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ABSTRACT Cyclic-di-GMP is a near-ubiquitous bacterial second messenger that is important in localized signal transmission
during the control of various processes, including virulence and switching between planktonic and biofilm-based lifestyles.
Cyclic-di-GMP is synthesized by GGDEF diguanylate cyclases and hydrolyzed by EAL or HD-GYP phosphodiesterases, with each
functional domain often appended to distinct sensory modules. HD-GYP domain proteins have resisted structural analysis, but
here we present the first structural representative of this family (1.28 Å), obtained using the unusual Bd1817 HD-GYP protein
from the predatory bacterium Bdellovibrio bacteriovorus. Bd1817 lacks the active-site tyrosine present in most HD-GYP family
members yet remains an excellent model of their features, sharing 48% sequence similarity with the archetype RpfG. The protein
structure is highly modular and thus provides a basis for delineating domain boundaries in other stimulus-dependent homo-
logues. Conserved residues in the HD-GYP family cluster around a binuclear metal center, which is observed complexed to a
molecule of phosphate, providing information on the mode of hydroxide ion attack on substrate. The fold and active site of the
HD-GYP domain are different from those of EAL proteins, and restricted access to the active-site cleft is indicative of a different
mode of activity regulation. The region encompassing the GYP motif has a novel conformation and is surface exposed and avail-
able for complexation with binding partners, including GGDEF proteins.

IMPORTANCE It is becoming apparent that many bacteria use the signaling molecule cyclic-di-GMP to regulate a variety of pro-
cesses, most notably, transitions between motility and sessility. Importantly, this regulation is central to several traits implicated
in chronic disease (adhesion, biofilm formation, and virulence gene expression). The mechanisms of cyclic-di-GMP synthesis via
GGDEF enzymes and hydrolysis via EAL enzymes have been suggested by the analysis of several crystal structures, but no infor-
mation has been available to date for the unrelated HD-GYP class of hydrolases. Here we present the multidomain structure of
an unusual member of the HD-GYP family from the predatory bacterium Bdellovibrio bacteriovorus and detail the features that
distinguish it from the wider structural family of general HD fold hydrolases. The structure reveals how a binuclear iron center
is formed from several conserved residues and provides a basis for understanding HD-GYP family sequence requirements for
c-di-GMP hydrolysis.
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Cyclic-di-GMP (c-di-GMP) is a near-ubiquitous bacterial sig-
naling molecule implicated in the regulation of diverse pro-

cesses such as virulence, motility, and biofilm formation (1, 2).
Discovered initially as a regulator of cellulose biosynthesis (3),
c-di-GMP has risen to prominence in recent times because whole-
genome analysis has indicated that many bacteria are likely to
utilize c-di-GMP signaling (1, 4). c-di-GMP is synthesized from
GTP by enzymes containing GGDEF diguanylate cyclase domains
and is hydrolyzed by phosphodiesterase enzymes containing ei-
ther EAL or HD-GYP domains, each domain nomenclature cor-
responding to a subset of conserved amino acids responsible for
enzymatic activity (2). Structures of isolated GGDEF and EAL
domains have become available, as have those of GGDEF/EAL
fusion proteins (reviewed by Schirmer and Jenal [2]). In contrast,

HD-GYP domains are usually found separate from GGDEF do-
mains (although they are often appended to a variety of other
sensory domains [5]). HD-GYP proteins have so far resisted high-
resolution crystallography, with the only structural information
available arising from distantly related members of the HD super-
family that catalyze disparate, non-c-di-GMP-related functions.

Bdellovibrio bacteriovorus is a predatory deltaproteobacterium
which follows two different life cycles—invasive predation of
other Gram-negative bacteria with rapid intracellular replication
within its prey and slow, more conventional axenic growth on
complex microbiological media (for a population with mutational
changes, becoming host independent, so-called HI strains [6, 7]).
The B. bacteriovorus HD100 genome is predicted to encode one
EAL protein and six HD-GYP proteins (8). One of the six HD-

RESEARCH ARTICLE

September/October 2011 Volume 2 Issue 5 e00163-11 ® mbio.asm.org 1

mbio.asm.org


GYP candidates, Bd1817, has a nonconsensus sequence in the
GYP motif, G-P, lacking the conserved tyrosine (Fig. 1). Realizing
that an unconventional Bd1817 structure might inform the c-
di-GMP field where structures of conventional HD-GYP domains
have not been forthcoming, we proceeded to crystallize and char-
acterize the Bd1817 HD-GYP protein and thus reveal the features
shared by Bd1817 and other characterized HD-GYP proteins
(Fig. 1).

