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Abstract

Background: After focal neuronal injury the endocannabinioid system becomes activated and protects or harms neurons
depending on cannabinoid derivates and receptor subtypes. Endocannabinoids (eCBs) play a central role in controlling local
responses and influencing neural plasticity and survival. However, little is known about the functional relevance of eCBs in
long-range projection damage as observed in stroke or spinal cord injury (SCI).

Methods: In rat organotypic entorhino-hippocampal slice cultures (OHSC) as a relevant and suitable model for investigating
projection fibers in the CNS we performed perforant pathway transection (PPT) and subsequently analyzed the spatial and
temporal dynamics of eCB levels. This approach allows proper distinction of responses in originating neurons (entorhinal
cortex), areas of deafferentiation/anterograde axonal degeneration (dentate gyrus) and putative changes in more distant
but synaptically connected subfields (cornu ammonis (CA) 1 region).

Results: Using LC-MS/MS, we measured a strong increase in arachidonoylethanolamide (AEA), oleoylethanolamide (OEA)
and palmitoylethanolamide (PEA) levels in the denervation zone (dentate gyrus) 24 hours post lesion (hpl), whereas
entorhinal cortex and CA1 region exhibited little if any changes. NAPE-PLD, responsible for biosynthesis of eCBs, was
increased early, whereas FAAH, a catabolizing enzyme, was up-regulated 48hpl.

Conclusion: Neuronal damage as assessed by transection of long-range projections apparently provides a strong time-
dependent and area-confined signal for de novo synthesis of eCB, presumably to restrict neuronal damage. The present
data underlines the importance of activation of the eCB system in CNS pathologies and identifies a novel site-specific
intrinsic regulation of eCBs after long-range projection damage.
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Introduction

Functional deficits of the central nervous system (CNS) are

provoked by direct or delayed tissue damage. Lesions of long-

range projections as it occurs in spinal cord injury (SCI), traumatic

brain injury (TBI) or stroke often results in severe neurological

impairment finally leading to persistent clinical and social

disabilities for the patients [1]. At cellular level, CNS injury

provokes primary and secondary processes that involve biochem-

ical cascades occurring from minutes to weeks [2]. Earlier

experimental studies identified different regulatory, inflammatory

or immunological factors that were closely associated with

secondary damage such as lipid degradation, altered neurotrans-

mitter release and receptor function [3,4]. Neuronal cell death,

reactive astrogliosis, microglia proliferation and activation are

further consequences [5]. Research within the last two decades

revealed that the endocannabinoid (eCB) system, among many

different signaling pathways reflects a major modulating signaling

machinery of excitotoxicity by influencing neuronal damage either

in a destructive or protective way [6].The eCB system includes a

diverse group of long-chain fatty acids, the eCBs, acting on two

cloned cannabinoid receptors [7], namely the cannabinoid

receptor type 1 (CB1) and type 2 (CB2) and several not yet cloned

cannabinoid receptors [8,9]. Well characterized eCBs like

arachidonoylethanolamide (AEA) or 2-arachidonoylglycerol (2-

AG) are partial or full agonists at CB1 and CB2 [10,11]. However,

some structurally-related fatty acids like oleoylethanolamide

(OEA) and palmitoylethanolamide (PEA) both showing biological

effects similar to endocannabinoids are considered as members of

the eCB family even without binding to CB1 and CB2, respectively

[12].

Chemically defined as N-acylethanolamines (NEA), AEA, OEA

and PEA are synthesized on demand from membrane glyceropho-

spholipids by highly specific enzymes. N-acyl phosphatidyletha-
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nolamine-selective phospholipase D (NAPE-PLD) reflects the rate

limiting enzyme for biosynthesis of all three above mentioned

NEA [13]. Generally, NEA have a short half-time and are

selectively degraded. Fatty acid amide hydrolase (FAAH) is the

best characterized enzyme that catabolizes NEA with the highest

affinity for AEA [14,15]. However, N-acylethanolamide-hydro-

lyzing acid amidase (NAAA) was recently discovered as a novel

NAE-hydrolyzing enzyme with a preference for PEA [16].

The broad spectrum of eCB-mediated biological actions

involves analgesia and anti-inflammation in the central nervous

system as well as in peripheral tissues. However, very little is

known about the time course of induction and precise regulation

of the eCB system after transection of long-range projections in the

origin and targeted brain areas. These long-range projections

connecting developmentally distinct areas of the CNS are often

harmed in various insults, like SCI, TBI and stroke. Organotypic

entorhino-hippocampal slice cultures (OHSC) allow the investi-

gation of such long-range projections since projection fibers

(perforant pathway) originating from EC neurons terminate at the

outer molecular layer of the DG and thus connects two

evolutionary distinct brain regions. The deafferentiation of the

dentate gyrus by perforant pathway transection is a powerful tool

to study cellular and inflammatory responses not only at the lesion

site but also on anterograde projection areas [17,18,19,20,21].

In the present study we thus assumed an involvement of the

eCB system and a possible neuroprotective role of its members not

only at origin areas but also on neuronal populations localized in

distant regions. The regulation of AEA, OEA and PEA levels and

their main synthesizing and catabolizing enzymes were studied up

to 72 hours after PPT. Moreover, the respective cell type being

responsible for eCB production, release and/or catabolism,

namely neurons, microglia or astrocytes were determined.

Methods

Ethics statement
All animal experiments have been approved by the ethics

committees of the German federal states of Hessen or Saxonia and

were performed in accordance with the Policy on Ethics and the

Policy on the Use of Animals in Neuroscience Research as

approved by the European Communities Council Directive (89/

609/EEC) amended by the directive 2010/63/EU of the

European Parliament and of the Council of the European Union

on the protection of animals used for scientific purposes.

