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.e purpose of this paper is to explore the impact of magnetic resonance imaging (MRI) image features based on convolutional
neural network (CNN) algorithm and conditional random field on the diagnosis and mental state of patients with severe stroke.
208 patients with severe stroke who all received MRI examination were recruited as the research objects. According to cerebral
small vascular disease (CSVD) score, the patients were divided into CSVD 0∼4 groups. .e patients who completed the three-
month follow-up were classified into cognitive impairment group (124 cases) and the noncognitive impairment group (84 cases)
according to the cut-off point of the Montreal cognitive assessment (MOCA) scale score of 26. A novel image segmentation
algorithm was proposed based on U-shaped fully CNN (U-Net) and conditional random field, which was compared with the fully
CNN (FCN) algorithm and U-Net algorithm, and was applied to the MRI segmentation training of patients with severe stroke. It
was found that the average symmetric surface distance (ASSD) (3.13± 1.35), Hoffman distance (HD) (28.71± 9.05), Dice co-
efficient (0.78± 1.35), accuracy (0.74± 0.11), and sensitivity (0.85± 0.13) of the proposed algorithm were superior to those of FCN
algorithm and U-Net algorithm. .ere were significant differences in the MOCA scores among the five groups of patients from
CSVD 0 to CSVD 4 in the three time periods (0, 1, and 3 months) (P< 0.05). Differences in cerebral microhemorrhage (CMB),
perivascular space (PVS), and number of cavities, Fazekas, and total CSVD scores between the two groups were significant
(P< 0.05). Multivariate regression found that the number of PVS, white matter hyperintensity (WMH) Fazekas, and total CSVD
score were independent factors of cognitive impairment. In short, MRI images based on deep learning image segmentation
algorithm had good application value for clinical diagnosis and treatment of stroke and can effectively improve the detection effect
of brain domain characteristics and psychological state of patients after stroke.

1. Introduction

Severe stroke is a cerebrovascular disease with high mor-
bidity, disability, and mortality. Studies showed that the
prevalence of cognitive impairment in patients with severe
stroke was abnormally as high as 37% to 80%, and severe
cases can be fatal [1, 2]. .erefore, the early diagnosis of
severe stroke is particularly important. Generally, doctors
perform magnetic resonance imaging (MRI) to diagnose
severe stroke lesions, but it takes a long time to artificially

segment severe stroke lesions and this process consumes
manpower, material, and financial resources. .e most se-
vere problem is that it is affected by the subjective con-
sciousness of medical staff [3]. .erefore, it is very necessary
to propose a high-efficiency and high-accuracy image seg-
mentation algorithm. So far, convolutional neural network
(CNN) algorithms have been widely used in medical image
processing and lesion segmentation and have achieved re-
markable results. Not only can they automatically extract the
features in the data but also they have objectivity and
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efficiency compared with machine learning algorithms. Puri
and Cox [4] proposed U-Net, which combines low-level
information with high-level information to obtain an ideal
segmentation effect. To make better use of the deep infor-
mation of the three-dimensional image, the CNN can be
adopted to propose an algorithm that can quickly and ac-
curately segment the MRI images of patients with severe
stroke, which will be helpful for medical workers to diagnose
and treat patients with severe stroke early.

Cerebral small vascular disease (CSVD) is a common
cerebrovascular disease that plagues the elderly. It can cause
lacunar infarction, cerebral hemorrhage, and so forth, ac-
counting for 20% of symptomatic strokes. 35% of Alz-
heimer’s disease is closely related to CSVD [5, 6]. Studies
showed that patients with severe stroke often have different
degrees of imaging features, which can lead to cognitive
impairment and affect their later living conditions [7, 8]. To
reflect its impact on the brain, Nylander et al. [9] proposed
the concept of “total CSVD score.” Many studies revealed
that the total CSVD score can well reflect the overall impact
of imaging features on the brain and was closely related to
the cognitive impairment of stroke patients. However, there
are few reports on the characteristics of cerebrovascular
disease in patients with CSVD and the impact of CSVD score
on cognitive impairment after severe stroke. .erefore, a
new image segmentation algorithm was proposed based on
U-Net algorithm and conditional random field algorithm,
which was compared with FCN algorithm and
U-Net algorithm. .en, it was applied to MRI diagnosis of
208 patients with severe stroke in our hospital to study the
relationship between MRI image features and CSVD score
and cognitive impairment after severe stroke. It aimed to
decrease the occurrence of cognitive impairment in severe
stroke patients and perform early detection and early di-
agnosis, thereby alleviating the cognitive impairment in
severe stroke patients.

