8869 measured reflections

 $R_{\rm int} = 0.031$ 

2532 independent reflections

2203 reflections with  $I > 2\sigma(I)$ 

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 1-Carboxymethyl-2-ethyl-4-methyl-1Himidazol-3-ium chloride monohvdrate

## Chuan-Qing Chen,<sup>a</sup> Shi-Neng Luo,<sup>b\*</sup> Jian-Guo Lin,<sup>b</sup> Ling Qiu<sup>b</sup> and Yong-Mei Xia<sup>a</sup>

<sup>a</sup>School of Chemical and Materials Engineering, Jiangnan University, Wuxi 214122, People's Republic of China, and <sup>b</sup>The Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, People's Republic of China

Correspondence e-mail: shineng914@yahoo.com.cn

Received 27 March 2009; accepted 9 April 2009

Key indicators: single-crystal X-ray study; T = 93 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.099; data-to-parameter ratio = 17.5.

In the title compound,  $C_8H_{13}N_2O_2^+ \cdot Cl^- \cdot H_2O$ , the methyl C atom of the ethyl group is slightly out of the imidazole plane, with an N-C(ring)-C-C torsion angle of -15.1 (2)°. In the crystal structure, there are strong intermolecular hydrogenbonding interactions between the solvent water molecule, the free chloride anion and the organic cation, resulting in a twodimensional supramolecular network in the *ab* plane.

#### **Related literature**

The title compound is a vital intermediate in the synthesis of bisphosphonic acid, i.e. 2-(2-ethyl-4-methyl-1H-imidazol-1yl)-1-hydroxyethane-1,1-diyldiphosphonic acid; for a general background on bisphosphonates, see: Dawson (2003); Vasireddy et al. (2003). For related structures, see: Gao et al. (2004); Barczynski et al. (2008). For the synthesis, see: Zederenko et al. (1994).



#### **Experimental**

#### Crystal data

 $C_8H_{13}N_2O_2^+ \cdot Cl^- \cdot H_2O$ V = 1117.9 (4) Å<sup>3</sup>  $M_r = 222.67$ Z = 4Monoclinic,  $P2_1/n$ Mo  $K\alpha$  radiation a = 11.077 (2) Å  $\mu = 0.33 \text{ mm}^$ b = 8.4542 (18) Å T = 93 Kc = 11.938 (3) Å  $0.40 \times 0.40 \times 0.35 \text{ mm}$  $\beta = 90.265 (3)^{\circ}$ 

#### Data collection

Rigaku SPIDER diffractometer Absorption correction: multi-scan (RAPID-AUTO; Rigaku, 2004)  $T_{\min} = 0.880, T_{\max} = 0.894$ 

#### Refinement

R

| $R[F^2 > 2\sigma(F^2)] = 0.036$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.099$               | independent and constrained                                |
| S = 1.00                        | refinement                                                 |
| 2532 reflections                | $\Delta \rho_{\rm max} = 0.29 \text{ e} \text{ Å}^{-3}$    |
| 145 parameters                  | $\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$ |
| 1 restraint                     |                                                            |

#### Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                 | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|----------------------------------|----------------|-------------------------|--------------|---------------------------|
| $N1 - H1N \cdot \cdot \cdot Cl1$ | 0.881 (17)     | 2.300 (18)              | 3.1635 (14)  | 166.6 (15)                |
| $O3-H3A\cdots Cl1$               | 0.91 (2)       | 2.20 (2)                | 3.1062 (14)  | 177 (2)                   |
| $O1-H1O\cdots O3^{i}$            | 0.96(2)        | 1.60(2)                 | 2.5557 (16)  | 170 (2)                   |
| $O3-H3B\cdots Cl1^{ii}$          | 0.96 (2)       | 2.14 (2)                | 3.0860 (14)  | 168.2 (19)                |

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Wu Jieping Medical Fund (32067500615) and the National Natural Science Foundation of China (No. 20801024).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2205).

#### References

Barczynski, P., Komasa, A., Ratajczak-Sitarz, M., Katrusiak, A., Huczynki, A. & Brzezinski, B. (2008), J. Mol. Struct. 876, 170-176.

Dawson, N. A. (2003). Exp. Opin. Pharmacother. 4, 705-716.

