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Abstract

We investigated several sensory and cognitive determinants of colour constancy across 40

illumination hues. In the first experiment, we measured colour naming for the illumination and

for the colour induced by the illumination on the colorimetric grey. Results confirmed that the

induced colours are approximately complementary to the colour of the illumination. In the second

experiment, we measured colour constancy using achromatic adjustments. Average colour

constancy was perfect under the blue daylight illumination and decreased in colour directions

away from the blue daylight illumination due to undershooting and a strong blue bias. Apart from

this blue bias, colour constancy was not related to illumination discrimination and to chromatic

detection measured previously with the same setup and stimuli. We also observed a strong

negative relationship between the degree of colour constancy and the consensus of naming the

illumination colour. Constancy coincided with a low naming consensus, in particular because bluish

illumination colours were sometimes seen as achromatic. Blue bias and category consensus alone

explained >68%, and all determinants together explained >94% of the variance of achromatic

adjustments. These findings suggest that colour constancy is optimised for blue daylight.
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Introduction

While several important mechanisms and cues to colour constancy are known, it is far from
being fully understood (Foster, 2011; Kraft & Brainard, 1999; Smithson, 2005). For example,
it is still a matter of debate how colour constancy varies across different illumination colours
and whether constancy is particularly tuned to certain illuminations. Here, we evaluated
potential determinants that modulate colour constancy in scenes with many densely
sampled hue directions.
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Background

It is frequently hypothesised that colour constancy is higher for illuminations varying along
the daylight locus, where the hue direction of natural illumination varies between yellow and
blue over the course of the day. Due to common experience with such colour variation,
constancy is expected to be most proficient with changes along the yellow–blue direction
(Delahunt & Brainard, 2004; Shepard, 1992).

An alternate hypothesis proposes that the exposure to the frequent variation of colours
along the daylight axis produces uncertainty of colour appearance (Beer, Dinca, & MacLeod,
2006; Bosten, Beer, & MacLeod, 2015; Gegenfurtner, Bloj, & Toscani, 2015; Lafer-Sousa,
Hermann, & Conway, 2015; Witzel, Valkova, Hansen, & Gegenfurtner, 2011). Several studies
observed that bluish illuminations in particular tend to be perceived as neutral, indicating an
asymmetry of colour constancy toward the blue direction of the daylight axis that has been
called a blue bias (Aston, Turner, Le Couteur Bisson, Jordan, & Hurlbert, 2016; Pearce,
Crichton, Mackiewicz, Finlayson, & Hurlbert, 2014; Radonjić et al., 2016; Weiss, Witzel, &
Gegenfurtner, under review; Winkler, Spillmann, Werner, & Webster, 2015; Wuerger,
Hurlbert, & Witzel, 2015). It has been suggested that bluish illumination might be mistaken
for shadows (Winkler et al., 2015), which can be bluish in the natural environment due to
Rayleigh scattering (Churma, 1994; Troscianko, Benton, Lovell, Tolhurst, & Pizlo, 2009).

Previous findings concerning the relationship between colour constancy and daylight were
contradictory. Some studies found evidence for higher colour constancy for blue illumination
colours (Daugirdiene, Kulikowski, Murray, & Kelly, 2016; Delahunt & Brainard, 2004),
while others did not find differences across illumination hues (Brainard, 1998; Hansen,
Walter, & Gegenfurtner, 2007; Olkkonen, Hansen, & Gegenfurtner, 2009; Olkkonen,
Witzel, Hansen, & Gegenfurtner, 2010; Schultz, Doerschner, & Maloney, 2006) and some
found even better constancy for illumination hues other than blue (de Almeida, Fiadeiro, &
Nascimento, 2004; Logvinenko & Tokunaga, 2011). Studies investigating the perception of
illumination found that observers had difficulties detecting changes toward bluish
illuminations (Aston et al., 2016; Pearce et al., 2014; Radonjić et al., 2016). They suggested
that the inability to see an illumination change is an indication of colour constancy. However,
one might also make the opposite case and claim that the inability to see an illumination
change implies an insensitivity to colour differences, which would undermine colour
constancy. Taken together, it is still unclear how colour constancy relates to the variation
of daylight.

A third hypothesis to the variation of colour constancy across colours, called categorical
colour constancy, suggests that colour constancy is related to colour categories. Colour
categories are the ensembles of colours designated by colour terms, such as ‘red’, ‘purple’,
or ‘blue’. It is yet unknown what determines colour categories and whether and how they are
related to colour perception.

Previous research suggests that colour constancy might be highest around the centres of
colour categories (Olkkonen et al., 2009; Olkkonen et al., 2010). However, Olkkonen et al.
(2009, 2010) did not measure constancy for individual points in colour space, but the
constancy of colour categories and their borders across illuminations. Kulikowski and
Vaitkevicius (1997) measured colour constancy with an asymmetric matching technique.
They found local peaks of colour constancy for typical red, yellow, and blue, and to a
lesser extent for green. This finding is substantiated by the observation that surfaces with
the prototypical colours of categories have particular physical properties (sensory
singularities) that make the sensory colour signal more predictable across illumination
changes (Philipona & O’Regan, 2006; Vazquez-Corral, O’Regan, Vanrell, & Finlayson,
2012; Witzel, Cinotti, & O’Regan, 2015).
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These findings suggest that colour categories developed around the colours that are most
stable under illumination changes and hence could serve as ‘perceptual anchors’ under
changing illumination (Kulikowski & Vaitkevicius, 1997; Witzel et al., 2015; Witzel,
Maule, & Franklin, 2013). The idea of perceptual anchors also fits to a recent observation
according to which memorised colours are shifted toward category prototypes (Bae,
Olkkonen, Allred, & Flombaum, 2015).

Relational colour constancy (Foster & Nascimento, 1994; Foster et al., 1997; Nascimento,
de Almeida, Fiadeiro, & Foster, 2004) is another important hypothesis to explain both the
variation colour constancy across surface and across illumination colours. According to
relational colour constancy, observers use cone ratios to accomplish colour constancy,
because these ratios are largely invariant across illumination changes. Predictions based on
cone ratios vary depending on the surface colours in a stimulus display and the illuminations,
and might explain variation in colour constancy.

More recently, it was suggested that colour constancy is related to metamer mismatching
(Logvinenko, Funt, Mirzaei, & Tokunaga, 2015; Witzel, van Alphen, Godau, & O’Regan,
2016). Metamer mismatches describe the phenomenon that surfaces that are metameric under
one illumination can result in different colours under another illumination (Burns, Cohen, &
Kuznetsov, 1989; Cohen & Kappauf, 1982; Logvinenko, Funt, & Godau, 2014; Wyszecki,
1958). Witzel et al. (2016) claimed that higher volume of metamer mismatches (metamer
mismatch volume) leads to higher uncertainty about a colour under illumination change, and
thus weaker colour constancy. Theymeasured colour constancy through asymmetric matching
and found a strong relationship between colour constancy and metamer mismatching.

Finally, colour variegation might support colour constancy because the presence of many
colours contains information about how changes in illumination affect relations between
colours (Golz, 2010; Linnell & Foster, 2002). The colour variegation of a scene may also
affect colour constancy through contrast gain control (Brown & MacLeod, 1997) and
contrast adaptation (Webster & Mollon, 1995). In particular, a colour that is part of a
scene with high colour variegation appears less saturated than the same colour in a scene
with low or no colour variegation (see also Ratnasingam & Anderson, 2015; Zaidi, Spehar, &
DeBonet, 1997).

Objective

Taken together, different studies suggest very different determinants of colour constancy
across colours, and the question arises how these diverse findings are related. One issue
that makes it problematic to compare different studies is that a very limited number of
illumination hues were used (mainly four; eight in Brainard, 1998) and that illuminations
differed across studies. Some studies investigated illumination hues along and orthogonal to
the daylight axis (de Almeida et al., 2004; Delahunt & Brainard, 2004). Others investigated
illuminations with colours along the DKL-axes (Hansen et al., 2007; Olkkonen et al., 2009;
Olkkonen et al., 2010), which are oriented toward distinctly different hue directions. In
particular, the þS endpoint of the so-called blue axis appears purple rather than blue
(Malkoc, Kay, & Webster, 2005; Webster, Miyahara, Malkoc, & Raker, 2000; Witzel &
Gegenfurtner, 2013, 2015). Another problem that makes comparisons of colour constancy
across illumination colours difficult is that the shift of the sensory colour signal due to
illumination changes does not just depend on the colour of the illumination, but on the
actual spectra of the reflectances and the illuminants. The precise magnitude of the shift
due to the illumination is particularly important when evaluating colour constancy
through colour constancy indices.
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In this study, we tested the candidate determinants of colour constancy across a large
number of illumination hues. We used an achromatic adjustment method, which allowed us a
high degree of control of experimental conditions (e.g., Brainard, 1998; Speigle & Brainard,
1999). We created two-dimensional variants of the configuration introduced by Lotto
and Purves (2002) with illuminations simulated in 40 hue directions. These stimuli are
also comparable with regularly arranged Mondrian patterns on a patterned grey-scale
background.