2. Materials and Methods

2.1. Research Objects. A total of 208 severe stroke patients
who were admitted to the hospital from January 2017 to
October 2020 were selected, 129 males and 79 females, aged
40–80 years. According to the total CSVD score, patients
were rolled into CSVD 0–4 groups. Montreal cognitive
assessment (MOCA) scale score of 26 was the cut-off point.
.e patients who received the 3-month follow-up were
rolled into cognitive impairment group (124 cases) and
noncognitive impairment group (84 cases). .e study had
been approved by the Medical Ethics Committee of the
Hospital, and an informed consent form had been signed.

Inclusion criteria were as follows: (i) the definition of
severe stroke being 21 points≤National Institutes of Health
Stroke Scale (NIHSS) scores≤ 42 points according to the
diagnostic criteria and confirmed by imaging examination as
cerebral infarction [10]; (ii) age ≥18 years; (iii) those who can
cooperate with medical staff to perform scale scoring and
MRI examination; (iv) the basic information being com-
plete, and the most important thing was that the patient was

willing to cooperate with the follow-up; and (v) patients who
signed the informed consent.

Exclusion criteria were as follows: (i) patients with
central nervous system disease; (ii) patients with history of
drug abuse and alcohol abuse; (iii) patients who had a family
history of dementia; (iv) patients with poor compliance; (v)
patients who withdrew during the experiments; (vi) patients
who cannot undergo imaging examination due to surgical
implantation of organs; (vii) recurrence and death that
occurred during the follow-up; and (viii) patients with
anxiety and depression [11].

2.2. Imaging Examination. Signa HD 3.0T high-field
superconducting magnetic resonance scanner from GE
Company was employed to perform head MRI and MRA
inspections. .e brain MRI imaging sequence included (i)
T1-weighted spin echo axial image (T1WI): time repetition
(TR)/time echo (TE) was 1750/24ms; (ii) T2-weighted spin
echo axial image (T2WI): TR/TE was 3180/110ms; (iii)
liquid attenuation reversal recovery sequence (FLAIR): TR/
TE was 8000/140ms; (iv) diffusion weighted imaging
(DWI): TR/TE was 5300/81.4ms; and (v) susceptibility
weighted imaging (SWI): b� (0, 1000). .e scanning pa-
rameters were as follows: layer thickness of 5mm, layer
spacing of 1.5mm, field of view (FOV) of 240× 240mm, and
matrix of 310× 246. .e coronal and horizontal axis posi-
tions of TIWI and T2WI and the horizontal axis positions of
T2-FLAIR, DWI, and SWI were collected. Two experienced
radiologists and neurologists were selected for review.

MRI features included white matter hyperintensity
(WMH) that may be vascular origin, cerebral micro-
hemorrhage (CMB), perivascular space (PVS), and lacuna
that may be of vascular origin. .e image features and
scoring criteria are shown in Table 1.

2.3. Image Segmentation Algorithm Based on U-Net and
Conditional RandomField. CNN developed based on neural
networks has very superior performance in medical image
processing. A new image segmentation algorithm was
proposed in this research based on the U-Net and fully
connected conditional random field. .e U-Net network
architecture consists of an encoding path and a decoding
path. .e encoding path can obtain spatial information,
which is composed of multiple convolutional layers and
downsampling layers. .e decoding path can restore the
input resolution and performs subconvolution and
upsampling of these features. .e convolution process is as
follows:
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In equation (1), k is the convolution kernel, n is the
number of layers, kn

ij is the weight, b is the bias value, and
an−1

j is the output of the previous layer. .e sampling ex-
pression in the pooling layer is as follows:
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In equation (2), down(·) is the downsampling function,
while β and b denote the multiplicative bias and additive
bias, respectively.

