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ABSTRACT
Industrial effluents/wastewater are the main sources of hexavalent chromium (Cr (VI)) pollutants in 
the environment. Cr (VI) pollution has become one of the world’s most serious environmental 
concerns due to its long persistence in the environment and highly deadly nature in living 
organisms. To its widespread use in industries Cr (VI) is highly toxic and one of the most common 
environmental contaminants. Cr (VI) is frequently non-biodegradable in nature, which means it 
stays in the environment for a long time, pollutes the soil and water, and poses substantial health 
risks to humans and wildlife. In living things, the hexavalent form of Cr is carcinogenic, genotoxic, 
and mutagenic. Physico-chemical techniques currently used for Cr (VI) removal are not environ-
mentally friendly and use a large number of chemicals. Microbes have many natural or acquired 
mechanisms to combat chromium toxicity, such as biosorption, reduction, subsequent efflux, or 
bioaccumulation. This review focuses on microbial responses to chromium toxicity and the 
potential for their use in environmental remediation. Moreover, the research problem and pro-
spects for the future are discussed in order to fill these gaps and overcome the problem 
associated with bacterial bioremediation’s real-time applicability.
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1. Introduction

Chromium (Cr) is a naturally occurring element 
present in volcanic dust, rocks, and soil [1]. Cr 
has high redox potential, and it can exist in 
various oxidation states ranging from (-II) to 
(IV). However, its most stable forms are trivalent 
Cr (Cr (III)) and hexavalent Cr (Cr (VI)) [2]. The 
physical, chemical, and toxicological properties of 
Cr (III) and Cr (IV) vary considerably. While Cr 
(III) is usually found in nature in the form of ore 
such as ferrochromite, Cr (VI) is mostly gener-
ated from anthropogenic activities and is highly 

toxic to living organisms [3]. Cr (III) exists as an 
insoluble hydroxide cation whereas Cr (VI) is an 
oxyanion species occurring in the form of diva-
lent chromate, dichromate, or monovalent chro-
mate depending on the solution pH [4]. Cr (VI) 
is the most mobile form of Cr in the aquatic 
environment due to its relatively higher water 
solubility. Chromium is a versatile element and 
has been used in many industrial applications 
since its discovery in 1797. Chromium com-
pounds are often used in chrome plating, dye 
manufacturing, textile industry, aircraft industry, 
leather tanning, wood preservation, and mud 
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drilling. Chromates, dichromates, chromic acid, 
chromic sulfate and, chromic oxides are examples 
of industrially relevant chromium compounds. 
These chromium compounds are generally pro-
duced from the mining and treatment of chro-
mite ore. However, such mining and industrial 
activities generate considerable volumes of solid 
and liquid chromium-rich waste, as well as result 
in its atmospheric emissions [5]. In addition to 
mining and industrial activities, natural rocks 
such as ultramafic and mafic rocks are also 
a geogenic source of Cr (VI) in groundwater 
[4–6]. Increased concentrations of Cr (VI) have 
been observed in water reservoirs linked with 
ultramafic aquifers in California, Mexico, Brazil, 
Italy, Argentina, and Greece [7–10]. Moreover, Cr 
(VI) concentrations in igneous and meta-volcanic 
groundwater, as well as aquifers associated with 
mixed or more felsic igneous and metamorphic 
formations, are relatively high in North Carolina 
(up to 25 g/L). Environmental contamination by 
Cr (VI) has become a worldwide concern. In 
many places of the world, industries have dis-
posed of hazardous waste in ways that benefit 
their bottom lines, such as illegal dumpsites, at 
the expense of the environment and human 
health. These dumpsites are the primary source 
of Cr pollution and long-term damage to 
groundwater.

The following are some of the most important 
sources of Cr (VI)

● Dyes, paints, inks, and polymers containing 
chromate pigments.

● Chrome plating is the process of putting 
chromium metal onto an item’s surface 
using a chromic acid solution.

● Particles produced while ferrochromium ore 
smelting.