This kind of configuration provides a striking illustration of the strong effects of colour
induction in rendered scenes under simulated illuminations.

These induction effects correspond to effects of colour constancy: Consider a red surface
under a greenish illumination reflecting light that is colorimetrically grey. Due to colour
constancy, the colorimetrically grey colour signal is perceived as red, implying that the
greenish context of a greenly illuminated scene induces a red appearance. Such strong
induction effects also occur for pictures of real objects, as was recently illustrated by
Kitaoka (2017). Several studies have shown that colour induction measurements in
simulated scenes were largely equivalent to measures for real surfaces and real
illuminations, in particular with respect to the variation of colour constancy across colours
(Olkkonen et al., 2009; Olkkonen et al., 2010; Radonjić et al., 2016; Speigle & Brainard,
1999). It has been suggested that the daylight axis plays a particular role for colour induction
in simple simultaneous contrast displays (Klauke & Wachtler, 2015). Those simple induction
effects might be the explanation of the aforementioned effects along the daylight axis
observed for colour constancy with realistic scenes.

Using rendered colour in simulated rather than coloured surfaces in real scenes made it
possible to collect fine-grained measurements of colour appearance for a large number of hue
directions and to control important characteristics of reflectance and illumination spectra. In
particular, the large number of directions allowed us to investigate how colour constancy
changes as a function of hue, while also enabling statistical comparisons across conditions of
interest. To control the effect of the illumination colours on the sensory colour signal,
parameters of reflectance and illuminant spectra were matched to produce colorimetric
grey in each of the 40 displays. This design also made it possible to investigate the role of
illumination colours and the role of the induced colours on the colorimetric grey patches.
Finally, we designed the study to match the setup used for the measurement of perceived
illuminations in a companion study on the perception of illumination colours (Weiss, Witzel,
et al., under review). This allowed us to test in how far the variation of constancy across hue
can be explained by how observers perceive the illumination.

In a first experiment, we compared colour categories for illumination colours and the
complementary colours induced by the illumination on the colorimetric grey patch. In the
second experiment, we measured achromatic adjustments and tested the role of the daylight
locus, the blue bias, categorical colour constancy, metamer mismatching, sensory
singularities, and relational colour constancy.

Colour Naming

This experiment provided the colour categories for stimuli in the achromatic adjustment
experiment (see below), which allowed us to examine the relationship between colour
categories and colour constancy. It has been shown with simple simultaneous contrast
displays that the colours induced by simultaneous contrast are complementary, that is,
opponent to the inducing colours of the background as predicted by second-stage
mechanisms (e.g., Klauke & Wachtler, 2015). However, another recent study (Livitz,
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Riesen, Shepard, Mingolla, & Eskew, 2016) provided contradictory results. Those previous
studies used simple simultaneous contrast displays with two uniform colour areas. This
experiment also allowed testing the idea that the colours induced in colour constancy with
more complex scenes are opponent to the inducing colours of the illumination.

Method

Observers. Colour naming was measured for 30 German observers (27 women, 22� 2years).
Observers were students at the Justus-Liebig University as part of an experimental course.
All participants were tested for normal colour vision using Ishihara plates (Ishihara, 2004).
All experiments were carried out in accordance with the Code of Ethics of the World Medical
Association (Declaration of Helsinki) and were approved by the local ethics commission
(LEK 2015-0015). Informed consent was obtained from our participants.

Apparatus. Stimuli were presented on an EIZO CG2420 monitor driven by an AMD FirePro
V4900 with a resolution of 1.920� 1.200 pixels and a colour resolution of 8 bit per channel.
The Monitor was calibrated using a Konika Minolta CS2000 Spectroradiometer (Konica
Minolta Sensing Inc., Singapore), and CIE-xyY specifications of the channels were:
R¼ [0.685, 0.311, 23.4]; G¼ [0.216, 0.725, 67.8]; B¼ [0.151, 0.046, 5.7]. All stimuli used in
the experiment have been gamma corrected. The Monitor was placed in a black painted
tunnel, 50 cm away from the participant.

The numpad of the keyboard was used for entering responses. The respective keys were
marked by the initials of the colour terms, and a printed scheme was also available displaying
the complete colour terms in the spatial arrangement of the response keys. Experiments were
programmed in MATLAB 2012b (The MathWorks Inc., 2007), using the psychophysics
toolbox 3 extensions (Brainard, 1997; Kleiner, Brainard, & Pelli, 2007; Pelli, 1997).

Stimuli. Figure 1 illustrates our stimulus display that was inspired by the Purves-Lotto cubes
(Figure 9 in Lotto & Purves, 2002). It consisted of a large square (the ‘scene’) composed of
7� 7 small coloured squares (the ‘patches’) embedded in a background with naturalistic
luminance noise (i.e., ‘brown’ noise with an amplitude of 1/f1.7). This display was
rendered with a neutral achromatic (Figure 1(a)) and 40 chromatic illuminants (Figure 1(b)).

The particularity of this display is that the test patch in the very centre had the same
colorimetric grey colour signal [x¼ 0.327, y¼ 0.342, Y¼ 48.70 cd/m2] under all 41
illuminations. Embedded in a scene under the (simulated) neutral illumination, this colour
signal appears grey; but when the (simulated) illumination is chromatic, this same colour
signal appears chromatic due to colour induction and colour constancy.

Originally, we designed displays with depth cues that were more similar to the Purves–
Lotto cubes.

Preliminary measurements showed that induction effects were similarly strong for the two-
dimensional versions without depth cues. Hence, we used the simpler displays in Figure 1
because it simplified the determination of illumination and reflectance spectra.

The challenge in the creation of these displays consists of determining pairs of reflectance
and illuminant spectra that all result in the same colorimetric grey, while controlling
perceptual parameters of the colours, such as hue and chroma. Another criterion was that
we wanted realistic reflectance spectra and smooth illuminant spectra.

To obtain realistic reflectance spectra, we determined the spectra based on the reflectance
spectra for matte Munsell chips (Munsell Color Services, 2007). For this, we retrieved the
Munsell spectra from the Jeonsuu color group (Kohonen, Parkkinen, & Jaaskelainen, 2006;
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Parkkinen, Hallikainen, & Jaaskelainen, 1989), which are now available via the University of
Eastern Finland (http://www.uef.fi/en/web/spectral/munsell-colors-matt-spectrofotometer-
measured). Since these reflectances do not include achromatic reflectance spectra, we used
the spectra for Neutral 6.5 and Neutral 5 from the MacBeth ColorChecker (McCamy,
Marcus, & Davidson, 1976). These achromatic reflectances were used for the surround
with the noise pattern (Figure 1(a)), and the lighter of the two (Neutral 6.5) also defined
the colour of the test patch under the neutral illumination. The other 40 reflectances were
defined by the 40 Munsell Hues and Munsell Value 7. The latter matched the lightness of the
light grey test patch (Colour Checker Neutral 6.5). To control perceived chroma, we linearly
interpolated the reflectances for each Munsell hue so that the colour signal resulting of all
chromatic reflectances under the neutral illumination (xyYJudd¼ [0.3265, 0.3419, 136.0])
formed a hue circle in DKL-colour space. The size of the DKL-hue circle was defined by
the criterion that the colour signals of all reflectances had to fit into the monitor gamut under

Figure 1. Stimulus display. (a) Scene with background under the neutral illumination. (b) Isolated scene

(without background) under each of the 40 chromatic illuminations. For a better overview, only the central

checkerboard of the scene is depicted in Panel (b), but in the experiment, all scenes were presented with

complete illuminated background as depicted in Panel (a).
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all 41 illuminations. Note that the illuminations that shift the colour signal of the equally
saturated reflectances to colorimetric grey do not have equal chroma; we come back to this in
the experiment on achromatic adjustments (see below).

