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Abstract: Ursolic acid (UA) as a natural ursane-triterpenoid has rich pharmacological activities.
We have found that it possesses aggregation properties and could self-assemble into organogels.
Based on the aggregation property of ursolic acid in suitable solvents, its derivative appended with
aromatic rings by amide groups was synthesized. The property of self-assembly into organogel
was studied in this paper. The results revealed that this derivative could form supramolecular
gel in halogenated benzene and also gelate chloroform in the presence of toluene or p-xylene.
By Fourier-transform infrared spectra (FT-IR) and variable temperature proton nuclear magnetic
resonance (1H NMR), it was proved that intermolecular hydrogen bonding and π–π stacking
interaction were the primary driving forces for the aggregation to form organogel.
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1. Introduction

Supramolecular gel formed by the self-assembly of someorganic molecules into a three-dimensional
network which can trap solvent molecules is an attractive part of supramolecular chemistry [1,2].
Small organic molecules called gelators constitute the architectures of supramolecular gels.
Specific functions and properties of gels can be achieved by designing gelators between which
the interactions such as hydrogen bonding, π–π stacking interaction, van der Waals forces,
charge-transfer and electrostatic interactions, which drive the formation of their architectures [3–5].
Due to the ability of bottom-up self-assembly through the above interactions, biomolecules such
as steroids, nucleobases and amino acids are attractive candidates to construct supramolecular gels
through simple chemical modification [6–9]. Therefore, imitating and modifying natural products as
well-defined building blocks for self-assembly could minimize tedious synthesis work.

Among natural products, triterpenoids characterized by biocompatibility, rigid chiral skeletons
and chemical reaction sites were also found to have strong aggregation trends in suitable
solvents [10]. For example, lupine-triterpenoid arjunolic acid [11,12], oleanane-triterpenoid
glycyrrhetinic acid [13–18], betulinic acid [19,20] and oleanolic acid [21,22] could all aggregate in
suitable solvents and form supramolecular gel. Based on their aggregation properties, some functional
groups which could provide additional non-covalent interactions could be grafted into triterpenoid
skeletons to developsupramolecular self-assembly systems. So, a series of self-assembly structures
based on their functional derivatives have been constructed during the last decades [23].
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Ursolic acid (UA) (Scheme 1) in the form of ursane-triterpenoids has demonstrated anticancer,
anti-inflammatory, antioxidant and hypotensivepharmacological activities [24–26]. Hence, it is widely
used in medicine and natural whitening cosmetics. The aggregation property of unmodified ursolic
acid was first reported by the authors in 2016 [27]. It was illustrated that ursolic acid could self-assemble
into organogels in bromobenzene and some alcoholic solvents, which proved the aggregation property
of the rigid chiral skeleton of ursolic acid. Hypothetically, designing derivatives of ursolic acid
conjugated with functional groups which could provide non-covalent interactions may develop
functional supramolecular assemblies based on ursolic acid. However, there are few studieson the
self-assembly properties of its functional molecules, which are important for their applications. As we
know, π–π stacking and hydrogen bonding are the more effective and commonly used non-covalent
interactions. Moreover, π–π stacking of aromatic rings can reduce steric repulsion [28,29]. Herein,
in order to develop the self-assembly system based on ursolic acid, the derivative UA-5 (Scheme 1)
of ursolic acid appended with aromatic rings was designed. Benzene rings were connected to UA
by amide groups which could provide hydrogen bonding interactions. The self-assembly properties
were studied, and the results demonstrated that UA couldself-assemble into nanofibers and form a 3D
network in a mixture of chloroform and aromatic solvents. It was proved that the driving forces were
acombination of hydrogen bonding, π–π stacking and van der Waals forces.