● Welding fumes from stainless steel and non-
ferrous chromium alloys

Cr (VI) is classified as a group 1 carcinogen by the 
World Health Organization (WHO). The maxi-
mum allowed concentration of chromium in 
drinking water is set at 50 ug/L by the drinking 
water guideline. In the United States and Canada, 
average Cr (VI) levels in drinking water range 
from 0.2 to 2 µg-Cr (VI)/L [11,12]. Although the 

US Environmental Protection Agency (US EPA) 
acknowledges Cr (VI) as a harmful element. Only 
total chromium (Cr(T) is included in the drinking 
water standard, with a maximum pollutant level of 
100 µg/L. To avoid the ill effects of Cr (VI) on 
human health, there is an urgent need to imple-
ment strict environmental restrictions to limit the 
amount of Cr (VI) that can be released into the 
environment. Several treatment procedures for Cr 
(VI) removal from wastewater exist, including 
adsorption, chemical precipitation, ion exchange, 
electrocoagulation, membrane separation, and 
electrodialysis [13]. Amongst which, chemical pre-
cipitation is the most common approach to Cr 
(VI) elimination. Calcium hydroxide, magnesium 
oxide, sodium hydroxide, and calcium magnesium 
carbonate are examples of some chemical precipi-
tators used in Cr (VI) removal. All criteria or 
elements that affect precipitation include the type 
of precipitation agent, sludge volume, speed of 
agitation, pH, mixing duration, and complexing 
agents [14,15]. Advanced treatment procedures 
including reverse osmosis, ion exchange, mem-
brane filtering, electrocoagulation, and electrodia-
lysis are successful at eliminating Cr (VI), but they 
are costly and produce concentrated wastes that 
must be treated and disposed of later [16]. 
Bioremediation is emerging as may be an effective 
way technique to remove Cr (VI) from industrial 
effluents. Chromium bioremoval has been docu-
mented using a variety of fungal and bacterial 
species. Streptomyces rimosus, Actinomycetes, and 
Streptomyces griseus both showed promise in 
removing Cr (VI) from industrial effluent [17]. 
However, chitosan, rice husk, waste tea leaves, 
pomegranate husk, neem leaves, coconut shell, 
orange peel, watermelon rind, sawdust, and 
banana rachis are low-cost farm wastes with 
adsorption abilities to remove Cr (VI) from waste-
water [18–23]. There is not a thorough investiga-
tion on the use of chromium-resistant bacteria to 
remediate chrome-polluted effluent. Hexavalent 
chromium is a well-known environmental con-
taminant that has the potential to cause cancer, 
teratogenicity, and mutation [24]. The goal of this 
review is to reveal the harmful effects of Cr (VI), as 
well as ways for remediating polluted sites by 
using microbes to absorb and break down Cr 
(VI) pollutants.
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2. Hexavalent chromium (Cr (VI)) effect on 
human health

Heavy metal contamination has become a severe 
environmental hazard worldwide in recent decades 
[25,26]. Hexavalent chromium [Cr (VI)] is a global 
environmental pollutant that increases the risk for 
several types of cancers and is increasingly being 
recognized as a neurotoxicant [24]. Several kinds 
of plants and microbes play crucial roles in the 
removal of toxic metals from contaminated sites 
[27–32]. Cr (VI) and its metabolites, particularly 
chromates, take a distinct route into the human 
body. The main routes of Cr (VI) exposure include 
inhalation, ingestion, and skin contact. Depending 
on the duration, Cr (VI) exposure can be classified 
as acute (14 days), intermediate (75–364 days), 
and chronic (365 days) [33,34]. Cr (VI) causes 
toxicity in a variety of ways. It can reduce immune 
system activity or efficiency, compete with enzyme 
activity cofactor fixation sites, suppress important 
enzymes such as oxidative phosphorylation, and 
cause changes in cell architecture, notably in the 
lipoprotein region of the membrane. Nasal irrita-
tion and ulceration, hypersensitivity reactions and 
contact dermatitis, acute bronchitis and emphy-
sema, liver and kidney disease, lung and skin can-
cer, internal bleeding, and DNA damage are all 
caused by the interaction of Cr (VI) with the 
DNA-polymerase enzyme [35]. Cr (VI) rapidly 
enters cells, but it needs to pass through several 
stages in the bloodstream before becoming Cr (III) 
in the internal organs. The Cr (VI) ion is excreted 
from the body, whereas the chromate ion is carried 
to the cell via a transport pathway that also 
involves the ions sulfate and phosphate. Such 
ions can induce oxidative stress in cells, which 
has been associated with a variety of chronic, car-
diovascular, neurodegenerative diseases. Cr (VI) 
damages cells in a variety of ways, such as 
increased oxidative stress, the creation of DNA 
adducts, and chromosome breakups [36]. The 
World Health Organization’s International 
Agency for Data on Cancer (IARC) has classified 
Cr (VI) compounds as group one human carcino-
gens with several complex modes of action based 
on epidemiological research tying Cr (VI) to lung 
cancer [37,38]. Eardrum perforation, irritations, 
allergies, eczema, respiratory tract issues, skin 