.e algorithm proposed has an extra clipping layer and a
multiloss structure, which can segment images of any size
and solve the disappearance of gradients. In addition, the
1× 1 convolution layer and softmax function of the con-
volution kernel are added, whose weights are 0.8 and 0.2,
respectively. .e fully connected layer is expressed as
follows:
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In equation (3), wn is the weight coefficient, an− 1 is the
output of the previous layer, and bn is the bias term. Softmax
can finish more than two types of classification tasks. .e
calculation equation is as follows:
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In equation (4), ci ∈ R is the input sample,
di ∈ 1, 2, . . . , k{ } is the sample label, hω(·) is the hypothesis
function, P(d � j | c) is the probability value, and
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normalization, the total probability value is 1, and the loss
function value of softmax is minimized through training
sample T. .e expression is as follows:
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.e binary potential in fully connected CRF is used to
improve the accuracy of segmentation. In this algorithm, the
Gibbs distribution is expressed as follows:

p(Y � c | I) �
e

− E(c | I)

Z(I)
. (6)

In equation (6), I is the final output of U-Net,
Y � Y1, . . . , YN􏼈 􏼉 is the category label, and −E(c | I) is the
energy function.
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.e binary potential energy function is defined as
follows:
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In equation (8), pi is the coordinate position of i, Ii is the
intensity of i, |Ii − Ij| is the gray value difference, ω1 and ω2
are the model weights, and σα, σβ, and σc are the standard
deviation parameters.

.en, the segmentation results are postprocessed as
follows: pre(a, b, c) is the voxel (health area: pre(a, b, c) � 0,

stroke area: pre(a, b, c) � 1), and meanTTP(n) is the average
gray value. First, the n-th three-dimensional connected
domain of meanTTP(n)>ω1 is removed, where pre(a, b, c) �

0 and ω1 � 100. Second, whether it is a lesion area is de-
termined according to the volume of the coarsely segmented
lesion. v(n) represents the volume of the n-th connected

Table 1: Brain MRI imaging features and CSVD scoring criteria [12].

Feature Imaging features Scoring criteria Score

WMH

T1 showed isointensity or low intensity; T2 or T2 FLAIR showed hyperintensity,
followed by Fazekas scale (0–6 points) scoring: paraventricular white matter
hyperintensity (PVWMH) scoring and deep white matter hyperintensity

(DWMH) scoring.

DWMH (Fazekas 2/3 points) and/or
PVWMH (Fazekas 3 points) 1

CMB .ere were round or oval foci in SWI or T2 ∗ GRE with signal loss
(2∼5mm<D< 10mm) but not in other sequences. ≥1 CMB 1

PVS
.e gap surrounded the blood vessel or run parallel to the blood vessel, in a line,
round, or oval,D< 3mm, T1 and FLAIR showed low signal, and T2 showed high

signal.
PVS in the basal ganglia of grades 2–4 1

Lacuna .ere was a lacuna under the round or oval cortex, 3mm<D< 15mm, and full
of fluid, TIWI, T2WI, and FLAIR showed low signal. ≥1 lacuna 1

Total
score 4
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domain in pre, and Vmax is the volume of the largest con-
nected domain. If v(n)/Vmax � ω2, remove it, where
pre(a, b, c) � 0 and ω1 � 0.1.

From this, a new image segmentation algorithm is
constructed, and the algorithm flow is shown in Figure 1.

2.4. Network Parameter Configuration. .e gradient descent
algorithm was adopted for training. In this experiment, the
ISLES2015 platform development environment was Matla-
b2016aCaffe open-source library + cuda8.0 + cuDNN5.1..e
operating systems were Windows 10 and Ubuntu 16.04, and
the adaptive optimizer Adam [13] was selected. .e pa-
rameter settings were as follows: the learning rate was 0.0001,
the momentum was 0.9, the regularization coefficient was
0.0005, the maximum number of iterations was 21,000, and
all biases were initialized to 0.

.e collected MRI images of 208 patients were set as
training samples, and the algorithm proposed was employed
to process the samples. .en, the processing results were
uploaded to the above platform for evaluation and were
compared with those obtained based on FCN algorithm and
the U-Net algorithm. Evaluation indicators included Hoff-
man distance (HD), average symmetric surface distance
(ASSD), sensitivity (recall), Dice coefficient, and precision
(precision).

HD(E, F) � max max
e∈E

min
f∈F

D(e, f),max
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min
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2
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In equations (9) and (10), the points on the lesion label
and segmentation result are E and F, respectively, and ASD is
average surface distance. Euclidean distance of points E and
F is D(e, f).
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2TP

TP + FP + FN
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TP
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In equations (11)–(13), TP indicates true positive, FP
indicates false positive, and FN indicates false negative.