The coordinates of the DKL-space may be calculated from Judd-corrected Tristimulus
Values (XYZ) by the following affine transformation:

DKL ¼ XYZJudd � T � S;

T ¼

0 0:0188 0

0:0342 �0:0267 �0:0072

0 0:0216 �0:0216

2
64

3
75

S ¼ ½1 0 0�

The resulting axes varied between� 1 and 1; for the luminance axis (LþM), this means
that� 1 is black and 1 is white.

To obtain smooth illuminant spectra, we created the 41 illuminants based on Gaussian
functions. We used a minimisation algorithm to fit the parameters of the Gaussian functions
so that the resulting illuminants cancel the colour signal of the complementary Munsell-like
reflectance and hence yielded the colorimetrically grey colour signal for that reflectance
(xyYJudd—coordinates of the illuminants are given in Table S1).

Procedure. There were two versions of colour naming. In one version, observers were asked to
name the colour of the colorimetrically grey patch in the centre of the display.

This task provided data on how observers categorise the colour appearance induced by
context and background based on the simulated illumination. In the second version,
observers were asked to name the colour of the background that reflects the colour of the
illumination. The presentation of version order was determined randomly.

In both versions, the 41 images were presented one at a time in a random order. A trial
began with the presentation of a fixation point for 500 ms, followed by the presentation of the
scene until a response was given. Observers could enter a response by pressing one of 11 keys,
corresponding to the German Basic Colour Terms: Rosa (pink), Rot (red), Orange (orange),
Gelb (yellow), Grün (green), Blau (blue), Lila (purple), Braun (brown), Schwarz (black), Grau
(grey), and Weiß (white).

For each version of the naming task, the complete set of images was presented three times
in three consecutive blocks, separated by a short break. Overall, the measurements for both
versions took about 15 min.

Results and Discussion

Figure 2 illustrates the aggregated colour categories obtained from the two versions of the
colour naming task. To calculate the azimuth, the grey of the neutral background and test
surface were used as the origin. For further details, the corresponding individual naming data
may be found in Figure S1 of the Supplementary Material. The data in Figure 2 has been
aggregated by determining the mode colour term for each stimulus display. Category
membership is uncertain at the boundaries and category boundaries are not sharp and
clear-cut (e.g., Figure 8 in Olkkonen et al., 2010; Figure 6 in Witzel & Gegenfurtner, 2013;
Witzel, Hansen, & Gegenfurtner, 2008). Hence, we determined the boundaries at the hue that
had a probability of 50% of being included in one or the adjacent colour category (as in
Figure 7 of Witzel & Gegenfurtner, 2013).
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Category membership. Figure 2(a) illustrates category consensus and average response times
for naming the illumination colour reflected off the background. Consistency and average
response times are measures of the uncertainty of category membership (Olkkonen et al.,
2010; Witzel et al., 2008). With higher uncertainty toward category centres consistencies
increase, and response times decrease, and vice versa toward category boundaries. As a
result, these measures are negatively correlated (Witzel et al., 2008). Consistency and
response times for the background naming in our study are highly correlated across
colours, r(39)¼� 0.73, p< .001.

Figure 2(b) shows the category consensus (consistency of naming across observers) and
response times for naming the induced colour of the test patch in the centre of the display. As
a hue coordinate for the induced colour, the hue opponent to the illumination hue is shown
along the x-axis. For the induced colours, consistency and average response times were also
highly correlated across the 41 colours, r(39)¼� 0.69, p< .001, indicating that there was a
clear consensus of category membership across observers.

Consistency for naming the background was significantly lower than consistency for
naming the induced colours of the test patch, t(80)¼ 2.8, p¼ .006. This is noteworthy
because the colours in the background were really chromatic while those of the patch are
induced colours due to colour constancy. One could have expected induced colours to be
more elusive and less consistent, but these results show that this is actually not the case. At

Figure 2. Results from colour naming. (a) Illustration of the colour naming for the colour of the background

and (b) the results for naming the induced colours on the test patch in the centre. (c) A comparison of colour

naming of the illumination in the background (Panel (a)), the patch with the induced colour (Panel (b)), and

colour naming for simple coloured patches as obtained in a previous study (Witzel & Gegenfurtner, 2013). In

all panels, the x-axis represents hue of the illumination as determined by azimuth in degree in DKL-space, and

coloured areas and vertical lines indicate the mode colour terms and their category boundaries. In the lower

part of Panel (c), the azimuth of the illumination has been shifted by 180� in order to approximate the induced

hue of the patch so as to match the hue of the illumination and of simple colour patches. In Panels (a) and (b),

the left y-axis represents the consensus of colour naming (i.e., the consistency across observers) and the right

y-axis the average response times in colour naming. The thin solid curve above the coloured areas and the

thin dotted curves in Panels (a) and (b) show the variation of consensus and response times across hues. The

correlation between consensus and response times is given in the upper right corner. The black triangles in

Panel (c) show the category boundaries for simple colour patches obtained in the previous study (same as in

Figure 9(a) in Witzel & Gegenfurtner, 2013). Note the correlation between consensus and response times in

both, induced colour (a) and background (b) naming, the high degree of similarity between the categories

obtained for induced colours, background colours, and uniform colours (c).
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the same time, lower consistency for naming of the illumination colours in the background
can be explained by partial adaptation to the background colour. Adaptation desaturates the
perceived colours and desaturated colours are named with lower consistency (Olkkonen
et al., 2010; Witzel, 2016; Witzel et al., 2015).

Another point is noteworthy about the lower consistency of background naming. Consider
Figure S1(b). Bluish illuminations were comparatively often described by achromatic colour
terms (grey or white). Other hues were never categorised as achromatic. This is in line with
the idea of a blue bias in the perception of illuminations as observed previously (Aston et al.,
2016; Pearce et al., 2014; Radonjić et al., 2016; Weiss, Witzel, et al., under review). At the
same time, bluish induced colours were never described by achromatic colour names when
naming the induced colours of the test patch (Figure S1(a)), suggesting that the blue bias is
specific to the perception of the illumination.

Opponency of induced colours. We examined whether colour categories for induced colours are
rotated by 180� in DKL-space compared with the categories of inducing colours. Figure 2(c)
allows for comparing the colour categories obtained for the induced and for the inducing
colours of the test patch and the background, respectively. In general, categories for
induced and inducing colours closely correspond to each other in the upper and lower part
of Figure 2(c).

However, there were also differences. The main difference occurred for the yellow
category, which is much smaller for patch than for background naming. For each
observer, we calculated differences between the boundaries of the two kinds of naming,
and calculated t-test across observers to establish whether the differences were significant.
It must be noted that this test is subject to additional noise due to the fact that different
observers employed different sets of categories, resulting in different kinds of boundaries, for
example, brown-green and yellow-green (cf. Figure S1(a) and (b)). We only consider results
that are consistent across the two tests for adjacent boundaries (e.g., yellow-green vs. green-
yellow). The yellow-orange boundary was significantly different in both tests (both p< .001).
The yellow-green, the green-blue, and the purple-pink boundaries were only significant in one
of the tests due to occasional grey, brown, and red naming (see Figure S1(a) and (b) for
details).

To assess how close these naming sets are to categorisation of simple uniformly coloured
patches, we compared them to the categories obtained in a previous study (see Figure 9(a)
in Witzel & Gegenfurtner, 2013). Despite slight differences in the white-point (origin of
DKL-space), category boundaries for uniformly colored patches (black triangles) were
close to those for patch and background naming.

In sum, induced colours are consistently named and show clear category memberships.
There was also some evidence for a blue bias for perceived illuminations (Aston et al., 2016;
Pearce et al., 2014; Radonjić et al., 2016; Weiss, Witzel, et al., under review). In addition, the
hues of induced colours can be roughly approximated by the opposite hue direction in DKL-
space. As a result, the hues opponent to the illumination hues may be used as a measure of
hue for the appearance of induced colours on the patches. The only exception was the yellow
category, which is close to the –S pole of DKL-space. This observation is in line with the
observation of Livitz et al. (2016) that induced colours along the S-axis might not be exactly
complementary.

The comparatively small yellow category for induced colours may be explained by the idea
that blue illuminants are less saturated and weaker inducers. This idea is supported by two
instances of grey naming for the orange-yellow colours that are opponent to bluish
illuminations (Figure S1(a)). This is in line with the observation that the blue bias
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in illumination discrimination is related to the anisotropy of colour space that is reflected in
the variation of sensitivity across hues (Weiss, Witzel, et al., under review).