Organotypic Entorhino-Hippocampal Slice Cultures
(OHSC)

OHSC were prepared from 8-day old Wistar rats. Animals were

decapitated and the brains were dissected under aseptic conditions

[20]. After removal of the frontal lobe and the cerebellum, the

brains were placed in 4uC minimal essential medium (MEM;

Gibco BRL Life Technologies, Eggenstein, Germany) containing

1% (v/v) glutamine (Gibco). A sliding vibratome (Leica VT 1000

5, Leica Microsystems AG, Wetzlar, Germany) was used to cut the

brain horizontally in 350 mm-thick slices. The hippocampus was

dissected and immediately placed on cell culture inserts (pore size

0.4 mm; Millipore, Schwalbach/Ts., Germany) and were cultured

in 6-well culture dishes (Falcon, BD Biosciences Discovery

Labware, Bedford, MA) containing 1 ml culture medium (50%

(v/v) MEM, 25% (v/v) Hanks’ balanced salt solution (HBSS,

Gibco), 25% (v/v) normal horse serum (NHS, Gibco), 2% (v/v)

glutamine, 1.2 mg/ml glucose (Braun, Melsungen, Germany),

0.1 mg/ml streptomycin (Sigma-Aldrich, Deisenhofen, Germany),

100 mg/ml penicillin (Sigma-Aldrich), 0.8 mg/ml ascorbic acid

(Sigma-Aldrich) and 1 mg/ml insulin (Boehringer, Mannheim,

Germany; pH 7.4)) per well. OHSC were cultured at 35uC in a

fully-humidified atmosphere with 5% (v/v) CO2. The culture

medium was changed every second day.

Primary cell cultures
Primary cultures of hippocampal neurons were prepared using a

modified method originally described by Brewer and colleagues

[22]. Briefly, brains of P0 Wistar rats were removed and placed

into a solution of ice-cold HBSS. The hippocampi were dissected

and placed in Neurobasal Medium (Gibco) containing BSA

(Sigma-Aldrich) and papain (1 mg/ml, Sigma-Aldrich) for 20 min

at 37uC. Then neurons were isolated by tissue dissociation using

Pasteur pipette, centrifuged for 10 min (45 g) and plated onto

poly-L-lysine-coated coverslips. Cells were maintained in Neuro-

basal medium supplemented with B-27 (Gibco), GlutaMAX

(Gibco) and penicillin/streptomycin at 37uC in a humidified

atmosphere with 5% (v/v) CO2 for 2 weeks.

Primary microglial and astrocyte cell cultures were isolated from

cerebral cortices of P1 neonatal Wistar rats. After removal of the

meninges, cerebral cortices were dissociated in Ca2+/Mg2+-free

HBSS, containing trypsin (4 mg/ml, Boehringer) and DNAse

(0.5 mg/ml, Worthington, Bedford, MA, USA). Cells were plated

into poly-L-lysine (Sigma-Aldrich) coated 75 cm2 tissue culture flasks

(Falcon) containing DMEM (Gibco) supplemented with 4.5 g/l

glucose (Gibco) and 10% (v/v) fetal bovine serum (FBS, Gibco), 1%

(v/v) glutamine, 100 mg/ml penicillin and 100 mg/ml streptomycin.

Microglia was isolated from the astrocytic monolayer and

incubated with control medium (DMEM supplemented with 2%

(v/v) FBS, 1% (v/v) glutamine and 1% (v/v) penicillin/

streptomycin). One day prior to all experiments, primary cultures

of microglia and astrocytes were transferred into 24-well dishes

coated with poly-L-lysine.

Perforant Pathway Transection (PPT)
The PPT was mechanically set on day 6 in vitro (div) by use of a

disposable ophthalmic scalpel equipped with a stainless steel blade

(Feather, Osaka, Japan). Under a binocular (Zeiss, Jena,

Germany), PPT was performed within OHSC through the

perforant pathway following the sulcus between the hippocampus

and the entorhinal cortex (EC) [23]. The EC, the dentate gyrus

(DG) and the cornu ammonis 1 (CA1) region were dissected 0, 1,

6, 12, 24, 48 or 72 hours post lesion (hpl; Fig. 1).

Neuronal damage
To analyze neuronal cell death, the medium of some OHSC

was supplemented with 5 mg/ml propidium iodide (PI) 2 hours (h)

prior to fixation with 4% (w/v) paraformaldehyde (Sigma-Aldrich)

in 0.1 M phosphate buffer (PB). After fixation for at least 4 h, the

cultures were washed twice with PB and embedded with Dako

fluorescent mounting medium (Dako Diagnostika GmbH, Ham-

burg, Germany) and analyzed by a Zeiss LSM 510 Meta confocal

laser scanning system (Zeiss, Göttingen, Germany). ImageJ

software (U.S. National Institutes of Health, http://rsb.info.nih.

gov/ij/download.html) was used for counting degenerating PI

positive neuronal nuclei in the different EC, DG and CA1 regions.

LC-MS/MS
Tissues of 3 OHSC were pooled and immediately shock frozen

in liquid nitrogen and stored at 280uC. Homogenization was

performed on ice to prevent degradation of eCBs or internal

standards. The extraction of eCBs was conducted with a 9:1 (v/v)

ethylacetate/n-hexan solution [24]. The tissue was homogenized

Responses of eCB System after Axonal Lesion
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first in 70 ml ice cold H2O in a mixer mill 400 (Retsch, Haan,

Germany) for 90 seconds at 25 Hz. As a next step, 20 ml were

taken away from the homogenates to quantify the protein amount

of beta-actin by Western Blot analysis (see below). 50 ml of the

tissue samples were again homogenized together with 25 ml of

internal standards, 50 ml ethylacetate/n-hexan and 50 ml H2O.

After 3 minutes of centrifugation at 10,000 g, the organic phase

was collected and the extraction procedure was repeated. The

ethylacetate phases were evaporated under a gentle stream of

nitrogen and assimilated in 25 ml acetonitril in glass vials. Finally,

10 ml were injected into the LC-MS/MS system (API, 5000, AB

SCIEX, California, USA). For accuracy, quality standards were

always extracted with the samples.

The reconstituted samples were analyzed for AEA, OEA and

PEA. The respective deuterated AEA-d8, OEA-d2 and PEA-d4

were used as internal standards. HPLC analysis was performed

under gradient conditions using a Luna HST C18 (2) column

(100 mm L62 mm ID, 2.5 mm particle size; Phenomenex,

Aschaffenburg, Germany). MS and MS/MS analyses were

performed on an API 5000 triple quadrupole mass spectrometer

with a Turbo V source (Applied Biosystems, Darmstadt, Germany)

in the negative ion mode. Precursor-to-product ion transitions of

m/z 346R259 for AEA, m/z 354R86 for AEA-d8, m/z 324R86

for OEA, m/z 326R86 for OEA-d2, m/z 298R268 for PEA and

m/z 302R258 for PEA-d4 were used for the multiple reaction

monitoring (MRM) with a dwell time of 70 milliseconds.