Gao, S., Zhao, H., Huo, L.-H., Gao, J.-S., Zain, S. M. & Ng, S. W. (2004). Acta Cryst. E60, o1391-o1393.

Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Vasireddy, S., Talwakar, A., Miller, H., Mehan, H. & David, R. S. (2003). Clin. Rheumatol. 22, 376-380.

Zederenko, P., Gil, M. S. & Ballesteros, P. (1994). J. Org. Chem. 59, 6268-6273.

supplementary materials

Acta Cryst. (2009). E65, o1081 [doi:10.1107/81600536809013403]

## 1-Carboxymethyl-2-ethyl-4-methyl-1*H*-imidazol-3-ium chloride monohydrate

## C.-Q. Chen, S.-N. Luo, J.-G. Lin, L. Qiu and Y.-M. Xia

#### Comment

Bisphosphonates with an imidazole ring, namely zoledronate, are effective bone-specific palliative treatments that reduce tumor-induced skeletal complications. With this idea in mind, we intend to synthesis one of the third-generation bisphosphonate compound, 2-(2-ethyl-4-methyl-1H-imidazol-1-yl)-1-1-hydroxyethane-1,1- bisphosphonic acid, which is potentially used for treatment of patients. As a vital intermediate compound for the stepwise reactions of the bisphosphonic acid, the synthesis and crystal structure of the title compound has been reported herein.

In the title compound (I) (Fig. 1),  $C_8H_{13}N_2O_2^+$ . CF. H<sub>2</sub>O, all the carbon atoms (C4, C5 and C7) linked to the imidazole ring are almost coplanar with the imidazole ring. The ethyl is slightly out of the imidazole plane with an N1—C3(ring)-C5—C6 torsion angle of -15.116 (211)°. While the 1-substituted acetic acid group is approximately perpendicular to the imidazole ring [dihedral angle = 77.438 (111)°]. There are strong intermolecular hydrogen interactions between the free water molecule (O3), the free chloride anion (C11), and the O1 and N1 from the organic cation (Table 1). And the crystal structure is stabilized by these strong hydrogen bond interactions to form two-dimensional supramolecular network along *ab* plane (Table 1 and Fig. 2).

## Experimental

The title compound (I) was synthesized according to previous literature (Zederenko *et al.*, 1994). After reaction, a white powder was obtained (yield 65%). Mp 170–171 °C. Then, compound (I) was recrystallized from acetone solvent; colourless block-shaped crystals were formed after several days (yield 61%). Analysis calculated for  $C_8H_{15}ClN_2O_3$ : 43.15, H 6.79, N 12.58%; found: C 43.01, H 6.96, N 12.45%.

#### **Figures**



Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.



Fig. 2. Perspective view of the supramolecular network built from strong intermolecular hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonds have been omitted.

## 1-Carboxymethyl-2-ethyl-4-methyl-1*H*-imidazol-3-ium chloride monohydrate

| Crystal | data |
|---------|------|
|---------|------|

| $C_8H_{13}N_2O_2^+ \cdot Cl^- \cdot H_2O$ | $F_{000} = 472$                                 |
|-------------------------------------------|-------------------------------------------------|
| $M_r = 222.67$                            | $D_{\rm x} = 1.323 {\rm Mg m}^{-3}$             |
| Monoclinic, $P2_1/n$                      | Mo $K\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| Hall symbol: -P 2yn                       | Cell parameters from 3544 reflections           |
| a = 11.077 (2) Å                          | $\theta = 3.0-27.5^{\circ}$                     |
| b = 8.4542 (18)  Å                        | $\mu = 0.33 \text{ mm}^{-1}$                    |
| c = 11.938 (3)  Å                         | T = 93  K                                       |
| $\beta = 90.265 \ (3)^{\circ}$            | Block, colorless                                |
| $V = 1117.9 (4) \text{ Å}^3$              | $0.40 \times 0.40 \times 0.35 \text{ mm}$       |
| Z = 4                                     |                                                 |