irritations, ulceration, and lung cancer have all 
been linked to human exposure to Cr (VI) [39]. 
At various phases, Cr (VI) radiation can produce 
cytotoxic, mutagenic, and DNA mutations, as well 
as carcinogenic effects of Cr (VI)-containing com-
pounds, chromosomal damage, and oxidative pro-
tein changes [40]. Nasal lining nose ulcers, 
irritation, anemia, and ulcers in the small intestine 
and stomach, and other respiratory problems like 
nasal blockage, coughing, wheezing, and face 
erythema, can all be caused by inhaling a high 
amount of hexavalent chromium.

Hexavalent chromium exposure at work may 
result in the following health consequences:

● If hexavalent chromium is inhaled in high 
quantities, it can cause irritation or injury to 
the nostrils, throat, and lungs (respiratory tract).

● Lung cancer in workers exposed to hexava-
lent chromium in the air.

● If hexavalent chromium comes into touch 
with organs in high amounts, it might cause 
irritation or injury.

Severe and repeated exposure to chromium and 
related compounds, particularly those containing 
hexavalent ions, can cause health issues. The toxic 
effects of (Cr (VI)) on human health have been 
provided in Figure 1 & Figure 2.

2.1. Chromium (VI) effects on macrophages

Lung shape is unaffected by chromium inhalation, 
but macrophages become larger, multinucleated, 
or vacuolated, and nodules form in intra-alveolar 
spaces. Higher concentrations of Cr (VI) suppress 
alveolar macrophage phagocytic activity and the 
humoral immune response, whereas lower levels 
of Cr(VI) stimulate alveolar macrophage phagocy-
tic activity and the humoral immunological 
reaction.

2.2. Chromium (VI) effects on immune response

An early study done on human cells by Borella 
et al., 1983 who studied the effects of Cr (VI) and 
other metals on cultured human lymphocytes 
found that chromium induces reductions in both 
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blastogenesis and immunoglobulin production in 
relation to its capability to enter the cells.

2.3. Chromium (VI) induced cell death

Chromium has been shown to be cytotoxic to cells. 
Vasant et al., 2001 discovered that apoptosis is the 
method of cell death in human lymphocytes when 
Cr (VI) is present.

3. Hexavalent chromium effect on plant 
health

Plants show signs of Cr (VI) toxicity, including 
delayed seed germination, damaged roots 
reduced root growth, reduced biomass, reduced 
plant height, photosynthetic impairment, mem-
brane damage, leaf chlorosis, necrosis, low 
grain production, and ultimate death of the 

Figure 1. Toxicological effects of hexavalent chromium on humans.

Figure 2. Hexavalent chromium (Cr (VI) has effects on the ecosystem and human health.
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plant. The most prevalent chromium com-
pounds in soil are HCrO4 and CrO42, which 
are easily absorbed by plants and contaminate 
soil [41]. Because of its extremely low solubi-
lity, Cr (VI) has been found to cause signifi-
cant injury to living tissue [42]. Plant shoot 
length and biomass are affected by Cr (VI) 
exposure. Though low levels of Cr (3.8104 M) 
do not affect some crops, chromium com-
pounds are highly poisonous to most plants 
and damage their growth and production [43]. 
According to Elahi et al., 2020 [43], Cr (VI) 
can be severely harmful to plants at concentra-
tions as low as 5 mg/kg in soils and 0.5 mg/L 
in solution. Cr (VI) is linked to a decrease in 
nutrient intake and photosynthesis, which con-
tributes to the delayed growth of plants. 
Various physiological, structural, and biochem-
ical processes in plant cells are severely dis-
turbed, resulting in the generation of reactive 
oxygen species. Chlorosis and plant necrosis 
are two symptoms of Cr poisoning [44]. 
Chromium affects the growth of leaves, which 
are part of the photosynthesis organ of plants. 
Increasing chromium concentration causes 
a considerable decrease in leaf area and bio-
mass, as well as decreased photosynthesis and 
the production of chlorophyll content and 
necrosis in leaves. Under Cr (VI) exposure, 
many destructive processes take place in leaves. 
Chlorophyll synthesis is suppressed, the chlor-
oplast ultrastructure is disrupted, photosyn-
thetic electron transport is inhibited, and 
magnesium ions are released from the chloro-
phyll molecule [45]. Reduced plant develop-
ment, leaf deformation, and necrosis, root 
tissue damage, chlorosis, decreased enzyme 
activity, food uptake, transport, photosynthesis, 
lipid peroxidation, DNA strand break, and 
chromosome aberration are all symptoms of 
Cr (VI) toxicity in plants [46–48]. As a result, 
chromium (VI) can interfere with photosynth-
esis, seed germination, and nutrient intake, as 
well as the overall growth and functionality of 
the plant. The toxic effect of Cr (VI) on plants 
has been provided in Figure 3.