Concentrations of calibration standards, quality controls and

unknowns were evaluated by Analyst software (version 1.4;

Applied Biosystems). Variations in accuracy and intra-day and

inter-day precision were ,15% over the range of calibration. For

each sample, endocannabinoid data was expressed in relation to

the respective beta-actin level as obtained by Western Blot analysis

(Image J 1.43, imagej.nih.gov/ij/download/) within the same

sample. In each experiment protein extracts from controls and the

corresponding PPT time matches were run onto the same gel to

ensure similar conditions for both groups. Endocannabinoid

values were then normalized and values obtained from controls

were set as 100%. Changes after PPT were described in relation to

their corresponding time controls.

Western Blot analysis
For Western Blot analysis the tissue was collected and

immediately stored in lysis buffer at 280uC. Protein extracts were

obtained by sonication of tissues in lysis buffer containing 80 mM

Tris, 70 mM SDS, 0,3 M Saccharose, 3 mM sodium orthovana-

date and 0.5 mM phenylmethylsulfonyl fluoride (PMSF) at

pH 7.4. Cell debris was removed by centrifugation for 10 min at

3000 g. Protein concentrations of the supernatants were deter-

mined by BCA test (Thermo Fisher Scientific, Rockford, USA).

Equal protein amount of 5 mg were loaded onto a 12,5% (w/v)

sodium dodecylsulfate–polyacrylamide gel. After gel electropho-

resis, proteins were electrotransferred to nitrocellulose membranes.

After blocking non-specific protein-binding sites for 1 h with 5%

(w/v) milk (Carl Roth, Karlsruhe, Germany) or 5% (v/v) Roti-

block solution (Carl Roth, Karlsruhe, Germany) in TBST, the

membranes were incubated over-night with the respective

following primary antibodies diluted in 5% (w/v) milk or 5% (v/

v) Roti block in TBST: rabbit polyclonal antibody against human

NAPE-PLD (diluted 1:1000; cat.-No 10305 (aa 6–20), Cayman

Chemicals, Ann Arbor, MI, USA), rabbit polyclonal antibody

against human FAAH (diluted 1:1000; cat.-No 101600 (aa 561–

579), Cayman Chemicals), rabbit polyclonal antibody against rat

NAAA (diluted 1:5000; developed by N. Ueda, Kagawa, Japan)

[25], guinea pig polyclonal antibody against murine CB1 (diluted

1:2000; cat.-No CB1-G P-Af530-1, Frontier Science, Hokkaido,

Japan), PPAR alpha (diluted 1:1000; cat.-No PA1-822A, Thermo

Scientific, Schwerte, Germany) and mouse monoclonal antibody

directed against human beta-actin (diluted 1:40,000; cat.-No

A1978, Sigma-Aldrich). The next day, membranes were washed

three times with TBST for 10 min and the secondary horse radish

peroxidase-conjugated antibodies (anti-rabbit, 1:1000; cat.-No PI

1000, Vektor laboratories, Burlingame, CA; anti-guinea pig

1:1000;cat.-No P0141, DAKO Diagnostika GmbH, Hamburg,

Germany or anti-mouse IgG, 1:4000; cat.-No CP01, Millipore,

Billerica, USA) were added for 1 h. Membranes were finally

exposed to enhanced chemiluminescence (ECL detection system,

Millipore) and the signal of bound antibody was visualized with

radiographic films (Kodak, Stuttgart, Germany). Finally, semi-

quantification of the immunoreactive bands was performed with

ImageJ image analysis software.

Specificity tests for the antibodies used
The specificity of the antibodies was tested by preabsorption

with the corresponding blocking peptides (NAPE-PLD, cat.-No

10303; FAAH, cat.-No 301600, Cayman Chemicals, respectively,

NAAA, developed by Ueda’s lab [25] and PPAR alpha, cat.-No

PEP-025, Thermo Scientific). For preabsorption, each primary

antibody was diluted in 5% (w/v) milk or 5% (v/v) Roti block in

TBST and incubated with a five to ten-fold excess (by weight) of its

blocking peptide for 1 h at room temperature with gentle shaking.

Thereafter, the antibody-blocking peptide solution was applied to

the Western Blot membranes and the subsequent procedures

followed to the above described Western Blot protocol. The CB1

antibody was tested on CB1 (2/2) knock-out mice (kindly

provided by Beat Lutz, Mainz, Germany, Fig. S1).

Immunohistochemistry
The OHSC were fixed with a 4% (w/v) paraformaldehyde

solution in 0.1 M PB for at least 4 h. After fixation, OHSC were

Figure 1. Overview of the perforant pathway transection (PPT)
in OHSC. The black line indicates the transection of the axons
originating from layers II and III of entorhinal cortex (EC) and projecting
to the outer molecular layer (oml) of the dentate gyrus (DG). The areas
of EC, DG and cornu ammonis (CA)1 were dissected as visualized by the
open black cycles. OHSC were kept in culture for 6 days before PPT was
set and tissue of the highlighted areas was collected 1 h, 6 h, 12 h,
24 h, 48 h and 72 h post lesion. Bar = 500 mm.
doi:10.1371/journal.pone.0033537.g001
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washed in PB and incubated for at least 4 h in 15% (w/v) sucrose,

followed by 30% (w/v) sucrose, respectively. Using a cryostat 3050

S (Leica, Wetzlar, Germany), the OHSC were sectioned (14 mm)

and mounted on superfrost microscope slides (Thermo Scientific).

To block unspecific binding sites sections were preincubated with

normal goat serum for 30 min (1:20 in PBS/Triton) followed by

incubation with primary antibodies for 16 h in PBS/Triton

containing 0.5% (w/v) bovine serum albumin: NAPE-PLD

(diluted 1:200), FAAH (diluted 1:200), NAAA (diluted 1:1000),

CB1 (diluted 1:100), PPAR alpha (diluted 1:1000). Binding of the

primary antibodies was visualized by means of the ABC method

with a biotin-conjugated anti-rabbit IgG (diluted 1:100; cat-No

B7389 Sigma-Aldrich) as the secondary antibody, a horseradish

peroxidase (HRP)-conjugated streptavidin complex (diluted 1:100;

cat.-No E2886 Sigma-Aldrich) and 3, 3-diamino-benzidine as the

chromogen. For immunocytochemical characterization of differ-

ent cell populations within OHSC, the following primary

antibodies were used: mouse monoclonal antibody against NeuN

as a neuronal marker (diluted 1:200; cat.-No MAB377, Millipore),

monoclonal mouse antibody against GFAP as a marker for

astrocytes (diluted 1:200; cat.-No 556330, BD Pharmingen) and

biotinylated isolectin B4 (IB4) as a marker for microglial cells

(diluted 1:50; cat.-No FL-1201, Vector).