Achromatic Adjustments

In this main experiment, we measured colour constancy through achromatic adjustments for
illumination changes in 40 hue directions. We examined how colour constancy changes
depending on the hue of the illumination and tested the role of candidate determinates of
the variation of colour constancy across hues.

Method

To compare the results of this experiments to those of the companion study (Weiss, Witzel,
et al., under review), the same participants were measured and the same apparatus was used.
The 40 stimuli used here included the 12 from that companion study.

Observers. Another 16 naı̈ve observers (10 females, 21–31 years old) participated in the
achromatic adjustments. All observers were students of the Justus-Liebig University, tested
for normal vision using Ishihara plates (Ishihara, 2004) and gave informed consent before
participating.

Apparatus. Stimuli were presented on an EIZO CG223W monitor driven by an AMD FirePro
V4900 with a resolution of 1680� 1050 pixels, and a colour resolution of 8 bit per channel.
The Monitor was calibrated using a Konika Minolta CS2000 Spectroradiometer (Konica
Minolta Sensing Inc., Singapore), and CIE-xyY specifications of the channels were:
R¼ [0.655, 0.332, 34.6]; G¼ [0.207, 0.678, 64.2]; B¼ [0.15, 0.065, 7.8]. All experimental
stimuli were gamma corrected. The Monitor was placed in a black painted tunnel, 40 cm
away from the participant. From this distance, the screen subtended a visual angle of
61.3� � 40.6�. The distance was fixed by a chin rest mounted to the table. The experiments
were programmed in MATLAB 2012b (The MathWorks Inc., 2007), using the psychophysics
toolbox 3 extensions (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997).

Stimuli and Procedure. The same stimuli were used as in the colour naming experiment (cf.
Figure 1). In each trial, observers were presented one of the 41 stimuli and were asked to
adjust the test patch in the centre until it appeared achromatic to them. In the instructions, it
was emphasised that the test patch should not appear reddish, yellowish, greenish, bluish, or
otherwise colourful.

Initially, the test patch had the same colorimetric grey (cf. Figure 1 and Table S1:
Neutral) for all 40 chromatic illumination colours. However, to see the test patch as
achromatic, observers had to compensate for the induced colour and adjust the patch
toward the hue of the illumination, which is opponent to the induced hue (see colour
naming experiment above). Observers were not told that the test patch was physically
identical across stimuli to avoid cognitive efforts to counteract induction effects. For the
control display with the achromatic illumination, the test patch was shown in a random
initial colour.

To adjust the colour of the test patch, observers could press one of four keys. The keys
corresponded to the four opponent directions of DKL-space and were spatially arranged
accordingly. Luminance was fixed to the maximum luminance of the background. There were
two different step sizes available, so that the observers could first approximate the colour
region they aimed for and then fine-tune their match.
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After confirming the adjustments, a sequence of colour noise patterns was presented in
order to prevent after images in the following trial (cf. Figure S2). The noise in these
sequences changed with every frame and the sequence lasted 3 s.

Each of the 41 scenes was adjusted twice in interleaved order, resulting in overall 82 trials.
Before starting the experimental trials, participants performed practice trials until they felt
comfortable with the task. A session of adjustment took about 50 minutes.

Results

Patterns of adjustments. Figure 3(a) compares the achromatic adjustments averaged across the
16 observers (black triangles) to the illumination colour (coloured disks). Here, the
illumination colour is the colour of the illumination reflected off the grey surface.
Individual data may be found in Figure S3.

In contrast to previous studies (Bosten et al., 2015; Chauhan et al., 2014; Witzel et al.,
2011), adjustments in the control condition with the neutral illumination did not vary along
the daylight axis. Three observers provided strong shifts to the reddish hue direction,
while providing sensible measures in the colour constancy conditions. Even when
excluding these observers, a variation along the daylight axis was not clearly visible
(Figure S3(a)). In line with previous observations (Witzel, Racey, & O’Regan, 2017;
Wuerger et al., 2015), there was a small shift toward blue (triangle belonging to the grey
disk in the centre of Figure 3(a)).

For adjustments with chromatic illuminations, there were undershoots (i.e., adjustments
with lower chroma than the illumination) for all hue directions except for the blue direction
(i.e., in the third quadrant in Figure S3(b)). As a result, average adjustments were less
saturated. Only average adjustments for illuminations with a bluish hue coincided almost
exactly with the illumination colour.

Another feature of the average adjustments (black triangles in Figure 3(a)) was that they
are all shifted toward blue. There is no such effect in the yellow direction of the daylight
locus. To capture this overall shift toward blue, we identified the blue with the smallest shift,
where the average adjustment was almost exactly the same as the illumination colour. This
was the case for the blue colour located directly under the daylight locus in Figure 3(a),
henceforth daylight blue.

To quantify the shift of adjustments toward daylight blue, we calculated the distance of
each illumination colour and each adjustment to daylight blue. Then, we determined the blue
shift as the difference between the distance of an adjustment and of the corresponding
illumination colour from daylight blue. A positive blue shift means that the adjustment
was closer to daylight blue than the illumination colour. These blue shifts are illustrated
by Figure 3(b). Almost all blue shifts were above zero, indicating a shift toward daylight
blue. A t-test across colours indicated that blue shifts were significantly above zero,
t(40)¼ 9.5, p< .001. For further specification of the blue shift, Figure S4 illustrates the
rotations of average adjustments toward daylight blue. The further the illumination colour
was away from daylight blue, the more the adjustment was shifted toward daylight blue. This
is shown by a highly significant correlation between the blue shift and the distance of the
illumination colour from daylight blue, r(39)¼� 0.82, p< .001.

Colour constancy. Colour constancy is perfect when achromatic matches (black triangles in
Figure 3(a)) coincide with the colour of the achromatic reflectance under the respective
chromatic illumination (coloured disks in Figure 3(a)), and lower the further away the
adjustments are from the colour of the achromatic reflectance (length of black lines in
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Figure 3. Achromatic adjustments. (a) Illumination colours (coloured disks) and average adjustments (black

triangle) in DKL-space, with the L-M contrast along the x- and the (LþM)-S contrast along the y-axis. The

grey curve in the background represents the daylight locus; the grey square on the daylight locus corresponds

to D65. The red arrow identifies ‘daylight blue’. (b) Illustration of the blue shifts (y-axis) as a function of hue

(azimuth along the x-axis). The blue shift quantifies how much closer achromatic matches were to daylight

blue as compared with illumination colours. The last bar corresponds to the adjustment in the control

condition. Note that almost all achromatic adjustments were shifted toward blue.
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Figure 3(a)). We consider this distance as a raw measure of colour constancy, or rather of
colour ‘inconstancy’, and will refer to it as the adjustment error. The adjustment error is
plotted as a function of azimuth in Figure 4(b; black curve).

Based on the adjustment error, we calculated two more specific measures of colour
constancy, the Colour Constancy Index (Arend, Reeves, Schirillo, & Goldstein, 1991) and
an adaptation of the Brunswick ratio (Olkkonen, Hansen, & Gegenfurtner, 2008; Troost & de
Weert, 1991). The calculation of these measures is illustrated by Figure 4(a; see also Foster,
2011). The Colour Constancy Index (CCI) is based on the ‘relative adjustment error’. To
calculate the Colour Constancy Index, the adjustment error (black curve in Figure 4(b)) is
divided by the illumination shift, that is, the distance between the achromatic reflectance
(Neutral 6.5) under a chromatic illumination (coloured disk in Figure 3(a)) and under the
neutral illumination (grey disk in Figure 3(a)). This ratio is one if the adjustment error is as
large as the illumination shift. This indicates a complete absence of colour constancy.
To obtain an index that reflects colour constancy, this value is subtracted from one, so
that one corresponds to complete colour constancy:

CCI¼ 1�
C�Bj j

A�Bj j
ð1Þ

where A, B, and C correspond to the points in Figure 4(a).
The Brunswick ratio assumes that the only systematic variation in colour constancy occurs

along the direction of the illumination shift and all other variation of adjustments is due to
noise. The adjustments are projected on the direction of the illumination shift (i.e., the
direction from the grey disk to the respective coloured disk in Figure 3(a)), resulting in the
distance AC0 according to the nomenclature of Figure 4(a). As for the Colour Constancy
Index, this distance is expressed relative to the illumination shift (AB):

BR¼
A�C 0j j

A�Bj j
ð2Þ

The advantage of the Colour Constancy index is that it does not need to assume that all
deviations of adjustments from the target colour defined by the illumination shift are noise.
Another advantage is that, while the Colour Constancy Index is sensitive to precision, the
Brunswick ratio is exclusively based on accuracy. The disadvantage of the Colour Constancy
Index compared with the Brunswick ratio is that it does not disentangle systematic biases in
adjustments and noise, implying that it cannot reach a value of 1 (perfect constancy) in
empirical measurements which necessarily involve measurement noise. These conceptual
differences are visible in Figure 4(b). The Brunswick ratio is higher than the Colour
Constancy Index in bluish regions of colour space, in which there is overshoot in the
adjustments (third and fourth quadrant in Figure S3(b)).