4. Hexavalent chromium (Cr (VI)) effect on 
microbiota

Chromium is the strongest metal in nature, rank-
ing 17th in crust richness, and is primarily merged 
with the other elements to form trivalent and 
hexavalent compounds [49]. A variety of factors, 
including pathogens, habitat destruction, increased 
ultraviolet radiation, introduced non-native spe-
cies, and contaminants, have all contributed to 
amphibian population declines. Intestinal micro-
bial communities play a critical role in maintain-
ing the host’s health [50]. They play a role in the 
regulation of numerous physiological functions 
[51]. Statistical analysis found that the human gut 
contains ~1014 bacteria, which is roughly 10 times 
the number of body cells [52].

5. Microbial remediation

Numerous microorganisms and plants have devel-
oped various strategies to counteract the toxic 
effects of Cr (VI) as shown in Table 1 [53–62]. 
Among the various methods, microbes’ enzymatic 
reduction of Cr (VI) into Cr (III) is the best- 
understood mechanism for such bioremediation 
[63]. For the detoxification of Cr (III) contamina-
tion and bioremediation of polluted waste, biolo-
gical reduction of Cr (VI) to Cr is a potentially 
useful technique. Microbes that remove chromium 
from the environment offer a healthy and envir-
onmentally beneficial alternative to long-term 
manufacturing. These methods can be used to 
a wide range of microbial biomass, including bac-
teria, fungi, and algae. Biosorption of Cr (VI) has 
been proposed as a potential alternative to current 
industrial wastewater detoxification processes that 
use biomass (growing, resting, and dead cells), as 
well as biological and agricultural waste materials 
[64]. Chromium-resistant bacteria are responsible 
for or contribute to the biological reduction of Cr 
(VI) to less mobile Cr (III), and precipitation” of 
these bacteria could be a useful method for clean-
ing up polluted Cr (VI) areas. Through enzyme- 
catalyzed hazardous chemical degradation, bac-
teria successfully remove metal ions from the 
environment by using them as a source of energy 

BIOENGINEERED 4927



and converting them to biomass [65]. Microbes in 
soil, underground materials, water, sludge, and 
residues are stimulated to break down environ-
mentally detrimental substances to eco-friendly 
or acceptable levels during the microbial remedia-
tion process. The removal of chromium and other 
heavy metals from industrial effluents has been 
demonstrated using bioremediation strategies 
such as bioaccumulation, biotransformation, 

biosorption, and bioleaching [66]. 
Bioaccumulation is a metabolism-dependent 
method in which only live biomass uses cellular 
energy to transport hexavalent chromium (Cr 
(VI)) through the cell membrane. The bioaccumu-
lation process in microorganisms is divided into 
the following phases. Initially, potentially hazar-
dous heavy metal ions link themselves to the 
cell’s surface ligand. The metal-ligand combination 
that develops on the cell surface is subsequently 
transported inside by transporter protein. In addi-
tion, intracellularly transported complexes interact 
with metal-binding proteins such phytochelatins 
and metallothionein, causing precipitation, methy-
lation, and other reactions. At the higher metal 
level, the approach only works on living cells and 
stops microbial cell development. Moreover, the 
biosorption, biotransformation, and bioaccumula-
tion processes break down and remove harmful 
chromium ions from industrial effluent in an 
environmentally beneficial manner.

Figure 3. Toxicological effects of hexavalent chromium on the plant.

Table 1. Different physical, chemical, and biological methods 
available for chromium remediation [94].