For triple-immunofluorescence staining, the primary antibodies

against NAPE-PLD, FAAH, NAAA, CB1 or PPAR alpha, were

combined with FITC-conjugated isolectin B4 and either with

antibodies against NeuN or GFAP respectively. After incubation

with primary antibodies for 16 h at room temperature, sections

were washed three times with PBS followed by application of

secondary antibodies Alexa fluor dye 568 (goat-anti rabbit IgG,

1:500, cat.-No A-11011, Invitrogen) and Alexa fluor dye 633 (goat

anti-mouse IgG, 1:100, cat.-No A21050, Invitrogen, Karlsruhe,

Germany) for 1 h. The preparations were finally coverslipped with

Dako fluorescent mounting medium (Dako) and analyzed using a

Zeiss LSM 510 Meta confocal laser scanning system.

Statistical analysis
Data from at least three independent experiments were

expressed as mean values (6 standard error of the mean (SEM)).

Data was statistically analyzed using ANOVA one way followed by

Bonferroni posttests. Results with p,0.05 were considered as

significant. Analysis was conducted with Graph Pad Prism

software 5 (GraphPad software, La Jolla, USA).

Results

Perforant Pathway transection does not increase
neuronal cell death in the EC, DG or CA1 area

The determination of neuronal cell death by counting the

numbers of propidium iodide (PI) positive nuclei revealed very few

PI positive nuclei in the EC (CTL: 0hpl, 0.0; 1hpl, 0.0, 6hpl, 0.0;

12hpl 0.0; 24hpl, 1.7; 48hpl, 1.7; 72hpl, 0.0; PPT: 0hpl, 0.0; 1hpl,

0.3, 6hpl, 0.0; 12hpl, 0.0; 24hpl, 1.3; 48hpl, 1.7; 72hpl, 0.0).

Similar findings were observed in the DG (CTL: 0hpl, 0.0; 1hpl,

0.3, 6hpl, 0.3; 12hpl, 0.3; 24hpl, 0.7; 48hpl, 1.0; 72hpl, 0.0; PPT:

0hpl, 0.3; 1hpl, 0.7, 6hpl, 0.0; 12hpl, 1.7; 24hpl, 1.7; 48hpl, 1.3;

72hpl, 2.0) and CA1 region (CTL: 0hpl, 0.0; 1hpl, 0.0, 6hpl, 0.0;

12hpl, 0.0; 24hpl, 0.0; 48hpl, 0.7; 72hpl, 0.0; PPT: 0hpl, 0.0; 1hpl,

0.3, 6hpl, 0.0; 12hpl, 0.0; 24hpl, 0.3; 48hpl, 0.7; 72hpl, 1.0). There

was no significant change in the number of PI positive nuclei in

investigated regions (EC, DG, CA1) at all time-points assessed

(p.0.05). No difference was found between controls and PPT

slices (p.0.05).

Endocannabinoid levels are regulated in a site specific
and time dependent manner after PPT

Axonal dissection/dendritic denervation as induced by PPT led

to a site-specific intrinsic upregulation of AEA, PEA and OEA

levels in the DG (Fig. 2). The eCB levels of non lesioned controls

(CTR) were set to 100% and the PPT data was expressed in

relation to their time controls, respectively. Under control

conditions (0hpl) following mean values for NEA were found in

the areas investigated (AEA: EC, 0.015 ng/ml; DG, 0.010 ng/ml;

CA1, 0.018 ng/ml; PEA: EC, 0.828 ng/ml; DG, 0.769 ng/ml;

CA1, 1.475 ng/ml; OEA: EC, 0.094 ng/ml; DG, 0.076 ng/ml;

CA1, 0.150 ng/ml, respectively). In the EC region no significant

changes in NEA levels were observed after PPT. AEA levels in the

EC remained at control levels (0hpl, 115%; 1hpl, 139%; 6hpl,

74%; 12hpl, 121%;24hpl, 112%; 48hpl, 82%; 72hpl, 79%;

p.0.05). Only at 1hpl a non significant elevation to 139% was

observed (Fig. 2). At all time points investigated no significant

change was detected for PEA (0hpl, 116%; 1hpl, 160%; 6hpl,

96%; 12hpl, 143%; 24hpl, 111%; 48hpl, 66%; 72hpl, 85%;

p.0.05, Fig. 2A) or OEA (0hpl, 106%; 1hpl, 157%; 6hpl, 86%;

12hpl, 130%; 24hpl, 121%; 48hpl, 75%; 72hpl, 99%; p.0.05,

Fig. 2).

In the DG AEA levels did not differ significantly from controls

up to 12hpl (0hpl, 113%; 1hpl, 122%; 6hpl, 90%; 12hpl, 142%;

p.0.05). At 24hpl mean AEA levels were significantly increased

compared to controls (24hpl, 261%; p,0.001). Thereafter AEA

levels declined (48hpl, 79%; p.0.05) and were below the

respective time control at 72hpl (72hpl, 82%; p.0.05, Fig. 2B).

PEA levels in the DG did not differ significantly from controls up

to 6hpl (0hpl, 111%; 1hpl, 132%; 6hpl, 124%; p.0.05, Fig. 2). At

12hpl, the PEA level were elevated (12hpl, 193%; p,0.05) and

reached the maximum at 24hpl (24hpl, 352%; p,0.001). PEA

levels then declined (48hpl, 56%; p.0.05) and were reduced at

72hpl without reaching the significant threshold (72hpl, 76%;

p.0.05). OEA levels after PPT in the DG were comparable to

control levels up to 12hpl, (0hpl, 101%; 1hpl, 129%; 6hpl, 131%;

12hpl, 143%; p.0.05). At 24hpl OEA levels were maximal

elevated (24hpl, 299%; p,0.001). Thereafter OEA levels declined

and were at 48hpl and 72hpl lowered compared to the respective

time controls (48hpl, 61%; 72hpl, 81%; p.0.05, Fig. 2).