Materials 2019, 12, x FOR PEER REVIEW 2 of 9 

 

ursolic acid was first reported by the authors in 2016[27]. It was illustrated that ursolic acid could 
self-assemble into organogels in bromobenzene and some alcoholic solvents, which proved the 
aggregation property of the rigid chiral skeleton of ursolic acid. Hypothetically, designing derivatives 
of ursolic acid conjugated with functional groups which could provide non-covalent interactions may 
develop functional supramolecular assemblies based on ursolic acid. However, there are few 
studieson the self-assembly properties of its functional molecules, which are important for their 
applications. As we know, π–π stacking and hydrogen bonding are the more effective and commonly 
used non-covalent interactions. Moreover, π–π stacking of aromatic rings can reduce steric repulsion 
[28,29]. Herein, in order to develop the self-assembly system based on ursolic acid, the derivative 
UA-5 (Scheme 1) of ursolic acid appended with aromatic rings was designed. Benzene rings were 
connected to UA by amide groups which could provide hydrogen bonding interactions. The self-
assembly properties were studied, and the results demonstrated that UA couldself-assemble into 
nanofibers and form a 3D network in a mixture of chloroform and aromatic solvents. It was proved 
that the driving forces were acombination of hydrogen bonding, π–π stacking and van der Waals 
forces. 

 

Scheme 1. The synthetic route of compound UA-5 

2. Materials and Methods  

2.1. General Procedure 

Chromatographic purifications were performed by column chromatography using 0.06–0.20 
mm silica gel. NMR spectra were measured with a JEOL JNM-ECA 300/600instrument (JEOL Ltd, 
Tokyo, Japan). A Bruker Esquire-LC spectrometer (Bruker, Fallanden, Switzerland) was employed to 
measure electrospray ionization mass spectrometry (ESI-MS). TEMwas performed using a 
TecnaiSpiri 120 KVinstrument (FEI, Hillsboro, Oregon, USA). Rheological properties were measured 
by a Physica MCR301 rotary rheometer (Anton Paar, Germany) at room temperature. 

Triethylamine (Et3N), benzoyl chloride, toluene, chlorobenzene, o-dichlorobenzene, 
bromobenzeneand, DMF were purchased from Beijing Chemical Plant (analytical purity).All solid 
samples requiring drying were vacuum-dried for 5–10 hours before use. 

p-phenylenediamine, 1-ethyl-3-(dimethylaminopropyl) carbonyl diimide hydrochloride (EDCI), 
trifluoroacetic acid (TFA)and isophthaloyl dichloride were purchased from J&K Scientific Co., 
Ltd(Beijing, China). 

 

Scheme 1. The synthetic route of compound UA-5.

2. Materials and Methods

2.1. General Procedure

Chromatographic purifications were performed by column chromatography using 0.06–0.20 mm
silica gel. NMR spectra were measured with a JEOL JNM-ECA 300/600 instrument (JEOL Ltd, Tokyo,
Japan). A Bruker Esquire-LC spectrometer (Bruker, Fallanden, Switzerland) was employed to measure
electrospray ionization mass spectrometry (ESI-MS). TEM was performed using a Tecnai Spiri 120 KV
instrument (FEI, Hillsboro, OR, USA). Rheological properties were measured by a Physica MCR301
rotary rheometer (Anton Paar, Germany) at room temperature.

Triethylamine (Et3N), benzoyl chloride, toluene, chlorobenzene, o-dichlorobenzene, bromobenzeneand,
DMF were purchased from Beijing Chemical Plant (analytical purity). All solid samples requiring
drying were vacuum-dried for 5–10 h before use.
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p-phenylenediamine, 1-ethyl-3-(dimethylaminopropyl) carbonyl diimide hydrochloride (EDCI),
trifluoroacetic acid (TFA) and isophthaloyl dichloride were purchased from J&K Scientific Co., Ltd.
(Beijing, China).

2.2. Synthesis

Compound UA-1: Initially, 5.0 g (10.4 mmol) of ursolicacid was dissolved in
N,N-Dimethylformamide (DMF) (70 mL). Then, 1.6 g K2CO3 (11.5 mmol) and 1.4 mL CH3I
(28 mmol) were added successively.The mixture was stirred for 24 h at room temperature. Then the
mixture was poured into water and the resulting suspension was filtrated to give UA-1 (solid, 3.9 g,
77%). ESI-MS (+) m/z: 493.3 [M + Na]+. 1H NMR (CDCl3, 600 MHz): δ 5.24 (t, 1H, J = 6.8 Hz), 3.60 (s,
3H), 3.20 (dd, 1H, J1 = 20.6 Hz, J2 = 11.0 Hz), 1.07, 0.98, 0.95, 0.91, 0.85, 0.77, 0.73, (7×s, 7×3H, 23, 24,
25, 26, 27, 29, 30-CH3). 13C NMR (CDCl3, 150 MHz): δ 178.05 (28-C), 138.10 (13-C), 125.53 (12-C), 77.42
(3-C), 55.17, 52.84, 51.43, 48.05, 47.52, 41.96, 39.44, 39.01, 38.83, 38.72, 38.57, 36.93, 36.61, 32.93, 30.62,
28.11, 27.99, 27.19, 24.19, 23.58, 23.27, 21.17, 18.28, 17.01, 16.88, 15.59, 15.41.