Finally, following Witzel et al. (2016), we determined the interindividual variation of
adjustments as an index of the precision independent of the congruence with a target
colour (black-white dotted curve in Figure 4(b)). The interindividual variation is calculated
as the mean differences of each individual observer’s adjustment from the average across
observers (similar but not the same as the standard deviation, which is the grey shade
in Figure 4(b)). This measure is particularly interesting when examining the relationship
between achromatic adjustments and uncertainty.

Despite the conceptual differences between the four measures, all curves indicate that
colour constancy is comparatively high in the blue region of colour space and maximal for
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Figure 4. Colour constancy. (a) Illustration of the calculation of colour constancy measures. The grey disk

A depicts the neutral illumination colour, the orange disk corresponds to the respective chromatic illuminant

colour B, and the black triangle to the achromatic match C. The colour constancy index (CCI) is the distance

BC divided by AB. The Brunswick ratio (BR) consists of the projection from AC to AB (red line) divided by

AB. (b) The colour constancy measures obtained in our study (red y-axis on the left) as a function of azimuth

(x-axis). The dark red curve shows the Brunswick ratio and the light red curve shows the Colour Constancy

Index. The black curve and the black-and-white dotted curve correspond to the adjustment error (i.e., BC in

(a)) and to interobserver variation (see text for explanation). The corresponding black y-axis on the right

represents Euclidean distances in DKL-space. Note that the data along the solid black curve correspond to

the length of the black lines in Figure 3(a) and form the basis of the CCI (red curve).
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daylight blue (see red arrow in Figure 3(a) and highest peak of colour constancy close to
the blue-purple boundary in Figure 4(b)). This is due to the fact that the adjustment error
(black curve in Figure 4(b)) and the interindividual variation (dotted curve and grey shade in
Figure 4(b)) are minimal for daylight blue. Hence, adjustments are not only closer to the
illumination colour but there is also less uncertainty about the appearance of the achromatic
colour when the illumination is daylight blue.

Comparison with illumination discrimination and chromatic detection. We then tested the idea that
observers discounted for the illuminant to accomplish the achromatic adjustments. For this
purpose, we compared colour constancy of achromatic adjustments in this study with the
illumination discrimination thresholds measured in the companion study for 12 of the 40
illumination colours (Weiss, Witzel, et al., under review). In case illumination estimation
matters for achromatic adjustments, colour constancy should be higher for illuminations
that are easy to perceive (low illumination discrimination thresholds). Hence, illumination
discrimination thresholds measured in the companion study should be negatively correlated
with the Colour Constancy Index and the Brunswick ratio, and positively correlated with the
adjustment error and the interobserver variation across the 12 illumination colours (see Table
S2 for details). The correlation between Brunswick Ratio and illumination discrimination
thresholds was close to significance, r(10)¼ 0.53, p¼ .08, but was positive and hence
contradicted the hypothesis. None of the other measures were correlated with illumination
discrimination thresholds (all p> .71).

In general, any adjustment depends on the ability to perceive colour differences, and hence
on discrimination thresholds. In particular, the standard deviations of adjustments may be
translated into just-noticeable differences. In achromatic adjustments, these differences are
presumably differences to the adapting white-point and mainly concern detection thresholds.
To test for a relationship between achromatic adjustments and colour detection, we
calculated correlations between the detection thresholds measured in the companion study
and the above four measures of colour constancy. However, there was no significant
correlation (all p> .26), indicating that achromatic adjustments are not related to detection
thresholds in a simple way.

In the companion article, we reported a blue shift for illumination discrimination that could
partly be explained by a blue bias in chromatic detection (Weiss, Witzel, et al., under review). To
compare the overall blue bias in achromatic adjustments to the bias obtained for illumination
discrimination and detection thresholds, we integrated all shifts of achromatic adjustments away
from the illumination colour. To do so, we subtracted the respective illumination colour
(coloured disks in Figure 3(a)) from the respective achromatic adjustment (black triangles in
Figure 3(a)). In this way, the deviations between achromatic adjustments and illumination
colours (black lines in Figure 3(a)) are relative to the origin. We will call these measures
adjustment shifts. We fitted an ellipse to the adjustment shifts to capture their overall
tendencies (black ellipse in Figure 5) and compared the centre and orientation of the ellipse
to the centres and orientations of the ellipses fitted to illumination discrimination (green ellipse)
and detection thresholds (blue ellipse) from the companion study.

As for chromatic detection thresholds (blue cross in Figure 5), the centre of the adjustment
shifts (black cross in Figure 5) is shifted toward the S-pole of the (LþM)-S axis, but the
shift is much larger for achromatic adjustments than for detection thresholds. However, while
the ellipse for detection thresholds is aligned with the (LþM)-S axis, the orientation of the
ellipse for adjustment shifts is oblique to the axes. Other than the blue shift, there does not
seem to be any other commonality between achromatic adjustments and the other two
measures.

Weiss et al. 15



Candidate determinants. We then investigated several other determinants that potentially
explain the variation of achromatic adjustments and colour constancy. We focused on
the Colour Constancy Index as a measure of colour constancy because we observed
systematic shifts of adjustments toward the blue direction, and the Brunswick ratio is
insensitive to these shifts due to the projection on the illumination shift. To assess the
variation of adjustments perceptually, we recalculated adjustments errors (black curve in
Figure 4(b)), interindividual variation of adjustments (black-dotted curve in Figure 4(b)),
and the Colour Constancy Index (light red curve in Figure 4(b)) in CIELAB space. We
assumed that the observer’s adapting white point was the illumination of each scene and
used the respective chromatic illuminations as white points for the CIELAB calculations.
Because of the strong variation of the white point, we did not use CIELUV because it
provides an unreliable chromatic adaptation and hence Euclidean differences strongly
change across colour space for different white points. The colour constancy index is
largely the same in DKL and CIELAB colour space (Figure S5) and hence allows tests
independent of colour spaces.

As candidate determinants, we examined illumination shifts, blue bias, colour categories,
metamer mismatch areas, sensory singularities, and cone ratios. As an overview, Figure 6(a)
illustrates the variance of the adjustment errors explained by each determinant.

Illumination shifts. As can be seen from Figure 3(a), the illumination shift is not the same
for all hue directions (this is also true in CIELAB; see Figure S5). The larger the shift, the
more colour constancy must be performed by the observer. Hence, failures of colour
constancy might be expected to be higher for larger shifts. This was indeed the case (Table
S3): illumination shifts were correlated with adjustment errors, r(38)¼ .47, p¼ .002, cf. ‘illum.
Shift’ in Figure 6(a), and interindividual variation in CIELAB, r(38)¼ .43, p¼ .005.

Figure 5. Comparison with chromatic detection and discrimination thresholds. Ellipses are fitted to the

adjustment shifts (black ellipse), illumination discrimination thresholds (green), and chromatic detection

thresholds (blue). Note the strong blue shift for achromatic adjustments.
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Blue bias. Above we observed a blue bias, according to which adjustments were shifted
toward blue in DKL-space (see Figure 3(b)). To assess the importance of the blue bias for our
measures of colour constancy, we determined the distance between the blue daylight
illumination (see arrow in Figure 3(a)) and the colour of each other illumination (see
coloured disks in Figure 3(a)) in CIELAB. We then calculated correlations between those
distances from daylight blue and our three measures of colour constancy (Table S3). The
distance from blue daylight was negatively correlated with the CCI, r(39)¼� .52, p< .001,
and positively with the adjustment error, r(39)¼ .67, p< .001, (cf. ‘blue bias’ in Figure 6(a)),
and the interindividual variation, r(39)¼ .57, p< .001. These results indicate that constancy
decreases with distance to the blue daylight illumination.