RESULTS AND DISCUSSION
Bd1817 expression and function. We verified that Bdellovibrio
expresses Bd1817 by transcript profiling (9) (Fig. 2), finding that
its expression was highest at the late 3- and 4-h stages of predatory
Bdellovibrio growth inside a dead prey Escherichia coli cell and also
during axenic (host/prey-independent, HI) growth. Fluorescence
from a Bd1817-mCherry fusion protein was detectable at modest
levels, distributed throughout the Bdellovibrio cytoplasm (see
Fig. S1 in the supplemental material) in axenically growing HI
cells, especially those elongating or dividing. Deletion of the
Bd1817 gene did not significantly affect predatory growth or the
rate of axenic (HI) growth of the knockout mutant, which was
within the range of growth rates of diverse wild-type strains. Thus,
we established that Bd1817 protein is expressed but have not yet
detected the phenotype it produces.

Bd1817 retains most of the conserved residues of a HD-GYP
protein (e.g., showing 24% identity and 48% similarity with the
family archetype RpfG, Fig. 1), and despite, or possibly because of,
the lack of a strong c-di-GMP phosphodiesterase phenotype, it
crystallized readily—and so, structural studies were instigated to
gain insight into the function of HD-GYP proteins for which no
high-resolution crystal structures exist to date.

Structure determination and protein fold. We report here the
structure of Bd1817 (from four different crystal forms, the
highest-resolution P21

A form extending to 1.28 Å, examples of
active-site and GYP motif electron density are provided in Fig. 3);
the data were phased using a single-wavelength anomalous disper-
sion (SAD) protocol that took advantage of the intrinsic transition
metals (Table 1). Our expression construct contains an
N-terminal polyhistidine/thrombin tag, the uncharacterized
N-terminal domain (NTD), and the C-terminal HD-GYP phos-
phodiesterase domain. The structure of Bd1817 confirms the
modular nature of HD-GYP proteins (Fig. 4a), with the NTD
(amino acids [aa] 1 to 78) separated from the HD-GYP domain by
a compact linker region composed of 3 �-helices (aa 79 to 146);
the two regions are physically distinct from one another, and it is
intuitive that different sensory modules could be easily appended
to the HD-GYP fold for distinct signaling purposes, such as is the
case for RpfG of Xanthomonas (10). The ~40-aa region preceding
the catalytic domain of RpfG is predicted to be �-helical, and so
the linker conformation we observe in Bd1817 may also be rele-
vant to other multidomain HD-GYP proteins. The juxtaposition
of the NTD, linker helices, and HD-GYP domain results in an
arrangement where a conserved hydrophobic residue, following
the HD motif (Y185), packs against residues at the C-terminal end
of one of the linker helices (F104, P107). The NTD of Bd1817 has
no strong homology to other protein folds but does possess weak
structural similarity to pleckstrin homology domains (e.g., that of
the Exo84 RalA-binding domain [11]; root mean square [RMS]
deviation of 3.4 Å for common C�; Fig. 5a). Coupled with the
observation that in one of our crystal forms the affinity tag has

bound in an ordered fashion into a cleft in the NTD (binding in an
identical region to RalA in the Exo84-RalA complex [11] but in
the opposite orientation; Fig. 5b), this raises the possibility that
this domain could function in a protein-protein interaction. In-
terestingly, the NTD has an RxxD motif with the arginine and
aspartate side chains “stacked” in a conformation identical to that
of the c-di-GMP binding inhibitory site of several GGDEF pro-
teins (e.g., residues R34/D37 of Bd1817 matching R359/D362 of
PleD [12]). The HD-GYP domain (aa 147 to 308) is an all-alpha
fold composed of 7 helices and superficially resembles that of
other HD superfamily proteins, with several important differ-
ences that cluster around the active site (Fig. 6). The closest struc-
tural match to a characterized HD superfamily member is the
E. coli 5=-deoxynucleotidase YfbR (13) (RMS deviation of 3.8 Å for
common C�). Analysis of protein-protein contacts in the four
different crystal forms indicates that Bd1817 is likely monomeric
(at least in this unliganded form).