#### Data collection

| Rigaku SPIDER<br>diffractometer                                 | 2532 independent reflections           |
|-----------------------------------------------------------------|----------------------------------------|
| Radiation source: Rotating Anode                                | 2203 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                         | $R_{\rm int} = 0.031$                  |
| T = 93  K                                                       | $\theta_{\text{max}} = 27.5^{\circ}$   |
| ω scans                                                         | $\theta_{\min} = 3.0^{\circ}$          |
| Absorption correction: multi-scan<br>(RAPID-AUTO; Rigaku, 2004) | $h = -13 \rightarrow 14$               |
| $T_{\min} = 0.880, \ T_{\max} = 0.894$                          | $k = -10 \rightarrow 10$               |
| 8869 measured reflections                                       | $l = -15 \rightarrow 14$               |

#### Refinement

| Refinement on $F^2$             | Secondary atom site location: difference Fourier map                              |
|---------------------------------|-----------------------------------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: inferred from neighbouring sites                          |
| $R[F^2 > 2\sigma(F^2)] = 0.036$ | H atoms treated by a mixture of independent and constrained refinement            |
| $wR(F^2) = 0.099$               | $w = 1/[\sigma^2(F_0^2) + (0.0582P)^2 + 0.06P]$<br>where $P = (F_0^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.00                 | $(\Delta/\sigma)_{\rm max} < 0.001$                                               |

2532 reflections145 parameters

 $\Delta \rho_{max} = 0.29 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$ 

1 restraint

Extinction correction: none

Primary atom site location: structure-invariant direct methods

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | у            | Z            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|--------------|--------------|---------------------------|
| Cl1 | 0.19761 (3)  | 0.57092 (4)  | 0.31835 (3)  | 0.02509 (14)              |
| 01  | 0.88525 (10) | 0.95264 (13) | 0.14174 (10) | 0.0295 (3)                |
| O2  | 0.79630 (9)  | 0.72040 (13) | 0.17923 (9)  | 0.0273 (3)                |
| O3  | 0.40590 (10) | 0.32662 (16) | 0.33959 (12) | 0.0382 (3)                |
| N1  | 0.42391 (11) | 0.70595 (14) | 0.18900 (10) | 0.0184 (3)                |
| N2  | 0.57147 (10) | 0.84373 (14) | 0.12622 (10) | 0.0184 (3)                |
| C1  | 0.42085 (12) | 0.68984 (18) | 0.07348 (12) | 0.0210 (3)                |
| C2  | 0.51409 (12) | 0.77535 (17) | 0.03442 (12) | 0.0211 (3)                |
| H2  | 0.5366       | 0.7869       | -0.0418      | 0.025*                    |
| C3  | 0.51465 (12) | 0.79974 (16) | 0.21927 (12) | 0.0178 (3)                |
| C4  | 0.32597 (14) | 0.5958 (2)   | 0.01537 (14) | 0.0292 (4)                |
| H4A | 0.3426       | 0.5934       | -0.0652      | 0.035*                    |
| H4B | 0.2469       | 0.6445       | 0.0281       | 0.035*                    |
| H4C | 0.3258       | 0.4877       | 0.0449       | 0.035*                    |
| C5  | 0.54916 (13) | 0.84647 (19) | 0.33464 (12) | 0.0234 (3)                |
| H5A | 0.5677       | 0.9610       | 0.3355       | 0.028*                    |
| H5B | 0.6236       | 0.7891       | 0.3562       | 0.028*                    |
| C6  | 0.45261 (15) | 0.8131 (2)   | 0.42068 (13) | 0.0304 (4)                |
| H6A | 0.3789       | 0.8710       | 0.4008       | 0.037*                    |
| H6B | 0.4809       | 0.8473       | 0.4947       | 0.037*                    |
| H6C | 0.4355       | 0.6994       | 0.4222       | 0.037*                    |
| C7  | 0.67760 (12) | 0.94450 (17) | 0.12097 (12) | 0.0202 (3)                |
| H7A | 0.6672       | 1.0345       | 0.1731       | 0.024*                    |
| H7B | 0.6849       | 0.9879       | 0.0443       | 0.024*                    |
| C8  | 0.79233 (12) | 0.85727 (18) | 0.15091 (12) | 0.0205 (3)                |
| H1N | 0.3693 (15)  | 0.667 (2)    | 0.2348 (14)  | 0.027 (4)*                |
| H1O | 0.961 (2)    | 0.900 (3)    | 0.1558 (18)  | 0.060 (7)*                |
|     |              |              |              |                           |