In the CA1 region no significant changes were observed in AEA

levels (0hpl, 114%; 1hpl, 107%; 6hpl, 113%; 12hpl, 66%; 24hpl,

90%; 48hpl, 59%; 72hpl, 106%; p.0.05, Fig. 2). PEA levels

remained close to the control levels until 12hpl (0hpl, 92%; 1hpl,

119%; 6hpl, 111%; 12hpl, 76%; p.0.05, Fig. 2). At 24hpl (24hpl,

70%; p.0.05) PEA levels were below control levels reaching the

significant threshold at 48hpl (48hpl, 38%; 72hpl, 92%; p,0.05).

OEA levels in the CA1 region were comparable to the control

levels up to 24hpl (0hpl, 84%; 1hpl, 112%; 6hpl, 132%; 12hpl,

77%; 24hpl, 64%; p,0.5). At 48hpl the OEA levels decreased

significantly compared to the control levels (48hpl, 44%; p,0.05;

72hpl, 98%; p.0.5, Fig. 2).

Differential regulation of enzymes and receptors of the
eCB system after PPT

The site-specific and time-dependent changes in enzymes,

namely NAPE-PLD, FAAH and NAAA as well as in receptors,

namely CB1 and PPAR alpha were analyzed by Western blot. The

specificity of the used antibodies was tested by means of

preabsorption (Fig. S1A). The CB1 antibody showed no signal

in CB1
2/2 animals (Fig. S1B). For densitometric analysis the PPT

data was expressed relative to their time-controls, respectively and

the control levels were set as 100%. No change in NAPE-PLD was

Responses of eCB System after Axonal Lesion
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detectable after axonal damage in the EC (0hpl, 98%; 1hpl, 114%;

6hpl, 105%; 12hpl, 114%; 24h, 102%; 48hpl, 111%; 72hpl,

119%; p.0.05; Fig. 3). Neither FAAH (0hpl, 83%; 1hpl, 115%;

6hpl, 104%; 12hpl, 98%; 24h, 88%; 48hpl, 97%; 72hpl, 90%;

p.0.05; Fig. 3) nor NAAA (0hpl, 88%; 1hpl, 89%; 6hpl, 79%;

12hpl, 98%; 24 h, 101%; 48hpl, 100%; 72hpl, 105%; p.0.05;

Fig. S2) were significantly changed. After PPT CB1 protein (0hpl,

86%; 1hpl, 94%; 6hpl, 129%; 12hpl, 92%; 24 h, 101%; 48hpl,

108%; 72hpl, 132%; p.0.05; Fig. 3) was significantly increased

after 1hpl (129%; p,0.05) and 72hpl (132%; p,0.05) in the EC

only. PPAR alpha (0hpl, 83%; 1hpl, 105%; 6hpl, 93%; 12hpl,

112%; 24 h, 76%; 48hpl, 112%; 72hpl, 111%; p.0.05; Fig. S2)

showed no alteration in PPT compared to the respective time

control.

An increase of NAPE-PLD protein amount was observed in DG

from 1hpl to 6hpl (0hpl, 97%; p.0.05; 1hpl, 140%; 6hpl, 133%;

p,0.05; Fig. 3). Thereafter, NAPE-PLD protein decreased to

control levels (12hpl, 133%; 24 h, 118%; 48hpl, 117%; 72hpl,

99%; p.0.05). The FAAH protein amount remained close to

control levels up to 24hpl (1hpl, 110%; 6hpl, 108%; 12hpl, 106%;

24hpl, 111%; p.0.05). At 48hpl (120%; p,0.05) a significant

peak of FAAH was observed that was no more visible at 72hpl

(113%; p.0.05; Fig. 3). No change in the NAAA enzyme was

detectable after dendritic denervation in the DG (1hpl 101%, 6hpl

98%, 12hpl 95%, 24 h 128%, 48hpl 105%, 72hpl 111%, Fig. S2).

The protein amount of CB1 did not differ from the time control

(0hpl, 119%; 1hpl, 101%; 6hpl, 77%; 12hpl, 107%; 24 h, 123%;

48hpl, 105%; 72hpl, 109%; p.0.05, Fig. 3). The PPAR alpha

protein amount did not change in comparison to the time controls

(1hpl 102%, 6hpl 107%, 12hpl 114%, 24 h 87%, 48hpl 107%,

72hpl 92%, p.0.05, Fig. S2).

In the CA1 region no alterations in NAPE-PLD were detected

(0hpl, 89%; 1hpl, 100%; 6hpl, 112%; 12hpl, 109%; 24 h, 86%;

48hpl, 100%; 72hpl, 86%; p.0.05; Fig. 3). FAAH (0hpl, 111%;

1hpl, 100%; 6hpl, 97%; 12hpl, 114%; 24 h, 94%; 48hpl, 87%;

72hpl, 102%; p.0.05; Fig. 3) and NAAA (0hpl, 111%; 1hpl,

105%; 6hpl, 107%; 12hpl, 102%; 24 h, 99%; 48hpl, 106%; 72hpl,

81%; p.0.05; Fig. S2) remained unchanged after PPT. In PPT

CB1 (0hpl, 93%; 1hpl, 106%; 6hpl, 87%; 12hpl, 94%; 24 h, 99%;

48hpl, 126%; 72hpl, 82%; p.0.05; Fig. 3) as well as PPAR alpha

Figure 2. Endocannabinoid (eCB) levels in EC, DG and the CA1 region as normalized against ß-actin immunosignals. Control
condition (CTR) of each time-point was set as 100% (black cycles). In EC AEA, PEA and OEA (gray circles, respectively) did not show any alteration in
comparison to the respective CTR. In the DG, all investigated eCBs significantly increased 24hpl. In CA1, AEA did not differ from CTR after PPT. PEA
showed a significant decrease 48hpl. OEA decreased at 12 and 48hpl. (n = 4, *p,0.05, ***p,0.001).
doi:10.1371/journal.pone.0033537.g002
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(0hpl, 86%; 1hpl, 97%; 6hpl, 135%; 12hpl, 110%; 24 h, 97%;

48hpl, 124%; 72hpl, 69%; p.0.05; Fig. S2) were not altered after

PPT in CA1 as compared to the respective time controls.