Compound UA-2: To the solution of 220 mg (2.2 mmol) of succinic anhydrate and
4-dimethylaminopyridine (DMAP) (15 mg) in 50 mL of pyridine (Pyr), 1.0 g (2.12 mmol) of UA-1
was added. The reaction solutionwas stirred at 80 ◦C for 20 h. Then, the mixture was cooled to
room temperature and poured in to 100 mL of water. After that, the solution was extracted with
dichloromethane and the organic phase was washed with water and brine. It was then dried by MgSO4

and the solid was filtered out. The obtained liquid were evaporated and the solids were purified
by column chromatography (CH2Cl2:CH3OH = 50:1) forming UA-2 as a yellow solid (1.05 g, 87%).
ESI-MS (–) m/z: 570.7 [M-H]−1. 1H NMR (CDCl3, 600 MHz): δ 5.23 (t, 1H, J = 6.2 Hz), 4.52(t, 1H,
J = 14.4 Hz), 3.61 (s, 3H), 1.31, 1.06, 0.93, 0.86, 0.83, 0.83, 0.78 (7×s, 7×3H×2, 23, 24, 25, 26, 27, 28,
30-CH3). 13C NMR (CDCl3, 200 MHz): δ178.16, 177.09, 171.79, 138.10, 125.40, 81.48, 55.24, 52.79, 51.43,
48.03, 47.39, 41.91, 39.42, 38.97, 38.81, 38.17, 37.66, 36.78, 36.57, 32.82, 30.58, 29.26, 29.02, 28.84, 28.58,
27.94, 24.15, 23.40, 23.24, 21.14, 18.13, 17.02, 16.83, 16.69, 15.42.

Compound UA-3: 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide Hydrochloride (EDCI)
(1.03 mmol) and Boc protected p-phenylenediamine (215 mg) were added to the solution of 500 mg
(0.88 mmol) of UA-2 in 8 mL of dry CHCl3. Then the reaction mixture was stirred for 32 h at room
temperature. After that the mixture was washed with water (20 mL) and brine (20 mL) and dried by
MgSO4. The solid was filtered out and the obtained liquid was evaporated. The solid was purified
by column chromatography (PE:CH3CO2C2H5 = 4:1) forming UA-3 as a yellow solid (315 mg, 47%).
ESI-MS (+) m/z: 784.0 [M + Na]+. 1H NMR (600 MHz, CDCl3): δ 7.75 (s, 1H), 7.37 (d, 2H, J = 11.0 Hz),
7.27 (d, 2H, J = 11.0 Hz), 6.54 (s, 1H),5.23 (s, 1H), 4.51 (m, 1H), 3.59 (s, 3H), 1.48 (s, 9H), 1.21, 0.90, 0.88,
0.87, 0.82, 0.82, 0.69, (7×s, 7×3H, 23, 24, 25, 26, 27, 29, 30-CH3). 13C NMR (100 MHz, CDCl3) δ: 178.03,
172.84, 169.65, 152.86, 138.04, 134.48, 133.25, 125.36, 120.56, 119.15, 81.46, 81.21, 60.32, 55.19, 52.75, 51.37,
47.97, 47.35, 41.86, 39.38, 38.92, 38.76, 37.64, 36.73, 28.27, 28.00, 23.48, 21.08, 16.97, 16.78, 16.66, 15.36.