S. No.
Biological 
Methods Chemical Methods Physical Methods

1. Biosorption Hydrogen sulfide (H2S) Adsorption
2. Bioaccumulation Sodium metabisulfite  

(NaHSO3)
Membrane 

filtration
3. Reverse osmosis Ferrous sulfate (FeSO4) Extracellular 

precipitation
4. Bioreduction Sodium dithionite (Na2 

S2 O4)
Ion exchange

5. Electrodialysis Calcium polysulfide  
(CaS5)

Biomineralization
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5.1. Biosorption of Cr (VI)

Biosorption, unlike bioaccumulation, is 
a metabolic rate-independent movement that can 
occur in both dead microbial biomass and living 
cells [67]. Potential hazardous ions, like Cr (VI), 
bind extracellularly to different functional groups 
of the microbial cell wall and are then eliminated 
by ion exchange, surface precipitation, or 
a complicated creation process [68]. The composi-
tion and design of bacteria’s cell walls differ. For 
example, bacterial cell walls are mostly peptidogly-
can, fungi’s cell walls are mostly glucans, glyco-
proteins, chitin, melanin, and sulfonated 
polysaccharides, and algae’s cell walls are mostly 
alginate, sulfonated polysaccharides, and mannans 
[69]. The biosorption process’ mechanism is com-
plicated since it is dependent on the types of 
biomass employed, the functional groups of the 
microbial cell wall, its structure, and the extracel-
lular polymer compounds produced by bacteria 
[70,71]. For eliminating harmful heavy metals 
from polluted environments, the biosorption 
method is thought to have certain advantages 
over standard bioremediation strategies. The bio-
sorption process has several advantages, including 
the presence of multifunctional groups and 
a homogeneous distribution of binding sites on 
the cell surface, biosorbent renewal, high effi-
ciency, and the possibility of metal recovery. 
Because of these and other advantages, biosorption 
of heavy metals, notably hexavalent chromium, 
employing diverse microbial biomass has gotten 
a lot of attention. Environmental scientists, engi-
neers, and biotechnologists have been fascinated 
by the ability of organisms to remove heavy metal 
ions induce their transformation to less dangerous 
forms for decades [72].

The Cr (VI) ion binds extracellularly to various 
functional groups of the microbial cell wall, which 
are eliminated via surface precipitation, ion 
exchange, or a similar mechanism. Microbes are 
organisms that have formed techniques for thou-
sands of years to cope with environmental stress. 
Heavy metal-resistant defensive systems abound in 
microbial cells. The mechanisms involved are 
extracellular and intracellular sequestration, active 
metal ion transport, and metal ion reduction [73]. 
The biological process of heavy metal removal may 

be either biosorption or bioaccumulation, depend-
ing on the cell’s metabolism [74], the biological 
process of heavy metal elimination might be either 
biosorption or bioaccumulation. Increased mem-
brane permeability increases intracellular uptake 
of heavy metals, which is a metabolism- 
dependent process. It can only happen in living 
creatures when pollutants are carried into the cell 
and metal ions accumulate inside the biosorbent’s 
cell [75]. Biosorption is a fast, autonomous, and 
metabolically passive mechanism that allows heavy 
metal ions to be selectively sequestered by dead/ 
inactive biomaterials [76]. Heavy metals bind to 
cell walls extracellularly during biosorption, but 
once inside the cells, they bind to proteins such 
as metallothionein during the bioaccumulation 
process. A solid phase serves as the biosorbent in 
all of these biosorption processes. The sorbate is 
drawn and bonded by numerous mechanisms due 
to the sorbent’s increased affinity for the sorbate 
species [77].

Biosorption is a physiochemical contact 
between metal species and biological species’ 
cellular components. Accumulation, adsorption, 
oxidation, methylation, and decrease of poiso-
nous, Cr (III) to Cr (VI) are some of the 
mechanisms underpinning their resistance. 
Heavy metal ions can become lodged in the 
cellular structure of these organisms and then 
absorbed via binding sites. Phosphates, car-
boxyl, imadizole, amino, hydroxyl moieties, 
thioether, sulfate, phenol, amine, and sulfhy-
dryl groups are all found in biosorbents [77]. 
Microorganisms interact with metal ions in 
a variety of ways, including cell wall- 
associated metals, intracellular accumulation, 
metal siderophore, extracellular polymeric con-
tacts with extracellular mobilization or immo-
bilization of metal ions, transformation, and 
metal volatilization. Ion exchange, complexa-
tion, adsorption, and microprecipitation are 
all examples of physicochemical interactions 
between the charged surface groups of 
microbes and ions in solution [78]. In the 
case of bioaccumulation, metal sequestration 
or uptake is followed by metallothionein bind-
ing, metal (Cr) localization within cell compo-
nents, extracellular precipitation, metal 
deposition, and complexation [79]. Chromium 
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translocation into the cell, chromium binding 
to the cell surface, and Cr (VI) reduction to Cr 
are the three phases of microbial Cr (VI) 
removal (III). Microbes reduce Cr (VI) on the 
cell surface, outside the cell, or within the cell, 
either directly through chromate reductase 
enzymes or indirectly through Cr (VI) metabo-
lite reduction [80]. Hexavalent chromium (Cr 

(VI)) biosorption process by microbes has been 
provided in Figure 4 & Table 2 here.