Distribution of NAPE-PLD, FAAH, NAAA, CB1 and PPAR
alpha in OHSC

Localizations of NAPE-PLD, FAAH, NAAA, CB1 and PPAR

alpha immunoreactions were investigated in situ by immunohis-

tochemical staining with NeuN, GFAP and IB4 in sections

obtained from OHSC at 24hpl. NAPE-PLD immunoreaction

was found being co-localized with NeuN positive neurons and to a

subset of IB4 positive microglia. GFAP positive astrocytes did not

show a NAPE-PLD immunoreaction (Fig. 4). FAAH immunore-

actions showed a robust cytoplasmic distribution in neuronal cells.

Neither microglial cells nor GFAP positive astrocytes exhibited a

detectable amount of FAAH (Fig. 4). Co-localization of NAAA

immunoreaction with NeuN positive neurons were observed,

mainly in the perikarya. In addition some nuclei showed positive

immunoreactions for NAAA. There was no overlap of NAAA

immunoreaction with IB4 or GFAP positive cells (Fig. 4). A strong

CB1 immunosignal was detected in the inner and outer molecular

layer of the DG. CB1 was present in some morphologically

characterized inter-neurons of the hilus. Whereas IB4 positive

microglia displayed a positive immunosignal for CB1 this reaction

was weak when GFAP immunoreactive astrocytes were examined

(Fig. 4). PPAR alpha was found in NeuN immunoreactive

neurons, IB4 positve microglia and GFAP positive astrocytes.

PPAR alpha was localized in vesicular structures close to the cell

nucleus, apparently reflecting the Golgi apperatus throughout the

entire OHSC.

Cellular distribution of NAPE-PLD, FAAH, NAAA, CB1 and
PPAR alpha in neurons, microglia and astrocytes

In isolated primary neuronal cell cultures NAPE-PLD immuno-

reaction was observed within neuronal perikarya and processes.

Similar to OHSC, NAPE-PLD was found close to the nuclei in

microglial cells. In primary astrocyte culture fibrillary astrocytes

displayed a weak, protoplasmic astrocytes a robust NAPE-PLD

immunoreaction (Fig. 5). Primary neurons, microglia and astrocytes

showed a FAAH immunoreaction that was localized close to the

nuclei, respectively (Fig. 5). An additional nuclear labeling was

observed in microglia and astrocytes. Isolated primary neurons

showed a NAAA immunoreaction that was found distributed in the

perikarya and the secondary branches. Microglia was also labeled

Figure 3. Relative amount of NAPE-PLD, FAAH and CB1 after PPT as compared to respective time control (CTR) that were set as
100%. Whereas NAPE-PLD and FAAH remained constant after PPT in EC, the amount of CB1 protein was significantly elevated 6hpl. In DG, NAPE-PLD
was increased 1 and 6hpl. FAAH showed elevated levels 48hpl whereas CB1 did not show any alteration after PPT. In CA1, NAPE-PLD and FAAH
remained unchanged after PPT. In contrast, CB1 levels were increased 48hpl. (n = 4, *p,0.05).
doi:10.1371/journal.pone.0033537.g003
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with the NAAA antibody. Fibrillary astrocytes displayed NAAA

immunoreactions within their cell bodies and to a minor extent in

their processes (Fig. 5). Neurons showed a strong CB1 immunore-

action in perikarya, primary and secondary neuronal processes and

spines. Microglia and astrocytes demonstrated a CB1 immunorea-

tion, although the immunoreaction in astrocytes was very weak

(Fig. 5). PPAR alpha immunoreaction was detectable in primary

neurons, microglia and astrocytes (Fig. 5). In neurons PPAR alpha

was scattered over the entire perikarya, whereas in glial cells it was

found close to the nuclei, respectively.

Discussion

Widespread secondary neurodegeneration occurs in the CNS

after traumatic brain injury (TBI), spinal cord injury (SCI) and

other CNS pathologies involving lesion of long-range projections.

Recent studies demonstrated the neuroprotective properties of

Figure 4. Immunocytochemical analyses of NAPE-PLD, FAAH,
NAAA, CB1 and PPAR alpha in dentate gyrus 24hpl. Left column:
DG in overview after DAB staining. Middle column; Triple staining of
eCB system related proteins with NeuN and IB4. Right column; Triple
staining of OHSC with eCB system related proteins in combination with
NeuN and GFAP. The granular cell layer of the DG and interneurons in
the hilus region showed a strong immunoreaction for NAPE-PLD. No
overlap was observed with GFAP or IB4. The granular cell layer of the DG
and especially interneurons in the hilus region were strongly
immunoreactive for FAAH. No overlap was observed with GFAP or
IB4. Please note the similarity of staining pattern of NAPE-PLD and FAAH
immunoreactions. NAAA was found in perikarya and nuclei of neurons.
In addition to granular cell layer of the DG and hilar neurons CA3 region
was strongly labeled. Astrocytes and microglia seem free of NAAA. The
entire molecular layer of the dentate gyrus showed a positive CB1

immunoreaction. CB1 was present in Microglia and to a lesser extent in
astrocytes. PPAR alpha was observed in perikarya and nuclei of neurons.
Microglia and Astrocytes showed a positive immunoreaction for PPAR
alpha (n = 3, bars: left column = 100 mm, middle and right co-
lumns = 50 mm).
doi:10.1371/journal.pone.0033537.g004

Figure 5. Immunocytochemical analyses of NAPE-PLD, FAAH,
NAAA, CB1 and PPAR alpha in primary neuronal (left column),
microglia (middle column) and astrocyte (left column) cell
cultures. In neurons, NAPE-PLD was distributed in the perikarya but
not in neuronal processes. In microglia NAPE-PLD immunoreactions was
detectable in small vesicles closely located to the nucleus. NAPE-PLD
was not found in protoplasmic astrocytes whereas fibrillary astrocytes
showed an immunosignal comparable to microglia. The immunosignal
for FAAH in primary neurons was localized in the cell bodies as well as
in the primary branches of the neurites. In microglia and astrocytes,
FAAH was localized within the nucleus, respectively. In fibrillary
astrocytes a FAAH immunoreaction was additionally observed in
vesicles. NAAA was clearly found in neurons but was barely found in
microglia and astrocytes. In microglia NAAA showed a vesicular staining
pattern close to the nucleus. Protoplasmic astrocytes were immunore-
active for NAAA whereas fibrillary astrocytes did not show any NAAA
immunosignal. A robust CB1 immunoreaction was found in neurons. To
a lower extent, CB1 immunosignals were detectable in microglia and
astrocytes. Primary neurons showed a strong PPAR alpha immunore-
action in their Perikarya and nuclei. Microglia and astrocytes were
positive for PPAR alpha immunoreaction in a vesicular pattern. (n = 3,
bar = 20 mm).
doi:10.1371/journal.pone.0033537.g005
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eCBs in various models of neuronal lesion in vitro and in vivo. It is

