysis hypothesize that drugs tested in some cell 
lines have therapeutic indications on diseases in different cell 
types or tissue types. Although computationally derived drug 
indications of one cell line cannot exactly represent the actual 
actions of drugs in another cell type, the result can provide 
guidance. Kutalik et al.37 designed scheme to identify subsets 
of genes and drugs for which some cell lines exhibit similar 
profiles in both the gene-expression data and drug-response 
data. It supports our hypothesis of the conservation of drug 
actions in different cell lines.

In summary, we proposed a novel coherent subnetwork 
approach to discover drug-gene-disease relationships based 
on transcriptional response analysis, and demonstrated its util-
ity by identifying new therapeutic indications and highlighting 
their molecular connections in the subnetworks. The integrative 
scheme of multiple nonnegative matrix factorization can effi-
ciently uncover drug-gene-disease coherent subnetworks. Our 
analysis may provide novel insights into possible drug mecha-
nisms or disease pathology, suggest new drug indications for 
drug repositioning, and benefit the methodology development 
of network pharmacology and systems pharmacology.

METHODS
Data preprocess
The .cel files of drugs from Connectivity Map were processed 
used MAS 5.0 suit,38 and the gene expression profiles of dis-
eases were obtained directly from GEO with soft format. The 
details of preprocessing gene expression profiles are shown in 
Supplementary Material. In summary, there were 1,284 drug 
cases and 131 disease cases which contained 418 distinct 
drugs and 84 distinct diseases, respectively. For each drug 
(disease) case and its transcriptional response profile, we 
evaluated the differential expression of each probe by using 
ratio of the expression level in drug induced (disease) sample 
against that in control sample. Then, the differential expression 
value for a particular gene was estimated using base 2 loga-
rithm of the average differential expression value of all probe 
sets that map to the gene. Using the log-scale is to highlight 
the variation in the small values for the ratio. As a result, we 
obtained drug and disease expression matrices (X1 and X2).

The other heterogeneous data used in the subnetwork 
detection framework, including drug network, disease network, 
known therapeutic indications, and protein-protein interaction 
network, are introduced in the following. To construct drug 
network and disease network, the drug interacting genes and 
disease-associated genes were extracted from CTD database. 
Then we constructed drug network (A) and disease network 

(B) with weighted edges based on the shared drug interact-
ing genes and shared disease-associated genes, respectively. 
It is noted that drug interacting genes and disease-associated 
genes curated by CTD are broader than drug targets from Drug-
Bank and disease genes from OMIM, respectively. Because 
drug targets and disease genes are available only for a limited 
number of drugs and diseases, respectively, we replaced them 
with drug interacting genes and disease-associated genes 
here. The known therapeutic indications (C) were also obtained 
from CTD database. The protein interaction data (D) was inte-
grated from five databases (see Supplementary Material).

Problem formulation
Here, we propose an effective data integration framework to 
identify drug-gene-disease coherent subnetworks, and the 
flowchart is shown in Figure 2. The differential expression 
profiles of drugs and diseases (X

1 and X2) are jointly analyzed 
in a multiple nonnegative matrix factorization framework, and 
additional data (including drug network A, disease network 
B, therapeutic indications of drugs C, and protein interaction 
network D) are simultaneously integrated in a regularized 
manner. Meanwhile, the sparsity penalties are employed to 
achieve modular solutions. The integrative model of our mul-
tiple nonnegative matrix factorization method is designed as

min || || ( )
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where ||•||F means the Frobenius norm of a matrix, Tr() is the 
trace of a matrix. wi is the ith row of W, hj, and hj’ are the jth 
and j’th columns of H1 and H2 respectively (Supplementary 
Table S3).

The multiple nonnegative matrix factorization framework 
decomposes the two data matrices (X1 and X2) into a com-
mon basis matrix W and different coefficient matrices (H1 and 
H2), where XI (I = 1,2) is an m × nI matrix, W is an m × K 
matrix containing the basis vectors, and HI is a K × nI matrix 
containing the coefficient vectors. The fact that W and HI (I = 
1,2) are nonnegative guarantees to identify nonsubtractive 
patterns that together explain the data (XI) as a linear com-
binations of the basis vectors in W. The K basis vectors in W 
can be regarded as the “building blocks” of the data, and the 
K coefficient vectors in HI describe how strongly each “build-
ing block” is present in the data.