# supplementary materials

| H3A | 0.344 (2) | 0.397 (3) | 0.336 (2) | 0.077 (8)* |
|-----|-----------|-----------|-----------|------------|
| H3B | 0.385 (2) | 0.243 (3) | 0.289 (2) | 0.067 (7)* |

# Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$   | $U^{22}$    | $U^{33}$   | $U^{12}$      | $U^{13}$     | $U^{23}$      |
|-----|------------|-------------|------------|---------------|--------------|---------------|
| Cl1 | 0.0190 (2) | 0.0276 (2)  | 0.0287 (2) | -0.00309 (14) | 0.00545 (15) | -0.00028 (14) |
| O1  | 0.0168 (5) | 0.0245 (6)  | 0.0472 (7) | -0.0020 (5)   | 0.0009 (5)   | 0.0008 (5)    |
| O2  | 0.0199 (5) | 0.0236 (6)  | 0.0384 (6) | 0.0035 (4)    | 0.0019 (5)   | 0.0087 (5)    |
| O3  | 0.0206 (6) | 0.0333 (7)  | 0.0605 (9) | 0.0012 (5)    | -0.0053 (6)  | -0.0059 (6)   |
| N1  | 0.0141 (6) | 0.0215 (6)  | 0.0196 (6) | -0.0007 (5)   | 0.0018 (5)   | -0.0005 (5)   |
| N2  | 0.0139 (6) | 0.0212 (6)  | 0.0202 (6) | 0.0015 (5)    | 0.0002 (5)   | 0.0007 (5)    |
| C1  | 0.0162 (7) | 0.0250 (8)  | 0.0220 (7) | 0.0033 (6)    | -0.0002 (6)  | -0.0028 (6)   |
| C2  | 0.0178 (7) | 0.0276 (8)  | 0.0178 (7) | 0.0040 (6)    | 0.0004 (5)   | -0.0008 (6)   |
| C3  | 0.0139 (6) | 0.0179 (7)  | 0.0217 (7) | 0.0029 (5)    | 0.0018 (5)   | -0.0005 (5)   |
| C4  | 0.0202 (8) | 0.0392 (10) | 0.0281 (8) | -0.0016 (7)   | -0.0013 (6)  | -0.0088 (7)   |
| C5  | 0.0236 (8) | 0.0269 (8)  | 0.0197 (7) | -0.0040 (6)   | -0.0004 (6)  | -0.0027 (6)   |
| C6  | 0.0303 (9) | 0.0381 (10) | 0.0229 (8) | -0.0054 (7)   | 0.0031 (7)   | -0.0040 (7)   |
| C7  | 0.0165 (7) | 0.0195 (7)  | 0.0247 (7) | -0.0007 (6)   | 0.0021 (6)   | 0.0018 (5)    |
| C8  | 0.0173 (7) | 0.0232 (8)  | 0.0211 (7) | -0.0001 (6)   | 0.0021 (6)   | -0.0003 (6)   |

# Geometric parameters (Å, °)

| O1—C8      | 1.3125 (18) | C3—C5      | 1.481 (2)   |
|------------|-------------|------------|-------------|
| 01—H10     | 0.96 (2)    | C4—H4A     | 0.9800      |
| O2—C8      | 1.2063 (18) | C4—H4B     | 0.9800      |
| O3—H3A     | 0.91 (2)    | C4—H4C     | 0.9800      |
| O3—H3B     | 0.96 (2)    | C5—C6      | 1.513 (2)   |
| N1—C3      | 1.3290 (18) | C5—H5A     | 0.9900      |
| N1-C1      | 1.3860 (18) | С5—Н5В     | 0.9900      |
| N1—H1N     | 0.881 (17)  | С6—Н6А     | 0.9800      |
| N2—C3      | 1.3322 (18) | С6—Н6В     | 0.9800      |
| N2—C2      | 1.3903 (18) | С6—Н6С     | 0.9800      |
| N2—C7      | 1.4534 (18) | C7—C8      | 1.5109 (19) |
| C1—C2      | 1.346 (2)   | C7—H7A     | 0.9900      |
| C1—C4      | 1.487 (2)   | С7—Н7В     | 0.9900      |
| С2—Н2      | 0.9500      |            |             |
| C8—O1—H1O  | 112.3 (13)  | H4B—C4—H4C | 109.5       |
| НЗА—ОЗ—НЗВ | 106.1 (16)  | C3—C5—C6   | 113.66 (12) |
| C3—N1—C1   | 110.13 (12) | C3—C5—H5A  | 108.8       |
| C3—N1—H1N  | 125.1 (11)  | C6—C5—H5A  | 108.8       |
| C1—N1—H1N  | 124.5 (11)  | C3—C5—H5B  | 108.8       |
| C3—N2—C2   | 108.97 (12) | C6—C5—H5B  | 108.8       |
| C3—N2—C7   | 125.80 (12) | H5A—C5—H5B | 107.7       |
| C2—N2—C7   | 125.22 (12) | С5—С6—Н6А  | 109.5       |
| C2-C1-N1   | 106.06 (12) | С5—С6—Н6В  | 109.5       |
| C2—C1—C4   | 131.87 (14) | H6A—C6—H6B | 109.5       |
| N1-C1-C4   | 122.06 (13) | С5—С6—Н6С  | 109.5       |