well accepted that the eCB system represents a major modulator of

synaptic transmission e.g. the ability of eCB to counteract

excitotoxicity by reducing the calcium influx in excitatory

glutamatergic neurons [26,27]. In previous studies we found a

strong variation between different cannabinoids with regard to

their efficacy to prevent excitotoxic neuronal injury and to their

mode of action on neuroprotection. Whereas AEA and the

phytocannabinoid THC failed to protect dentate gyrus neurons,

PEA as well as the endocannabinoids NADA and 2-AG and the

synthetically designed cannabinoid WIN 55–212, 2 clearly showed

neuroprotective effects. While CB1 receptor activation was

responsible for WIN 55–212, 2 and NADA-mediated neuropro-

tection, PEA mediated its neuroprotective effects via dual PPAR

alpha activation on microglial cells and neurons. Finally 2-AG was

shown to activate abn-CBD receptors on microglial cells to

mediate its neuroprotective effects [27,28,29,30,31].

Since some modes of action of eCB during detrimental

processes in the brain are well understood, very little is known

about the intrinsic regulation of the eCB system after transection

of long-range projections in origin and target areas. Thus, by using

the PPT model in OHSC the present study has been designed to

investigate the intrinsic regulation of eCBs after lesion of long-

range projections. This model, well known and highly accepted,

allows a clear differentiation between anterograde, retrograde and

more distant area changes induced by axonal injury. It should be

considered that slice cultures derived from young animals show

spontaneous seizure like events when investigated shortly after

dissection [32] but these events disappear when cultures are kept

in vitro for 7–21 days [33,34,35]. The activation of endocanna-

binoid system during the course of status epilepticus has very

recently been reported in humans [36]. In the present investiga-

tion we didn’t have noticed elevated endocannabinoid values

under control conditions. Furthermore, the PPT group has always

been analyzed in comparison to time match controls suggesting

that changes in the amount of eCBS are most likely due to

perforant pathway transection rather than an increase by

spontaneous seizure like events.

The combination of the PPT model with the precise dissection

of differentially linked regions forms a highly convenient model

allowing profound insights in intrinsic regulation of eCB system

after long-range projection damage.

We first examined neuronal cell death after PPT in OHSC and

found that after 1, 6, 12, 24, 48, and 72hpl no significant changes

in the number of PI+ neuronal nuclei was observed when

compared to unlesioned control OHSC. These findings are in

accordance with previous reports showing almost no neurodegen-

eration after PPT in dentate gyrus [19]. We then precisely

dissected the specific areas, namely entorhinal cortex (EC), dentate

gyrus (DG) and cornu ammonis 1 region (CA1) in controls and

after PPT and investigated the regulation of AEA, PEA and OEA.

Small but not significant changes were observed in the EC,

whereas a significant and robust increase in the concentration of

all three eCBs investigated was found 24hpl in the DG. In the CA1

region a decrease of PEA and OEA but not AEA was seen after 12

and 48hpl. These findings indicate a spatial and temporal

regulation of NEA mostly affecting the target area of long-range

projections. Little is known about the specific regulation of NEA

after transecion of long-range projections. In several reports

enhanced AEA levels have been detected after various patholog-

ical events indicating a compensatory mechanism to brain damage

[37,38,39]. In human studies, elevated AEA levels were measured

in the cerebrospinal fluids of patients with Parkinson disease or

after stroke and the increase in AEA was directly associated with

brain damage [40,41]. With regard to long-range projections, our

data now asks for an additional consideration of more distant areas

than the PPT, e.g. denervated spinal cord neurons as a source for

AEA production to concern the regulation of eCB after

transaction of long-range somato-afferent and/or efferent projec-

tions.

As a known CB1 agonist AEA activates at cellular level mitogen-

activated protein kinase phosphatase-1 (MKP-1) decreasing

MAPK signal transduction in microglial cells abolishing NO

release and protects against over-activation of microglia [42,43].

Therefore, the increase of AEA levels 24hpl in our study might

reduce the microglia activation leading to neuroprotective effects.

Stella and his group found in BV-2 cells an increase in microglia

motility by AEA [44]. Similar to AEA, increased PEA levels

observed here at 24hpl were also measured in inflamed tissues

undergoing severe cell damaging processes, ischemic conditions

and glutamate induced neurotoxicity and demonstrated neuro-

protective properties [27,45,46]. One underlying mechanism

seems an enhanced action of AEA on the vanilloid receptor

caused by increased PEA levels, the so called entourage effect [47].

Further, PEA is reported to protect neurons via activation of

PPAR alpha in neurons, microglia [27] and astrocytes [48]. OEA

is suggested as a modulator of satiety, inflammation, lipid

metabolism and antinociceptive effects, due to its activity at

receptors such as TRPV1, GPR119 or PPAR gamma

[46,49,50,51]. The increase of OEA at 24hpl in the present study

go along with a study of Galan-Rotriguez, demonstrating

neuroprotective effects of OEA in dopamine neurons in the

substantia nigra after 6-OHDA treatment [52]. Enhanced OEA

levels were found to reduce microglia activation [53,54].

Inhibition of reactive microglia by OEA might explain the lack

of neurodegeneration after PPT in our system.

The diverse regulation of NEA in different brain regions after

PPT demonstrates a specific involvement of eCBs in distinct

damage regulation in the brain. Whether NEA perform different

tasks or are separately regulated or act orchestral after PPT needs

further investigation. Hansen et al. mentioned the difficulty of

PEA and OEA data interpretation due to their structural similarity

and comparable regulation to anandamide [55].