5.2. Hexavalent chromium to tetravalent 
chromium reduction

On a local and big scale, textile, galvanizing, tan-
nery, leather, metallurgical, electroplating, paint, 
and metal processing, and refining sectors produce 

Figure 4. Hexavalent chromium (Cr (VI)) biosorption process by microorganisms.

Table 2. Various microbes used for biosorption process of chromium (VI).
S. No. Microorganisms Remediation % References

1. Chelatococcus daeguensis 94.42 (%) [82,95]
2. Pseudomonas alcaliphila NEWG-2 96.60 (%) [83,96]
3. Bacillus salmalaya 20.35 mg/g [84,97]
4. Bacillus sp 75 (%) [85,98]
5. Bacillus sp 99 (%) [86,99]
6. Klebsiella sp 63.08 (%) [87,100]
7. Sinorhizobium sp. SAR1 285.71 mg/g [88,101]
8. Aspergillus sp 92 (%) [89,102]
9. Aspergillus terreus 54 (%) [90,103]
10. Pleurotus ostreatus 100 (%) [91,104]
11. Pseudopediastrum boryanum 70 (%) [91,104]
12. Scenedesmus sp 98 (%) [92,105]
13. Chlorella colonials 97.8 (%) [93,106]
14. Spirulina platensis 45.5 mg/g [94,107]
15. Isochrysis galbana 335.27 mg/g [95,108]
16. Chlamydomonas sp 91 (%) [36,109]
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Table 4. Efficiency and mechanism of different microbes for the removal of Cr (VI).

Microbes
Concentration (mg/ 

L)
Carbon 
source

Temperature 
(°C) pH Efficiency Mechanisms References

Serratia sp. C8 20 Glucose 28 6–8 ≈80% Bioreduction [120]
Sporosarcina saromensis M52 50–200 Acetate 35 7–8.5 >90% Bioreduction [121]
Sphingopyxis macrogoltabida 

SUK2c
4 31 2 55% Biosorption [122]

Bacillus sp. CRB-B1 100 Glucose 37 7 Completely Bioreduction, 
biosorption

[123]

100 Fructose 37 7 89.54% Bioreduction, 
biosorption

[123]

100 Sodium 
lactate

37 7 4.8% [123]

Pisolithus sp1 25 Organic acid 30 5–6 99% Bioreduction, 
biosorption

[124]

Aspergillus sp. 100 Sucrose 27 4 98.96% Biosorption [125]
Leiotrametes flavida 1000 30 6 72.38% Biosorption [126]
Bacillus cereus 200 Sucrose 37 7.5 Completely Bioreduction, 

Biosorption
[127]

Figure 5. Cr(�) detoxification mechanism.

Table 3. Various functional groups involved in chromium (VI) binding by different microorganisms.
S. No. Microorganisms Functional groups References

1. Bacillus marisflavi and Arthrobacter sp -OH, -NH acetamido group, free phosphates, phosphate 
groups, -CN

[34,110]

2. Pseudomonas aeruginosa Rb-1 and Ochrobactrum 
intermedium Rb-2

-OH, -NH, S-, -C-C- and C-Cl,- carboxylic group, [96,111]

3. Streptomyces werraensis LD22 O–H or N–H, C–H, C–O – [97,112]
4. Aspergillus foetidus C = O, C-Cl, PO4 −3 amine, N = C = S, OH, C-O [98,113]
5. Pleurotus ostreatus NH and COOH [99,114]
6. Aspergillus Niger -COOH, -OH, -NH2 [100,115]
7. Klebsiella sp. -NH2, O-H, -CONH-, -COOH, C = C, -CH2 [87,100]
8. Halomonas sp. DK4 –OH, – CH2, N-H, P–O–C, C = O [101,116]
9. Scenedesmus sp N-H, O-H, C-H, -COOH, C-F, C-Cl, C-Br, C-O [31,117]
10. Chlorella miniata O-H and N-H, C-H, -CH3, COO-, P = O, C-O – [102,118]
11. Arthrinium malaysianum –OH, C–O, C = O, – NO2, CxOH [103,119]
12. Pleurotus ostreatus NH and COOH- [99,114]
13. Aspergillus Niger -COOH, -OH, -NH2 [100,115]