2.5.NeuropsychologicalEvaluationafterSevereStroke. In this
study, the Montreal cognitive assessment (MOCA) scale was
used to evaluate the cognitive level of psychology. It is a
high-sensitivity and rapid screening scale for cognitive
impairment developed by Schellhorn et al. [14] in 2005 with
reference to the setting and scoring standards of mini-
mental state evaluation (MMSE) cognitive items, and it is
based on clinical experience. .e test cognitive domains
included attention, visual space and executive function,

language, naming, delayed recall, abstraction, and orienta-
tion, with a total score of 30. A score of 26 was set as a cut-off
point. A score lower than 26 was considered to have cog-
nitive impairment, and a score higher than 26 indicated no
cognitive impairment. In the subsequent follow-up, if the
MOCA score increased by more than two points, it was
considered as a certain degree of improvement in cognitive
function. Hamilton anxiety rating scale (HAM-A) scoring
and Hamilton depression rating scale (HAM-D) scoring
were performed to rule out pseudocognitive disorders
caused by anxiety and depression [11]. Follow-up was
carried out after one month and three months after the
stroke. .e patient needed to cooperate with two profes-
sional neurologists for evaluation.

2.6. Statistical Methods. .e data obtained was analyzed by
SPSS 25.0, and the measurement data were expressed as
mean ± standard deviation (�x± s). Single-factor logistic
regression analysis, multifactor logistic regression analysis,
regression analysis coefficient (R2), and linear regression
analysis were utilized.

3. Results

3.1. Comparison of Training Results of �ree Algorithms.
Figure 2 shows the comparison of ASSD and HD among the
three algorithms. .e ASSD obtained by the algorithm
proposed in this research was (3.13± 1.35) and the HD was
(28.71± 9.05), which were inferior to the results obtained by
the FCN algorithm and the U-Net algorithm. .is meant
that the algorithm proposed can automatically segment the
stroke lesions with the smallest segmentation error and the
highest segmentation accuracy.

Figure 3 shows the comparison of the Dice coefficient,
accuracy, and sensitivity of the three algorithms. .e Dice
coefficient (0.78± 0.1), accuracy (0.74± 0.11), and sensitivity
(0.85± 0.13) obtained by the proposed algorithm were
higher than those of the other two algorithms, indicating
that the proposed algorithm can automatically segment
stroke lesions with the highest segmentation accuracy.

3.2. Comparison of MRI Image Segmentation Effects of �ree
Algorithms. Figure 4 shows the comparison of the image
segmentation effect among the algorithm based on U-Net
and conditional random field, the FCN algorithm, and the
U-Net algorithm. .e proposed algorithm was compared
with the FCN algorithm and the U-Net algorithm and
applied to the MRI images of 208 severe stroke patients.
According to the general structure, the segmentation effect
of FCN algorithm and U-Net algorithm was not particularly
outstanding, while the segmentation result based on U-Net
and conditional random field algorithms was relatively
accurate and fine.

3.3. Patient’s MRI Image Feature Score and Psychological
Score. .e distribution of MRI features showed that there
were 107 cases of WMH (51.4%), 106 cases of CMB (51.2%),
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86 cases of lacuna (41.3%), and 87 cases of PVS (41.8%). .e
distribution of CSVD scores showed that there were CSVD 0
in 25 cases (12%), CSVD 1 in 54 cases (26%), CSVD 2 in 60
cases (28.8%), CSVD 3 in 52 cases (25%), and CSVD 4 in 17
cases (8.2%).

Figure 5 shows the MOCA scores of patients in each
group. MOCA scores of the five groups of patients from
CSVD 0 to CSVD 4 were significantly different in three time
periods (0, 1, and 3 months) (P< 0.05)..en, the correlation
between the MOCA score and the total CSVD score at these
three times was analyzed. .e results suggested that the
MOCA scores of 0 months (rs � −0.675, P � 0.000), 1 month
(rs � −0.715, P � 0.000), and 3 months (rs � −0.655,
P � 0.000) were all negatively correlated with the total
CSVD scores, all with significance (P< 0.05).

Figure 6 shows the MRI image of a 65 year-old male
patient. Epilepsy occurred, associated with altered states of
consciousness, acute aphasia, and right staring. Its distri-
bution characteristics did not conform to vascular distri-
bution, edema and gyri enhancement appeared earlier, and
cerebral perfusion was normal or increased. .ere was no
vascular occlusion, and sometimes there was both limited
cortical diffusion and increased subcortical diffusion.