As a next step we investigated the time-dependent and spatial

regulation of enzymes responsible for synthesis and hydrolysis of

the NEAs. NAPE-PLD, synthesizing NEA from NAPE [13,56],

was elevated early between 1hpl and 6hpl after PPT but decreased

to control levels at 72hpl. This time course of NAPE-PLD might

explain the NEA elevation. A recent study showed a tight relation

between regulation of NAPE-PLD and PEA levels and its impact

on cell functions. It was shown that LPS decreased NAPE-PLD

protein amount in macrophage cell cultures, leading to decreased

PEA levels which finally led to subsequently exacerbated

inflammatory reactions [57]. Interestingly, mice lacking NAPE-

PLD did not exhibit lowered PEA levels [57]. It was assumed that

two further synthesizing pathways compensate the lack of NAPE-

PLD and take over NEA synthesis: (1) phospholipase C (PLC)

creates a phosphor-NEA that is further catabolized by a

phosphatase to NEA or, (2) via a combined action of a

phospholipase B (Abh4) and a phosphodiesterase (GDE1) that

hydrolyzes glycerophospho-NAE (GP-NAE) [58,59]. It remained

unclear whether these additional pathways are functionally

activated in the presence of NAPE-PLD or were compensatory

upregulated as well whether these alternative pathways are also

involved in NEA synthesis after PPT.

Whereas FAAH was found being predominantly localized in

endoplasmic reticulum [14] and able to hydrolyze all three here

investigated acylethanolamides [16], NAE-hydrolyzing acid ami-
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dase (NAAA) detected in lysosomes [60] is responsible for the

hydrolysis of acylethanolamides of less than 18 carbon atoms, a

group of NEAs to which PEA significantly belongs to. FAAH was

up-regulated at 48hpl, whereas NAAA protein remained un-

changed at any time points after PPT. The up-regulation of FAAH

was supposed to be responsible for the down-regulation of the

NEA found at 48hpl. Evidence exists that reduction in NEA level

by FAAH correlated with neurotoxic properties, as the FAAH

inhibitor MAFP reduced apoptosis in the neocortex [61] or the

inhibitor URB 597 decreased the infarct volume when adminis-

tered before the focal cerebral ischemia [62]. Also other FAAH

inhibitors were found to be beneficial for the outcome of

neurological diseases [63]. Further investigations are required to

figure out whether the here observed endogenous up-regulation of

FAAH display the natural end of the inflammatory reaction or is

directly involved in protective/harming effects.

Though, the enzymatic machinery for biosynthesis and

catabolism of eCB is strongly affected by PPT in DG and CA1,

we only found a variation for a potential target receptor of AEA,

namely CB1 in the EC. This is in line with findings showing that

middle cerebral artery occlusion in rats enhanced CB1 expression

from 2 h on that persisted for 72 h in the ischemic region only

[64]. The effects of ischemic insults upon CB1, however, is unclear

and seems to depend from ischemic condition, time and species

investigated [63]. Studies of differential regulated CB1 receptors

on glutamatergic and GABAergic synapses might clarify these

coherences [38]. A nuclear receptor for NEA is PPAR alpha

[49,65]. Application of exogenous PEA was reported to enhance

PPAR alpha activation. Furthermore, selective NAAA inhibitors

were reported to up-regulate the endogenous PEA levels and

subsequently increase PPAR alpha activity [66,67].

To clarify the protein regulation responsible for the observed NEA

levels, cellular distribution of NAPE-PLD, FAAH, NAAA, CB1 and

PPAR alpha were investigated by immunohistochemistry. A clear

neuronal distribution in primary neurons as well as in OHSC was

observed for NAPE-PLD and corresponded to previously described

results [68]. NAPE-PLD was found in primary cultures of both

microglia and astrocytes, however only microglia was immunoreac-

tive in OHSC. In strongly inflamed postmortem brain specimens of

MS patients NAPE-PLD immunoreactive microglia and astrocytes

were observed [69]. FAAH clearly showed a neuronal distribution as

previously reported by Cravatt et al. [14]. In OHSC FAAH was not

seen in microglia neither in PPT nor in controls whereas primary

microglia cell cultures expressed FAAH as shown in literature

[70,71]. In accordance to previous reports in Alzheimer disease we

found in primary cell cultures, low FAAH expression in fibrillary and

high FAAH expression in protoplasmic astrocytes [72]. To our

knowledge, we showed here for the first time a clear neuronal NAAA

distribution. NAAA was absent in IB4 and in GFAP positive cells in

OHSC but was surprisingly present in primary cell cultures. So far,

NAAA was solely described in macrophages as a lysosome associated

protein [16]. Moreover, fibrillary astrocytes also showed high NAAA

expression whereas protoplasmic astrocytes displayed weak NAAA

in their nuclei only. In general the discrepancies between the findings

especially for microglial cells regarding NAPE-PLD, FAAH and

NAAA expression in primary cell cultures and complex OHSC

might be due to the activation state of microglia in isolated cell

cultures and the lack of factors present in CNS milieu. No obvious

change over time was observed in histological staining with CB1. The

potency of glial cells to synthesize and catabolize NEA under

physiological or pathological conditions represents the high flexibility

and complexity of the eCB system. Primary cultures displayed a

different picture of enzyme and receptor distribution as in the

complex model of OHSC. We therefore can state that in OHSC

neurons and microglia produce NEA whereas hydrolysis of NEAs

mainly happens in neurons. Depending on the lesion paradigm the

machinery for production and degradation of NEA can be up-

regulated in astrocytes as well.

Taken together the activation of the eCB system after neuronal

damage by transection of long-range projections apparently

provides a strong time-dependent and area confined signal for

de novo synthesis of eCB, presumably to prevent or restrict

neuronal damage. The present data underlines the importance of

eCB in CNS pathologies and identified a site-specific intrinsic

regulation of eCB levels in long-range projection damage. The

highly dynamic eCB system represents an intrinsic, presumably

protective system in the CNS.

Supporting Information

Figure S1 Specificity test for antibodies. A: Specificity test

for antibodies against NAPE-PLD, FAAH, NAAA and PPAR

alpha by Western blot analyses. The antibody against NAPE-PLD

showed two immunoreactive bands of about 46 kDa (1). Both

bands were blocked by use of the respective blocking peptide (2).

Similar to NAPE-PLD immumoreactive bands for FAAH, NAAA

and PPAR alpha disappeared after preabsorption with respective

peptides. B: NAPE-PLD, FAAH and NAAA fluorescent staining

after preincubation of sections with respective blocking peptides or

CB1 fluorescent staining in sections derived from CB1 knock out

animals (Bar = 50 mm).

(TIF)

Figure S2 Time-dependent regulation of NAAA and
PPAR alpha in OHSC. The data was shown in relation to the

matching time controls that were set as 100%. In all regions

investigated (EC, DG and CA1) no significant difference was

found in OHSC after PPT as compared to controls (CTR).

(TIF)
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