| C1—C2—N2    | 107.40 (13)  | Н6А—С6—Н6С  | 109.5        |
|-------------|--------------|-------------|--------------|
| С1—С2—Н2    | 126.3        | H6B—C6—H6C  | 109.5        |
| N2—C2—H2    | 126.3        | N2—C7—C8    | 112.54 (12)  |
| N1—C3—N2    | 107.43 (12)  | N2—C7—H7A   | 109.1        |
| N1—C3—C5    | 127.13 (13)  | С8—С7—Н7А   | 109.1        |
| N2—C3—C5    | 125.44 (13)  | N2—C7—H7B   | 109.1        |
| C1—C4—H4A   | 109.5        | С8—С7—Н7В   | 109.1        |
| C1—C4—H4B   | 109.5        | H7A—C7—H7B  | 107.8        |
| H4A—C4—H4B  | 109.5        | O2—C8—O1    | 125.81 (14)  |
| C1—C4—H4C   | 109.5        | O2—C8—C7    | 124.34 (13)  |
| H4A—C4—H4C  | 109.5        | O1—C8—C7    | 109.85 (13)  |
| C3—N1—C1—C2 | 0.88 (16)    | C7—N2—C3—N1 | -178.83 (12) |
| C3—N1—C1—C4 | -177.84 (13) | C2—N2—C3—C5 | 179.31 (13)  |
| N1-C1-C2-N2 | -0.76 (16)   | C7—N2—C3—C5 | 0.3 (2)      |
| C4—C1—C2—N2 | 177.78 (15)  | N1—C3—C5—C6 | -15.1 (2)    |
| C3—N2—C2—C1 | 0.40 (16)    | N2-C3-C5-C6 | 165.88 (14)  |
| C7—N2—C2—C1 | 179.39 (13)  | C3—N2—C7—C8 | 77.86 (17)   |
| C1—N1—C3—N2 | -0.63 (16)   | C2—N2—C7—C8 | -100.96 (15) |
| C1—N1—C3—C5 | -179.78 (14) | N2—C7—C8—O2 | -2.0 (2)     |
| C2—N2—C3—N1 | 0.14 (15)    | N2—C7—C8—O1 | 178.25 (12)  |
|             |              |             |              |

Hydrogen-bond geometry (Å, °)

| D—H···A                                                                                  | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |  |
|------------------------------------------------------------------------------------------|-------------|--------------|--------------|------------|--|
| N1—H1N···Cl1                                                                             | 0.881 (17)  | 2.300 (18)   | 3.1635 (14)  | 166.6 (15) |  |
| O3—H3A…Cl1                                                                               | 0.91 (2)    | 2.20 (2)     | 3.1062 (14)  | 177 (2)    |  |
| 01—H10···O3 <sup>i</sup>                                                                 | 0.96 (2)    | 1.60 (2)     | 2.5557 (16)  | 170 (2)    |  |
| O3—H3B…Cl1 <sup>ii</sup>                                                                 | 0.96 (2)    | 2.14 (2)     | 3.0860 (14)  | 168.2 (19) |  |
| Symmetry codes: (i) $-x+3/2$ , $y+1/2$ , $-z+1/2$ ; (ii) $-x+1/2$ , $y-1/2$ , $-z+1/2$ . |             |              |              |            |  |

.

Fig. 1





Fig. 2