BIOENGINEERED 4931



dangerous metal ions in their effluents. By releas-
ing metal ions into surrounding streams, rivers, 
and open pits, the above-mentioned businesses 
cause problems for the aquatic environment. 
Changes in surface and groundwater quantities 
are most likely to be experienced as a result of 
these metals’ potential impact on the environment 
[81]. Such hazardous elements not only endanger 
human health but also have an impact on other 
living things [82]. These source physical uneasi-
ness and, intimidating illnesses, such as kidney 
damage and cancer [83]. Whereas its reduced tri-
valent form, (Cr3+) is less toxic, insoluble and 
a vital nutrient for humans. The high toxicity of 
Cr is stringent regulations are imposed on the 
release of Cr into surface water bodies to below 
0.05 mg/l by the U.S. EPA and the European 
Union, while total Cr forms to below 2 mg/l [84]. 
Cr (�) detoxification mechanism has been pro-
vided in Figure 5 & Tables 3, 4.

6. Factor affecting bioremediation

The process of bacteria, fungi, and plants digest-
ing, altering, immobilizing, and removing count-
less hazardous contaminants from the 
environment is known as biological treatment. 
Microbes are engaged because their enzymatic 
pathways operate as biocatalysts, allowing bio-
chemical reactions to proceed more quickly and 
destroy the targeted contaminant. Microbes have 
access to a diversity of materials substances to 
assist them to manufacture nutrients and energy 
to build more cells so they act against pollution. 
The chemical composition and concentration of 
contaminants, as well as the physico-chemical fea-
tures of the environment and their availability to 
microbes, all influence bioremediation efficacy 
[85]. Because bacteria and contaminants do not 
come into contact with each other, the rate of 
deterioration is influenced. Furthermore, bacteria 
and contaminants are not evenly distributed across 
the environment. Due to a variety of elements, 
regulating and improving bioremediation proce-
dures is a complicated system. The availability of 
contaminants to the microbial community, and 
the presence of a bacterial community capable of 
decomposing the toxic pollutants.

6.1. Availability of nutrients

Nutrient supply influences the critical nutritional 
balance for microbial growth and reproduction, as 
well as the rate and effectiveness of biodegrada-
tion. By adjusting the bacterial C: N: P ratio, par-
ticularly the delivery of important nutrients like 
P and N, can boost degradation competence. 
Microorganisms require a variety of nutrients, 
including carbon, nitrogen, and phosphorus, to 
endure and remain their activity. The degree of 
hydrocarbon breakdown is similarly limited at low 
concentrations. In cold conditions, adding 
a suitable amount of nutrients is a good technique 
for enhancing microorganism metabolic activity 
and hence biodegradation rate. The availability of 
nutrients limits biodegradation in aquatic environ-
ments [86]. Such nutrients can be found in the 
natural world, although in little amounts [87].

6.2. Environmental factors

All through the procedure, the metabolic capabilities 
of the microorganisms and the physico-chemical 
features of the targeted pollutants determine prob-
able interactions. The ambient variables at the inter-
action location, on the other hand, impact the actual 
success of the interaction between the two. 
Temperature, site features, solubility in water, 
redox potential, nutrients, pH, moisture, soil struc-
ture, and oxygen content, as well as physico- 
chemical bioavailability of contaminants and all 
influence microorganism development and activ-
ities. The parameters listed above determine the 
kinetics of deterioration [88,89]. Bioremediation 
can occur in a wide pH range; however, in most 
aquatic and terrestrial systems, a pH of 6.5 to 8.5 is 
generally ideal for microbial degradation. Pollutant 
metabolism is influenced by the types and amounts 
of soluble materials present, as well as the pH of 
terrestrial and aquatic ecosystems [90].