3.4. Explanatory Weight of MRI Feature Score in Cognitive
Decline after Severe Stroke. .e patients three months after
stroke were rolled into cognitive impairment group (59.6%,
124 cases) and noncognitive impairment group (40.4%, 84
cases) for comparison. Figure 7 shows that the differences in
the number of CMB, PVS, and lacuna, Fazekas score, and
total CSVD scores between the two groups were statistically
substantial (P< 0.05).

Linear regression analysis was performed on the vari-
ables in Figure 8. Figure 8 shows the explanatory propor-
tions of the number of CMB, PVS, and lacunae, Fazekas
score, and total CSVD score to cognitive decline after severe
stroke, all of which were significantly correlated with it.
Among them, the total CSVD score had the highest ex-
planatory degree (0.702), while the influence of other factors
on cognitive decline was generally low.

3.5. Correlation Analysis between MRI Image Feature Score
andCognitive ImpairmentGroup. Figure 9 shows the single-
factor binary logistic regression analysis of the P< 0.05
variables of cognitive impairment. With the number of
CMB, the number of PVS, the number of cavities, the WMH
Fazekas score, and the total CSVD score as independent
variables and cognitive impairment after severe stroke as the
dependent variable, a single-factor binary logistic regression
analysis was performed. .e results showed that the number
of CMB, the number of PVS, the number of cavities, WMH
Fazekas score, and total CSVD score were significantly
correlated with cognitive dysfunction (P< 0.05).

Figure 10 illustrates the subsequent multivariate binary
logistic regression analysis. With the number of CMB, the
number of PVS, the number of cavities, the WMH Fazekas
score, and the total CSVD score as independent variables
and cognitive impairment after severe stroke as the de-
pendent variable, the multivariate binary logistic regression
analysis showed that the number of PVS, WMH Fazekas,
and total CSVD score were independent factors of cognitive
impairment (P< 0.05).

Univariate potential
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Figure 1: Algorithm flow chart.
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Figure 2: Comparison of ASSD and HD of the three algorithms.
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3.6. Correlation Analysis of MRI Feature Score and Cognitive
Domain. From Figure 11, the linear regression model
analysis shows that when the risk factors were not adjusted,

the MOCA score, visual space and executive function,
orientation, attention, and memory were all significantly
negatively correlated (P< 0.05). After adjustment of risk

FCN U-Net The algorithm in
this paper

Dice
Precision
Recall

0

0.2

0.4

0.6

0.8

1

1.2

Figure 3: Comparison of Dice coefficient, accuracy, and sensitivity of the three algorithms.

(a) (b)

(c) (d)

Figure 4: Comparison of the segmentation effects of the three algorithms. (a) Magnetic resonance images of patients with severe stroke were
input; (b) FCN algorithm segmentation effect; (c) segmentation effect of U-Net algorithm; (d) segmentation effect of the proposed
algorithm.
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factors, only MOCA score, visual space and executive
function, attention, and memory were significantly nega-
tively correlated (P< 0.05).

4. Discussion

Stroke is a cerebrovascular disease with high morbidity,
disability, and mortality. As revealed by research, the
prevalence of cognitive impairment in patients with severe

stroke was as high as 37% to 80%, and severe cases can be
fatal [15]. MRI is widely used in the inspection and diagnosis
of CSVD and has significant advantages. However, it will be
affected by objective factors such as patient’s breathing rate
and doctor’s operation in actual operation..e quality of the
final MRI image is poor, so it is imperative to select a suitable
image segmentation processing algorithm [16]. .erefore, a
new image segmentation algorithm was proposed based on
U-Net algorithm and conditional random field algorithm

CSVD0 CSVD1 CSVD2 CSVD3 CSVD4

0 month
1 month
3 months
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Figure 5: MOCA scores of patients in each group. ∗ indicates statistical significance (P< 0.05).