Let A denote the adjacent matrix of the drug network. We 
enforce “must-link” constraints by maximizing the following 
objective function: Ο1

1 1
1 1= =∑a h h Tr H AHij

ij
i

T
j

T( ) ( ) ( ), where hi
1 

and hj
1 are the ith and jth columns of H1, respectively. This 

term ensures that drugs with known interactions have simi-
lar coefficient profiles. The other network-regularized terms 
such as Tr H BHT( )2 2 , Tr H CHT( )1 2 , and Tr W DWT( ) are similarly 
considered. To control the degree of sparseness in the W and 
HI (I = 1,2), we impose L1-norm constraints in Eq. 1 as sug-
gested by Kim and Park.39
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As to the selections of reduced vertical dimension of basis 
matrix W (i.e., K) and weight parameters λ1, λ2, λ3, λ4, γ1, and 
γ2 (Supplementary Figure S1), we detailed them in Supple-
mentary Material. It is noted that the multiple nonnegative 
matrix factorization framework necessitates transforming 
the two expression matrices into nonnegative matrices. The 
transformation is executed by the approach proposed by Kim 
and Tidor40 and is detailed in Supplementary Material.

Drug-gene-disease subnetwork algorithm
We expand the popular multiplicative updating algorithm 
developed for nonnegative matrix factorization and its vari-
ants to our subnetwork detection method DGPsubNet. We 
have developed an algorithm that efficiently converges to a 
local minimum by iteratively updating the matrix decomposi-
tion. This behavior can be proved in the same way as for the 
classical nonnegative matrix factorization algorithm.41 Deri-
vations of the multiplicative updating rules and proof are pro-
vided in the Supplementary Material. Below we detail the 
multiplicative updating algorithm for DGPsubNet to identify 
the local minimum. The dimensions of X1 and X2 are denoted 
as m × n1 and m × n2, respectively. The time complexity of 
the proposed algorithm is O(tK(m + n1 + n2)

2), where t is the 
number of iterations.

Algorithm for DGPsubNet
Initialize W, H1, and H2 with nonnegative values, and set the 
iteration index t = 0, the maximum number of iterations to run 
maxiter = 500.

while(t ≤ maxiter)
Fix H1 and H2, update W with

w w
X H X H DW

WH H WH H Weij ij

T T
ij

T T
k k ij

←
+ +

+ + ×

( )

( )
1 1 2 2 4

1 1 2 2 1

λ
γ

to find Wt + 1 such that objective function decreases. Among 
the above equation, ek × k is a matrix of all 1s with dimension 
k × k.
Fix W, update H1 and H2 with

h h
W X H A H C

W WH e Hij ij

T T
ij

T
k k ij

1 1
1 1 1

3
2

1 2 1

2←
+ +

+ ×
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( )
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h h
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2 2
2 2 2

3
1

2 2 2

2←
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( )
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γ

to find Ht
1

1+  and Ht
2

1+  such that objective function decreases.

Let t ← t + 1.

Drug-gene-disease subnetwork algorithm
We calculate a z-score for each element of the factorization 
based on the rows of H1 and H2:

z
x

ij
ij i

i

=
− µ

σ

where µi is the average value of drug j (or disease j’) in H1 
(or H2), and σi is the standard deviation. We assign drug j 
(disease j’) to subnetwork i if zij (zij‘) is greater than a given 
threshold T. Note that in our approach, each drug/disease 

may be assigned to multiple subnetworks, permitting the 
identification of drug repositioning.

Similarly, we calculate a z-score for each element of the fac-
torization based on the columns of W, and assign gene i to 
subnetwork j if zij is greater than the threshold T. Then we deter-
mine the crossing interactions among the three type elements, 
i.e., drug, gene and disease, by the differential gene expres-
sion. The selection of proper threshold T (Supplementary 
Figure S2) is detailed in Supplementary Material.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?

33 The pairwise relationships among drugs and 
genes are recently available by drug-induced ex-
pression profiles. Similarly disease expression 
profiles provide the pairwise relationships among 
genes and diseases. Meanwhile some pieces of 
drug-drug, disease-disease, and protein-protein 
relationships are rapidly accumulated. However, 
the triadic relations among drugs, genes, and 
diseases are largely unknown.

WHAT QUESTION DID THIS STUDY ADDRESS?

33 We ask the question how drug-gene-disease 
are connected in a coherent way in BPs. How 
do drugs achieve their therapeutic functions via 
gene modules, how are pathophenotypes influ-
enced by the abnormality of gene modules, and 
most notably, how are drugs and disease pheno-
types associated on the basis of gene modules?

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE

33 This article presents a pilot study to present and 
investigate drug-gene-disease tri-relationships 
using functionally related subnetworks, termed 
as drug-gene-disease coherent subnetworks, 
based on transcriptional response analysis.

HOW THIS MIGHT CHANGE CLINICAL 
PHARMACOLOGY AND THERAPEUTICS

33 This coherent subnetwork approach is able to 
identify novel drug indications and provide in-
sights into their molecular mechanisms.
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