Temperature is the most essential physical fac-
tor in determining microbe survival and hydrocar-
bon content [91]. The sub-zero temperature of the 
water in this region causes transport channels 
within microbial cells to shut down or even freeze, 
rendering them metabolically dormant, rendering 
most oleophilic bacteria metabolically inert 
[92,93]. The metabolic cycle of biological enzymes 
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involved in the degradation process has an optimal 
temperature and will not be the same at all tem-
peratures. Furthermore, the degradation of 
a certain substance necessitates a specific tempera-
ture. Temperature influences microbial physiolo-
gical features; hence it can speed up or slow down 
the bioremediation process. The rate of microbial 
activity increases as the temperature rises, peaking 
at the optimal temperature. It began to diminish 
abruptly when the temperature increased or 
decreased, eventually coming to a halt after reach-
ing a set degree. The pH of a chemical, which 
refers to its acidity, basicity, and alkalinity, has 
an impact on microbial metabolic activity and 
the rate at which it is eliminated. The potential 
for microbial growth in the soil can be determined 
by measuring pH. Increase or decrease pH values 
resulted in poor results; metabolic processes are 
extremely sensitive to even minor pH variations. 
Because hazardous characteristics of some con-
taminants are present in high concentrations, 
toxic effects on microorganisms might occur, 
slowing clean-up. The degree and processes of 
toxicity differ depending on the toxicants, their 
concentrations, and the microbes exposed. 
Targeted life types are poisonous to some organic 
and inorganic chemicals [88].

7. Future prospects

The challenging problem of removing Cr (VI) 
pollutants from the environment has resulted in 
the development of numerous bioremediation 
strategies, particularly competent reduction tech-
niques by microbes. Microbial degradation is 
a very profitable and appealing technology for 
cleaning, controlling, and restoring contaminated 
habitats via bacterial metabolism. Through auto-
genous enzymes or externally added reducing sub-
stances, microorganisms provide electrons to 
reduce Cr (VI). The rate at which undesired 
waste chemicals degrade is determined by compe-
tition with biological agents, insufficient food sup-
ply, unpleasant external abiotic conditions 
(aeration, moisture, pH, temperature), and limited 
pollutant bioavailability. Because of these charac-
teristics, biodegradation under natural conditions 
is less successful, resulting in less favorable effects. 
Because bioremediation is only successful when 

the environment allows for microbial growth 
development. Bioremediation has been employed 
in a variety of locations around the world with 
variable degrees of effectiveness. In most instances, 
the benefits outweigh the disadvantages, as seen by 
the expanding number of sites that use this tech-
nology and its growing popularity over time. 
Usually, many species from various areas are 
researched and determined to be effective regula-
tory processes. Previous reports on bioremediation 
advanced technologies focused primarily on water 
bodies; however, arable land is currently suffering 
from severe heavy metal pollution, so future 
microbial remediation technology should also tar-
get the soil and environment. In response to the 
research deficiencies proposed, the following 
recommendations are made:

(1) This is difficult to achieve the goal of gov-
ernance using purely cultured microbes due 
to the complexity of the actual environmen-
tal conditions, particularly the soil. Through 
the synergy of microbes, the use of mixed 
cultures of microorganisms can improve the 
ability to adapt to the environment and 
treatment effectiveness.

(2) Because polluted sites contain more than 
one type of heavy metals, this is appropriate 
to screen microbes for their potential to 
reduce or bind numerous toxic metals.

(3) Bioremediation has a lower performance than 
physical and chemical materials, and it also 
takes a long time to remove heavy metals. 
Future studies could concentrate on the com-
bination of microbes in the formation of 
a consortium to improve process efficiency.

8. Conclusions

The bioremediation and biosorption of chromium 
(VI) by microorganisms are discussed in this paper, 
as well as the parameters that metal accumulation 
mechanisms impact on metal’s elimination. The 
microbial remedy of Cr (VI) is among the most 
efficient and protracted strategies for decreasing 
excess Cr (VI) levels in the ecosystem. To survive in 
such a hazardous environment, these microorgan-
isms have evolved amazing systems to maintain 
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equilibrium and resistance to toxic metals. The bio-
sorption technique is a microbe technology for elim-
inating chromium from the aquatic environment, it 
is safe and cost-effective, and has a great deal of 
potential in terms of future applications. The process 
of biosorption requires transport across the precipi-
tation, complexation, cell membrane, ion exchange, 
and physical adsorption. The pH, contact time, tem-
perature, biomass, and metal concentration para-
meters can all affect the biosorption ability of the 
biosorbent. Because industrial wastewaters, unlike 
laboratory solutions, hazardous heavy metals, simul-
taneous removal of multiple coexisting contaminants 
may be difficult. Conclusion of this review more 
research on this topic is required to fully exploit the 
benefits of microbial biotechnology in the ecosystem.
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