Colour categories. Figure 4(b) shows that colour constancy changes rather smoothly
across hues. This contradicts the idea of category effects on colour constancy, which
would imply abrupt changes at category borders and/or at category prototypes. Further
analyses also showed that colour constancy did not systematically differ between colours
at the boundaries and colours in the centre of the categories. This is further illustrated by
Figure S7 in the Supplementary Material.

However, the boundaries shown in Figures 2 and 4(b) are merely hue boundaries. Since
colours are not very saturated, category membership is not always maximal at the centres of

Figure 6. Contribution of each determinant. (a) Variance of adjustment errors explained by each

determinant. The x-axis lists different determinants ordered by the variance they explain. The y-axis

represents the variance in percent explained by these determinants. All determinants and the adjustment

error were computed in CIELAB. The first seven bars correspond to the correlations of the adjustment

errors with naming consistencies for the induced colour on the patch (categories: patch), sensory singularities

(singularities), average and standard deviation of colour variegation of distractors (var. M and var. SD),

metamer mismatch areas (MMA), cone ratios, illumination shift (illum. shift), the distance of the illumination

hue to daylight blue (blue bias), and the naming consistency for illumination in the background of the stimulus

display (categories: BG). The right-most bar illustrates the variance explained by a multiple regression with all

determinants together as predictors. (b) Difference between average explained variance of adjustment errors

of all multiple regressions with and without each predictor. The difference of average R2 in percent is shown

along the y-axis. Otherwise, the format is the same as in Panel a.
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those hue boundaries (see observer consistency and response times in Figure 2(a) to (b)).
According to the idea of categorical colour constancy, category membership and colour
constancy should be positively related (see also Witzel et al., 2016). We used category
consensus as a measure of category consistency (Figure 2(a) and (b)) and correlated it with
each of our three measures of colour constancy. Since response times provided an alternative
measure of category membership, we also calculated correlations for response times. We
calculated these correlations for both, category membership of induced patch colours and
of inducing background colours (see Table S3 for details). Note that the colour names for the
induced colours of the patches are shifted by approximately 180� compared with the
background naming (Figure 2(b)).

Consensus for naming the patch colours was not correlated to any of the three measures
(all p> .15; cf. ‘Patch categories’ in Figure 6(a)), but response times were correlated to the
interindividual differences, r(38)¼ .37, p¼ .02. In contrast, category consensus for naming
background colours was significantly negatively correlated with the colour constancy index,
r(38)¼� .61, p< .001, and positively with the adjustment error, r(38)¼ .73, p< .001 (cf. ‘BG
categories’ in Figure 6(a)), and interindividual variation, r(38)¼ .70, p< .001. Response times
were also significantly correlated with all of these three measures (all p< .007; cf. Table S3).
These correlations imply that colour constancy is lower for illumination hues with high
naming consensus. This result contradicts the idea of categorical colour constancy, which
predicts the inverse.

Metamer mismatching. We calculated metamer mismatch volumes in CIELAB for the light
achromatic reflectance (Neutral 6.5) that reflects the illumination colour (disks in Figure 3(a))
for the 40 changes from neutral to each of the chromatic illuminations. The calculation of
metamer mismatch volumes has been described previously (Logvinenko et al., 2014;
Logvinenko et al., 2015; Witzel et al., 2016). We focus on the two-dimensional projections
of the volumes on the chromatic plane (i.e., metamer mismatch areas) because observers
could not adjust lightness (Witzel et al., 2016). However, results were similar with the
three dimensional volumes.

If the uncertainty represented by the metamer mismatch areas were related with the
uncertainty of achromatic adjustments, there should be a positive correlation with our
measures of adjustment errors and interindividual variation and a negative correlation with
the colour constancy index. Table S3 provides details on correlations. There was no significant
correlation between metamer mismatch areas and the colour constancy index, r(38)¼� .13,
p> .42, but we found a positive correlation with the adjustment error, r(38)¼ .61, p< .001, as
well as with interindividual variation, r(38)¼ .58, p< .001. The absence of a relation with the
colour constancy index indicates that metamer mismatch areas are related to the illumination
shift, which is taken into account when calculating the colour constancy index. We found a
high correlation between metamer mismatch areas and the illumination shift, r(38)¼ .92,
p< .001. When controlling for illumination shift in a partial correlation, metamer mismatch
areas were significantly correlated with all three measures of colour constancy (all p< .003; see
Table S3 for details). The results support the idea that larger metamer mismatch areas lead to
lower colour constancy, as suggested previously (Witzel et al., 2016).

Sensory singularities. We determined sensory singularities for the Munsell-like reflectances
that cancel the chromatic illumination so as to produce colorimetric grey. For the
calculations, we used the programs provided by Witzel et al. (2015). The idea is that
adjustments should be more accurate and precise if these reflectances are singular because
singularity makes the colour signal of these reflectances more predictable. However,
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correlations between sensory singularities and measures of colour constancy did not support
this idea (see Table S3). Sensory singularities were not correlated to the CCI (p> .35), but
singularities were positively correlated with the adjustment error, r(38)¼ .35, p¼ .026, and
interindividual variation, r(38)¼ .41, p¼ .008. Positive correlations contradict the idea that
sensory singularities reduce adjustment errors and variation. The observed correlations may
be explained by the role of chroma since sensory singularities are strongly related to
differences in chroma (Witzel et al., 2015). When controlling for chroma (which is largely
equivalent to the illumination shift in the present study), none of the measures was correlated
with sensory singularities anymore, all r(38)< .22, p> .17.

Cone ratios. We also calculated the cone ratios for the 39 distractor and 2 background
colours for each change from the neutral to each of the 40 illuminations. First of all, we
observed that cone excitations for all three types of cones and all 40 illumination changes
were almost perfectly correlated, min. r(39)¼ .88, max. r(39)¼ 1, implying that cone ratios
are almost constant (cf. Figure 2 in Foster & Nascimento, 1994).

Following the approach of Nascimento et al. (2004), we calculated predictions of the
adjusted colour under the respective chromatic illuminations based on the 41 cone ratios
of the surrounding colours. If colour constancy was determined by cone ratios, observers’
adjustments should be closer to the predictions based on cone ratios than to the actual colour
of the surface under each chromatic illumination. We determined the distance between the
cone ratio prediction (averaged across the 41 estimations) and the average achromatic
adjustment for each illumination, and compared them with the adjustment error across the
40 illuminations in a paired t-test (analoguous to Figure 10 in Witzel et al., 2016). Results
showed that adjustments were further away from the cone ratio predictions than from the
predictions based on the light reflected of the grey reflectance (Neutral 6.5) under the
chromatic illuminations, t(39)¼ 25.2, p< .001.

Then, we determined the distance between the 41 predictions and the actual illumination
colour (on the test patch) according to the Munsell-like reflectances and the Gaussian
illuminations. The average of these distances provides the prediction error of the cone
ratio predictions for each illumination. We calculated the correlations between cone ratio
prediction error and the Colour Constancy Index, the adjustments error, and interindividual
variability (see Table S3). The prediction error was correlated with the adjustment error,
r(38)¼ .53, p< .001, and with the interindividual variation, r(38)> .53, p< .001, but not with
the Colour Constancy Index, r(38)¼� .11, p¼ .48.

These results suggest that the more the illumination colour deviates from the cone ratio
prediction, the more adjustments deviate from the illumination colour and the more variable
adjustments are across individual observers. Since the Colour Constancy Index accounts for
the illumination shift, the absence of a correlation between cone ratio predictions and the
Colour Constancy Index indicates that the correlations with the raw distance measures
(adjustment error and interindividual variation) are due to the variation of illumination
shifts (cf. Figure S6). In fact, cone ratio prediction errors were correlated to the size of
illumination shifts, r(38)¼ .80, p< .001. However, when controlling for illumination shifts
in partial correlations, cone ratio prediction errors were still positively correlated with
individual variation, r(38)¼ .35, p¼ .03), but not with the Colour Constancy Index and
adjustment errors (both p> .07; see Table S3).

Colour variegation. To test for the effect of colour variegation on colour constancy, we
calculated how strongly the distractor colours differed from the background colours. For
this, we calculated the chroma of all distractor colours in each stimulus display, assuming the
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illumination colour as the white point. The average chroma indicates the overall contrast of
distractors to the background, and the standard deviation corresponds to the variation in
contrast. These two factors were uncorrelated, r(38)¼ 0.06, p¼ .70. The average chroma of
the distractors (var. M in Figure 6(a)) was positively correlated with the colour constancy
index, r(38)¼ 0.37, p¼ .02, and negatively with the adjustment error, r(38)¼� 0.41, p¼ .008,
and individual variation, r(38)¼� 0.50, p¼ .001. The standard deviation was negatively
correlated with the adjustment error, r(38)¼� 0.40, p¼ .01, but was not correlated with
the Colour Constancy Index, r(38)¼ 0.21, p¼ .19, and individual variation, r(38)¼� 0.29,
p¼ .07. The above correlations suggest that colour constancy tends to be higher, the more
distractor colours contrast with the background.