Compound UA-4: At 0 ◦C, 2.4 mL of trifluoroacetic acid (TFA) was added to the solution of
500 mg (0.66 mmol) of UA-3 in 8 mL of CH2Cl2. The reaction mixture was stirred for 8 h at room
temperature. Then the solution was washed with saturated NaHCO3, water (30 mL) and brine (30 mL),
then dried by MgSO4 and evaporated. To obtain a solid, this compound was further purified by
column chromatography (CH2Cl2:CH3OH = 100:1), forming UA-4 as a yellow solid (427 mg, 85%).
ESI-MS (+) m/z: 661.5 [M + H]+. 1H NMR (600 MHz, CDCl3): δ 7.64 (s, 1H), 7.23 (s, 2H, J = 17.28 Hz),
6.60 (d, 2H, J = 17.2 Hz), 5.23 (s, 1H), 4.51 (m, 1H), 3.54 (s, 3H), 1.06, 0.94, 0.91, 0.86, 0.83, 0.83, 0.72 (7×s,
7×3H, 23, 24, 25, 26, 27, 29, 30-CH3). 13C NMR (200 MHz, CDCl3) δ: 178.04, 172.95, 169.50, 142.98,
138.08, 129.32, 125.38, 121.86, 115.34, 81.48, 55.21, 52.77, 51.41, 47.99, 47.38, 41.89, 39.40,38.95, 38.78,
37.67, 36.76, 28.04, 23.72, 22.76, 23.51, 21.12, 17.00, 16.81, 16.70, 15.39.

Compound UA-5: First 200 mg (0.30 mmol) UA-4 and Et3N (55 µL) were dissolved in 12 mL
dry tetrahydrofuran (THF) and cooled to 0 ◦C. Then 35 µL of (0.35 mmol) benzoyl chloride was
added to the above solution. The reaction mixture was stirred for 2 h at 50 ◦C. After that the
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solution was filtered and evaporated to obtain a solid product. Purification was conductedby silica gel
column with CH2Cl2:CH3OH = 40:1 as the eluent to produce UA-5 as a light yellow solid (195 mg,
85%). HRMS(High-Resolution Mass Spectrum)calculated for C48H65N2O6: 765.4843, found: 765.4835.
1H NMR (600 MHz, CDCl3): δ 8.38, 8.24 (2×s, 2H), 7.86 (d, 2H, J = 14.4 Hz), 7.46~7.36 (m, 7H), 5.21 (s,
1H), 4.51 (m, 1H), 3.59(s, 3H), 1.05, 0.93, 0.90, 0.85, 0.83, 0.83, 0.71 (7×s, 7×3H,23, 24, 25, 26, 27, 29,
30-CH3). 13C NMR (200 MHz, CDCl3): δ 178.09, 172.92, 170.00, 165.97, 138.07, 134.69, 134.56, 133.92,
131.69, 128.58, 127.17, 125.38, 121.53, 120.75, 81.54, 55.21, 52.77, 51.43, 48.01, 47.37, 41.89, 39.40, 38.95,
38.79, 37.67, 36.76, 28.06, 23.53, 23.21, 21.13, 17.01, 16.83, 16.72, 15.41.

3. Results and Discussion

The gelation behaviors of UA-5 in solvents were measured by the method of “stable to the
inversion of a tube” [30]. Certain amounts of UA-5 and solvent were put into a sealed glass bottle and
heated. Then, the mixture was treated with ultrasound and cooled to room temperature. Subsequently
the bottle was inverted to observe if a gel had formed. The observed gelation behaviors are presented
in Table 1. Transparent gel formationsin some aromatic solvents such as chlorobenzene, bromobenzene
and o-dichlorobenzene were observed (Figure 1) and they were all stable at room temperature for
several days.The product was soluble in polar aprotic solvents like dimethylformamide (DMF),
tetrahydrofuran (THF) and dimethyl sulfoxide (DMSO), and insoluble in some protonic solvents
like methanol and water. In nonpolar solvents such as benzene and petroleum ether, it formed
aprecipitate state. Only the solvents with suitable polarity could be gelated by the gelators of UA-5.
As the literature suggests, gelation formeddue to a balance ofgood solubility and the aggregation of
the gelators [31]. Mixed solvents were also tested. UA-5 was soluble in chloroform, in which itformed
a clear solution and turned into a transparent gel at room temperature after the gradual addition of
toluene or p-xylene under sonication. In addition, the gelation property (Tgel) indicating the required
temperature for gel to break was affected by the volume proportions of the solvents. Tgel was tested
and plotted as afunction of volume proportions of toluene under the same gelator concentration.
Obviously, the Tgel illustrating the thermal stability of the gel was the maximum at a volume ratio of 2:1
between toluene with chloroform (Figure 2).The ursolic acid derivatives (except UA-5) could not form
organogel in the tested solvents, perhaps due to the insufficient hydrogen bonding and π–π stacking.