(a) (b) (c)

Figure 6: MRI image of a male stroke patient. (a).e diffusion limitation of the left frontal parietal cortex; (b) the diffusion limitation of the
subcortical white matter; (c) the edema.
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Figure 7: Comparison of the number of CMB, PVS, and lacuna between the cognitive impairment group and the noncognitive impairment
group. ∗ indicates statistical significance (P< 0.05).
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and was compared with FCN algorithm and
U-Net algorithm. It was found that the ASSD (3.13± 1.35),
HD (28.71± 9.05), Dice coefficient (0.78± 1.35), accuracy
(0.74± 0.11), and sensitivity (0.85± 0.13) of this algorithm
were superior to those of the other two algorithms. Such
results suggested that the algorithm can automatically
segment the stroke lesions, and it had the smallest seg-
mentation error and the highest segmentation accuracy.

.en, the image segmentation algorithm based on U-Net
and conditional random field was applied to the MRI di-
agnosis of 208 patients with severe stroke in our hospital to
explore its impact on the mental state of patients with severe

stroke. .e Spearman rank correlation analysis revealed that
the MOCA scores of 0 months (rs � −0.675, P � 0.000), 1
month (rs � −0.715, P � 0.000), and 3 months (rs � −0.655,
P � 0.000) were negatively correlated with the total CSVD
score, all with considerable significance (P< 0.05). After
linear regression analysis, it was found that there was a
significant negative correlation between the total CSVD
score and the MOCA score, and the explanation had the
highest proportion (0.702). However, the proportion of
individual scores explaining cognitive impairment was
generally low. Such result was the same as that of Del Brutto
et al. [17] on the correlation between cognitive impairment
and CSVD score. Single-factor binary logistic regression
analysis of cognitive impairment group in severe stroke
patients showed that the number of CMB, PVS, lacuna,
WMH Fazekas score, and total CSVD scores all had a
significant correlation (P< 0.05). Multivariate binary logistic
regression analysis showed that the number of PVS, WMH
Fazekas score, and total CSVD score were independent
factors of cognitive impairment in severe brain, which was
consistent with the results of the Sivakumar et al. [18], in-
dicating that patients with severe stroke combined with the
CSVD scores of the above items were relatively more likely
to have cognitive impairment after stroke. After linear re-
gression model analysis and correcting for risk factors, it was
found that only the MOCA score, visual space and executive
function, attention, and memory were significantly nega-
tively correlated (P< 0.05), which was basically consistent
with the research results of Liang et al. [19] on the corre-
lation between total MRI cerebrovascular disease and cog-
nitive impairment, indicating that it mainly affected
attention, memory, and visual space and executive function.

5. Conclusion

In this research, a novel image segmentation algorithm was
proposed based on the U-Net algorithm and the conditional
random field algorithm and was compared with the FCN
algorithm and the U-Net algorithm. .en, the image seg-
mentation algorithm based on U-Net and conditional
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Figure 8: .e proportion of CSVD scores affecting cognitive
changes.
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Figure 9: Single-factor binary logistic regression analysis.
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Figure 10: Multivariate binary logistic regression analysis.
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Figure 11: Linear regression model analysis. 1: MOCA score; 2:
visual space and executive function; 3: naming; 4: abstract; 5:
orientation; 6: speech; 7: attention; 8: memory; model 1: unadjusted
risk factors; model 2: adjusted risk factors.
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random field was applied to the MRI diagnosis of 208 pa-
tients with severe stroke in our hospital to explore the impact
of cerebrovascular burden on the mental state of patients
with severe stroke. It was found that the proposed algorithm
can automatically segment stroke lesions with the smallest
segmentation error and the highest segmentation accuracy.
In addition, the number of PVS, WMH Fazekas score, and
total CSVD score were independent factors of severe cog-
nitive impairment after severe stroke, which mainly affected
attention, memory, and visual space and executive function.
.e overall CSVD score explained cognitive decline after
severe stroke in a significantly higher proportion than the
CSVD alone..erefore, clinicians should pay close attention
to patients’ CSVD when treating patients with severe stroke.
Moreover, follow-up of cognitive function should be carried
out, so as to realize early awareness and early intervention
for patients with cognitive impairment as far as possible.
However, there are still some problems to be solved in this
study. .ere are too few training samples for the MRI image
segmentation algorithm, and its performance and possible
shortcomings need to be further discussed in the future.
Moreover, there are few indicators to evaluate the charac-
teristics of brain domains in stroke patients, which also
requires more in-depth analysis. In conclusion, this study
provides a scientific theoretical basis for clinical diagnosis
and treatment and psychological nursing intervention of
patients with severe stroke.
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