Combination of determinants. To assess the variance explained by the combination of all
determinants, we calculated a multiple regression (last bar in Figure 6(a)). All determinants
together explained R2

¼ 94.4% of the variance of the adjustment error, F(9, 30)¼ 56.0,
p< .001. The two most important determinants were the distance from daylight blue (blue
bias: R2

¼ 44.9%) and the consistency in naming the illumination colour (BG categories:
R2
¼ 53.7%). These two determinants were correlated with each other, r(38)¼ .44, p¼ .005,

but each of them were still correlated with the adjustment error when controlling for the
respective other determinant; BG categories: r(38)¼ .65, p< .001, distance from daylight
blue: r(38)¼ .57, p< .001. These two factors together explained R2

¼ 68.7% of the variance
of adjustment errors, F(2, 32)¼ 40.7, p< .001. Eliminating the distance from daylight blue
from the multiple regression with all determinants reduced the explained variance from 94%
to 71%. This shows that this factor is not redundant in the regression model. In contrast,
eliminating the consistency in illumination naming (BG categories) barely reduced the
explained variance (0.08% of 94%), implying that this factor is fully accounted for by the
combination of all the other factors.

To account for the complex interrelationships between predictors, we compared the
contribution of each predictor to regression models without the respective predictor. For
this, we calculated multiple regressions for all possible combinations of predictors. For each
predictor, we found differences between the average explained variance of all models with
that predictor and the average of all the other models without that predictor. Figure 6(b)
illustrates these differences. Differences above zero show that the respective predictor makes a
contribution to the explained variance that cannot be accounted for by the combination of
other factors. Only the blue bias and illumination naming yield positive differences,
confirming that these two factors play a major role in explaining the variance of
adjustment errors.

Discussion

Daylight and Blue Bias

Our results showed a systematic shift of achromatic adjustments toward the blue direction of
the daylight locus (Figure 3(b) and Figure 5). The closer the colour of an illumination was to
daylight blue, the closer adjustments were to the colour of the grey reflectance under the other
illumination. Adjustments also tended toward undershooting (i.e., shifts toward the
colorimetric grey) when colours were away from daylight blue (Figure 3(a)). The distance
of each illumination from daylight blue was one of the two most important determinants of
adjustment errors, explaining a large proportion of its variance (44.9%).

In general, undershooting may be explained by incomplete adaptation. Adaptation in this
setup was only controlled through the patterned background in the stimulus display. This
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may be too little to guarantee full adaptation as it is obtained by adapting to the illumination
colour across the full visual field (see e.g., Hansen et al., 2007). For this reason,
undershooting itself is not surprising.

What is particular is that the undershoot disappears almost completely under the blue
illumination. Due to the way we designed the stimuli for this experiments, illumination shifts
are not completely equal for every hue direction (Figure 3(a)). Although the 40 reflectances
yielded the same saturation under the neutral illuminant in DKL-space, the chromatic
illuminations needed slightly different levels of saturation to cancel the saturation of
those reflectances and produce a colorimetric grey under every illumination. In DKL-space
(Figure 3(a)), the daylight blue illuminant yielded one of the largest illumination shifts
(difference between grey and coloured disk), and illumination shifts were negatively
correlated with the blue bias in Figure 3(b), r(38)¼� .60, p< .001. This implies that higher
blue shifts appear with smaller illumination shifts. The contrary would be expected if
illumination shifts increased the blue bias by furthering undershoots. To double check, we
also inspected illumination shifts in CIELAB (Figure S6) and found that illumination shifts
seem to be small for blue illuminations; at the same time, they are also small for yellow
illuminations and yet there is only a shift toward blue, but not toward yellow. Consequently,
the blue bias cannot be explained by illumination shifts.

We discussed for our colour naming experiment above, that blue illuminations might be
less saturated and weaker inducers. This idea is at least partially in line with previous
observations with simple chromatic contrast displays according to which colour induction
was weaker when inducing backgrounds had colours along the daylight axes in DKL-space
(Klauke & Wachtler, 2015). However, the blue bias observed here contradicts this idea. If
induction was weakest for blue illuminations, adjustments should be less shifted away from
colorimetric grey. Instead, observers’ adjustments were most strongly shifted, resulting in
almost perfect coincidence of adjustments with the illumination shift and highest colour
constancy under blue illuminations. For this reason, the blue bias may not be explained by
the anisotropy of colour space or weaker induction by bluish illuminations.

As summarised in the Introduction section, previous studies found inconsistent results
concerning the variation of colour constancy across illumination hues (Brainard, 1998;
Daugirdiene et al., 2016; de Almeida et al., 2004; Delahunt & Brainard, 2004; Hansen
et al., 2007; Logvinenko & Tokunaga, 2011; Olkkonen et al., 2009; Olkkonen et al., 2010;
Schultz et al., 2006). To control effects of hues, illumination, and reflectance spectra, we used
a large range of 40 illumination hues, smooth illumination spectra to avoid unpredictable
effects of spectral discontinuities and carefully controlled surface colour shifts. It is still
possible that results are affected by the fact that we used Munsell-like reflectances and
artificial Gaussian illuminant spectra rather than naturally occurring surface and
illumination spectra.

However, it is difficult to control parameters of natural spectra across colour space, in
particular since certain spectra, such as turquoise illuminants, barely exist in the natural
environment. More importantly, natural reflectances and illuminants typically have rather
smooth spectra and should be well approximated by our technique. The blue bias was not
particular to single illumination directions, but occurred across the ensemble of 40 illuminant
spectra. Even if there were single spectra in our set of illuminants that might have unnatural
spectral properties, they could not explain the observed blue bias. For these reasons, we
expect that the blue bias for achromatic adjustments in this experiment is likely to occur
in the natural environment. Hence, our observation that colour constancy is highest for
daylight blue illuminations suggests that colour constancy is optimised for such blue
daylight illuminations.
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The question arises of where this blue bias comes from. One possibility is that it is built
into the visual system, and in particular is a feature of adaptation to different hue directions.
However, the fact that the bias is toward daylight blue rather than the S-pole of the second-
stage mechanisms suggests that the effect is not due to asymmetric adaptation along the
(LþM)-S axis (Delahunt & Brainard, 2004; Foster, Amano, & Nascimento, 2003).
Another possibility is that observers have more experience with illumination shifts along
the daylight axis (Pearce et al., 2014), but this is inconsistent with our results that show
the effect does not occur in the yellow direction of the daylight axis.

Perceived Illumination and Colour Constancy

Our results revealed clear differences between achromatic adjustments and perceived
illumination as measured through illumination discrimination thresholds (Figure 5). Apart
from the blue bias, we did not find any relationship between achromatic adjustments and
illumination discrimination thresholds. This suggests that the ability to discriminate
illuminations is of minor importance for colour constancy, at least when measured by
achromatic adjustments.

The observation that colour constancy is unrelated to perceived illumination is in line with
previous studies according to which observers are surprisingly bad in estimating the illumination
(de Almeida & Nascimento, 2009; Granzier, Brenner, & Smeets, 2009). Taken together, these
findings put into question the idea that observers consciously discount the illuminant.

At the same time, recent studies (Aston et al., 2016; Pearce et al., 2014; Radonjić et al.,
2016) suggest that illumination discrimination may be considered as a measure for colour
constancy because implicit mechanisms compensate for the effects of the illuminant change.
In the companion study (Weiss, Witzel, et al., under review), we observed a strong correlation
between chromatic detection and illumination discrimination, r(10)¼ .72, p¼ .009, indicating
that illumination discrimination may be explained to a large degree by asymmetries in
chromatic sensitivity.

In contrast, the present study showed that colour constancy (as measured through
achromatic adjustments) is neither related to illumination discrimination nor to chromatic
sensitivity. This was the case even though the present measurements included exactly the
same stimulus displays as the companion study (Weiss, Witzel, et al., under review). Since
achromatic adjustments measure colour constancy, the observation that they are unrelated to
illumination discrimination casts doubt on the idea that illumination discrimination directly
translates into colour constancy. In contrast to illumination discrimination, achromatic
adjustments cannot be explained by chromatic sensitivity. This suggests that the large blue
bias observed for achromatic adjustments might be qualitatively different from the blue bias
in the chromatic sensitivity and illumination discrimination.