Table 1. Gelation behaviors of UA-5.

Entry Solvent State a MGC b (g/100 cm3)

1 chlorobenzene G 1.8±0.1
2 bromobenzene G 2.6±0.1
3 o-dichlorobenzene G 1.0±0.1
4 chloroform/toluene(1/2) G 0.8±0.1
5 chloroform/p-xylene(1/2) G 1.0±0.1

a G, gel; b MGC, minimum gelator concentration (g/100 cm3) at which the gelcould be formed at 25 ◦C.
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Transmission electron microscopy (TEM) was employed to observe the morphology of
supramolecular gels. As shown in Figure 3a, the xerogel in chlorobenzene presented a typical 3D fiber
network structure with fiber diameters of about 100 nm. We should note that the nanofiber diameters
in different solvent systems were different. Entangled nanofibers with awidth of about 50 nm creating
a closely packed 3D network could also be observed in the xerogel from chloroform and toluene above
the minimum gelator concentration (MGC) (Figure 3b). Obviously, as the gel became more stable,
it exhibited a thinnerfibrous structure and closer entanglement, which was consistent with the stability
in different solvents indicated by the MGC values. A reasonable explanation for this was that the
close cross-linking network could immobilize more solvent molecules. Under the MGC, UA-5 could
also self-assemble into fibers in chloroform induced by toluene, butthese were too short to entangle
together to form an organogel (Figure 3c).
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Fourier-transform infrared spectra (FT-IR) and 1H NMR experiments were performed to infer the
driving forces of the gel formation [32–34]. FT-IR spectra showed that in the gel state, the aliphatic
C–H stretching vibration band of ursolic acid skeleton appeared at a lower wavenumber (2997 cm−1)
compared with that in the solid state (3006 cm−1). It illustrated that the increased van der Waals
interaction of aggregated gelators drive the gel formation. In addition, compared with the solid state,
the NH bending (amide II) band shifted from 1552 cm−1 to 1542 cm−1 when the gel formed. In the solid
state, the peak at 1647 cm−1 was assigned to the C=O stretching band (amide I) and benzene skeleton
vibration, which split into two peaks at 1644 cm−1 and 1675 cm−1 in the gel (Figure 4). The above
results revealed that hydrogen bonding between amide groups and π–π interaction between benzene
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rings promoted the formation of organogels. The variable temperature 1H NMR of UA-5 spectra in
deuterated chloroform and toluene were performed to confirm the driving forces and the results are
shown in Figure 5. As the temperature increased from 25 ◦C to 45 ◦C, the gel changed into a solution
state gradually, while the amide protons and aromatic protons upfieldshifted gradually, implying that
the π–π interaction between the aromatic rings and hydrogen bonding played synergic roles for gel
formation [15,17].
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To explore the mechanical properties of the gel, rheological measurement was conducted on the
gel in o-dichlorobenzene, in which self-assembly fibers yield a cross-linked three dimensional network.
The storage modulus G′ and the loss modulus G” which characterized the viscoelastic behavior of the
gels were measured as functions of shear stress at a constant frequency of 1.0 Hz at 25 ◦C. As shown in
Figure 6, it exhibited a clear thixotropic property and the beginning G′ was about seven times greater
than G”, indicating the dominant elastic characteristic of this gel [35,36]. A sudden decrease in the
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two values was observed above 86 Pa, indicating the breakup of the gel networks under high shearing
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Introducing functional groups at the A ring, providing non-covalent interactions, proved to be a
feasible method to develop supramolecular self-assembly architecture from biocompatible ursolic acid.
Moreover, this study expands the building block for self-assembly from natural product triterpenoids.
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