If this is so, our findings also inform us about the idea that colour appearance is uncertain
along the daylight locus (Beer et al., 2006; Bosten et al., 2015; Gegenfurtner et al., 2015;
Lafer-Sousa et al., 2015; Winkler et al., 2015; Witzel et al., 2011). Previous experiments found
that achromatic adjustments under neutral illumination and adaptation vary most strongly
along the daylight axis (Beer et al., 2006; Bosten et al., 2015; Witzel et al., 2011) and are
shifted on average toward blue (Winkler et al., 2015; Wuerger et al., 2015). Our experiments
extend these observations by showing that this shift toward blue is stronger the further
the illumination colour is away from blue and it disappears when the illumination is blue.
This asymmetry speaks against a general effect along the daylight axis. Our observation that
achromatic adjustments are not related to illumination discrimination suggests that this blue
bias is not due to uncertainty about the illumination.
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According to Winkler et al. (2015), the asymmetry along the blue-yellow direction is due to
observers’ tendency to attribute bluish colours to the illumination and yellowish colours to
objects and surfaces. This is in line with the observation that colour constancy in our
achromatic adjustments is highest for blue, because this shows that observers completely
attribute the blue colour to the illumination. High colour constancy for daylight blue can
be particularly helpful to recognise objects under shadow because shadows shed blue lights
on objects (Churma, 1994; Troscianko et al., 2009). Hence, the blue bias could be an
adaptation to the natural environment.

Categorical Colour Constancy

Our findings contradicted the patterns of categorical colour constancy. First of all, our results
contest the idea that adjusted colours are shifted toward prototypes in colour constancy,
as they do in colour memory (Bae et al., 2015). In our experiment, achromatic adjustments
were not shifted toward category centres. Instead, all adjustments were shifted toward blue
(see Results section Patterns of Adjustments).

Our findings also undermined the idea that colour constancy is highest around category
centres and prototypes and decreases toward the boundaries of colour categories, as has been
suggested by a study using asymmetric matching (Kulikowski & Vaitkevicius, 1997) and by
studies on category constancy (Olkkonen et al., 2009; Olkkonen et al., 2010). In contrast to
those studies, a previous study, using asymmetric matching, did not find evidence for higher
constancy within the categories or any other relationship between colour constancy and
colour categories (Witzel et al., 2016). Using achromatic matching, the present study
found a negative relationship between colour constancy and category membership, which
completely contradicts categorical colour constancy.

These diverging results across studies indicate that the relationship between colour
constancy performance and colour categories depends on the methods and setups used to
measure colour constancy, rather than being a general feature of colour constancy. In
particular, the results of our study can be explained by different degrees of adaptation
depending on the illumination hue. If observers adapt most easily to the blue daylight
illumination, their colour constancy is high. At the same time, the colours of this
illumination look more desaturated due to adaptation and hence are named less
consistently. The inverse is true for illumination colours far off daylight blue, if observers
only achieve lower levels of adaptation for those illumination hues.

The idea that both the blue bias and category consistency are due to a common source,
namely different levels of adaptation, is supported by the fact that both measures
are correlated. At the same time, each of these two determinants contributes to the
explanation of achromatic adjustments and colour constancy, when controlling for the
respective other determinant. These results make sense if we consider that the blue bias
and the category consensus capture different aspects of the variation of adaptation across
illumination hues. If this is true, future experiments that specifically measure the variation
of adaptation across illumination hues might reveal the origin of the patterns we observed for
colour constancy with respect to the blue bias and category consensus.

Other Determinants

Other factors besides the blue bias and category consistency, such as metamer mismatch
areas, cone ratios, and colour variegation, yielded correlations with some or all of our
measures of colour constancy (see also Figure 6). The correlation of metamer mismatch
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areas with adjustment errors and interindividual variation confirms the results found with
asymmetric matches (Witzel et al., 2016). This observation is in line with the idea that higher
uncertainty due to metamer mismatching leads to higher variability of adjustments, implying
higher deviations from a target colour and higher variation across observers.

The results for cone ratios are in line with previous findings (Foster & Nascimento, 1994;
Foster et al., 1997; Nascimento et al., 2004). Our observations suggest that colour constancy
is worse for displays with higher cone ratio prediction errors, suggesting that human
observers might use cone ratios to achieve colour constancy (Nascimento et al., 2004).

The role of colour variegation in our measures of colour constancy is in line with the
observation that variegation of surrounding colours modulates the appearance of target
colours (Brown & MacLeod, 1997). The observed correlations imply that colour constancy
increases with higher levels of variegation (Golz, 2010; Linnell & Foster, 2002). This result
may be explained by the idea that higher levels of colour variegation are more informative
about the test colour because there are more cues about its relation to other colours.

The evaluation of the precise contribution of the factors beyond the blue bias and
illumination naming is complicated by their complex interaction. To disentangle their role
in colour constancy, it would be good to conduct experiments that specifically test each of
these factors while controlling for the others.

Another potential limitation of our study is that colour constancy in real instead of
simulated scenes may involve factors beyond the ones we investigated here for achromatic
adjustments. For example, memory colours might play a role (Granzier & Gegenfurtner,
2012). Real scenes may lead observers to make inferences to estimate surface colours, which
might not play a role for the induction effects in our simplified displays. In particular,
illumination change is self-evident to the observer in real scenes while this is not
necessarily true for rendered scenes. Hence, effects that compensate for simulated
illumination changes might focus on particular aspects of colour constancy, such as
adaptation and local contrast, to the detriment of other factors that might be particular to
real illumination change. In fact, while we observed systematic undershoots in most hue
directions, colour constancy with real scenes can be almost perfect (Allred & Olkkonen,
2013; Olkkonen et al., 2009; Olkkonen et al., 2010; Weiss, Bloj, & Gegenfurtner, under
review), indicating that other factors might further increase colour constancy.

At the same time, through our simplified displays, we identified factors that modulate colour
appearance depending on the chromatic context and are most likely to play a similar role in real
scenes where the context changes in a comparable way. Rendering the colours of simulated
scenes made it possible to collect fine-grained measurements of colour appearance for a large
number of hue directions and to control important characteristics of reflectance and illumination
spectra. Additional factors might contribute to colour constancy in real scenes. Nevertheless, the
blue bias and differences in adaptation as captured by naming consistency modulate colour
appearance in a way that cannot be explained away by the realism of the stimulus displays. It
would be interesting to test the role of the determinants identified here in more realistic settings.

Conclusion

Using achromatic adjustments, we investigated colour constancy for chromatic illuminations
along 40 different colour directions. We also measured colour categories for the induced
colour of the test patch and of the illumination colour.

Although we found some small but systematic differences between the different colour
categories, the results of the naming experiment generally confirm the idea that colours
induced by colour contrast are shifted to the opponent hue direction predicted by the
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second-stage mechanisms. Results also provided some evidence that bluish illuminations are
seen as less saturated, which is in line with the blue bias for illumination estimation observed
previously (Aston et al., 2016; Pearce et al., 2014; Radonjić et al., 2016; Weiss, Witzel, et al.,
under review).

In the achromatic adjustment experiment, we observed a strong blue bias: Independent of
the illumination colour, adjustments were strongly shifted toward the blue pole of the
daylight axis. Average colour constancy was perfect under the blue daylight illumination,
but not in the other hue directions, due to undershooting and the blue shift. Our findings
support the idea that colour constancy is optimised for bluish, but not for yellowish daylight.

We also observed a negative relationship between colour constancy and consistency of
naming the illumination colour. This relationship is in conflict with the idea of categorical
colour constancy. Instead, it suggests that observers more easily adapt to bluish illuminations
and categorise them as grey.

Colour constancy was not related to illumination discrimination and chromatic detection.
There was some evidence that other factors, such as metamer mismatching, relational colour
constancy, and colour variegation, play a role in colour constancy, but in a rather
complicated way. In any case, the blue bias and the consistency of the illumination
categories explained most of the variance of the achromatic adjustments.
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Tübingen, he became Professor of Psychology in Magdeburg.
Since 2001, he has been at Giessen University (http://
www.allpsych.uni-giessen.de/karl/).

Weiss et al. 29