Binuclear metal-binding pocket. The active site of the Bd1817
HD-GYP domain contains a binuclear metal arrangement
(Fig. 4b, 4c) held in place by conserved residues that were previ-
ously highlighted as important in a large-scale alignment of HD-
GYP sequences (14). This binuclear arrangement is seen in a sub-
set of HD superfamily members that place liganding residues on
the third and fourth helices to create a second site after the classical
HD site on helix two (15). Each metal assumes an approximate
octahedral geometry (Fig. 4b), with both sites bidentately
“bridged” by three separate entities—D184 of the HD motif, a
bound solvent molecule (W1), and a tetrahedral ion (with excel-
lent electron density [Fig. 3a], modeled as phosphate, presumably
copurified with the protein, as no phosphate was present in buf-
fers or the crystallization conditions). Metal one (M1) is further
coordinated by H183 of the HD motif, H150 (from the first helix
of the HD domain), and N265. Metal two (M2) is further coordi-
nated by H212 and conserved residues situated immediately prior
to the GYP motif (H237 and E238). The nature of the liganding
residues, anomalous diffraction experiments at various wave-
lengths (1, 1.6, and 1.8 Å, used to discriminate among Fe, Zn, and
Mn; A. L. Lovering, data not shown), and precedent with homol-
ogous HD domain proteins (15) suggest that these two metal sites
are Fe ions. Metal preference could, however, be protein/motif
specific—a Borrelia burgdorferi phosphodiesterase with a noncon-
sensus HK-GYP motif was found to have enhanced activity with
the addition of Mn2� (16). The liganding histidines at positions
H183, H212, and H237 are oriented via hydrogen bonding of their
N�1 atoms to helical backbone carbonyl groups, whereas H150 is
oriented via interaction with D268, providing an explanation for
the conservation of this residue on helix �5.

Structure of the GYP motif. The region of the fold containing
the GYP motif is located near the solvent-exposed end of the
active-site pocket (Fig. 7a). The GYP motif is better described as
an extended conserved region with the consensus sequence
HHExxDGxGYP, as highlighted by Ryan and Dow (17). The
Bd1817 protein has the somewhat nonstandard sequence
H237EExxNGxG-P, where the protein is “missing” the tyrosine of
the classic GYP signature and has a glutamate in place of the sec-
ond histidine. Nevertheless, this section of the fold is completely
ordered in our structures (respective electron density is shown in
Fig. 3b) and is located in a larger region (aa 237 to 255) that can be
described as a structural insertion into the usual HD superfamily
topology. Remarkably, this region (to the best of our knowledge,
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FIG 1 Sequence alignment of B. bacteriovorus Bd1817 and other HD-GYP proteins. Bacterial strains and associated UNIPROT accession codes are as follows:
Bd1817 (B. bacteriovorus, Q6MM30, aa 131 to 308), RpfG (Xanthomonas campestris, Q4UU85, aa 180 to 349), PA4108 (Pseudomonas aeruginosa, Q9HWS0, aa
141 to 308), PA4781 (P. aeruginosa, Q9HV27, aa 161 to 344), VCA_0681 (Vibrio cholerae, Q9KLR1, aa 237 to 405), 3,508 bp (Bordetella pertussis, Q7VTL7, aa 14
to 183), KPK_3322 (Klebsiella pneumoniae, B5XSE7, aa 204 to 372), SCO5218 (Streptomyces coelicolor, Q9K4A3, aa 226 to 393), BAS0914 (Bacillus anthracis,
Q81UA6, aa 187 to 355). Conserved residues are boxed in white font on a red background, and partially conserved residues are boxed in red font on a white
background. Metal-liganding and phosphate-liganded residues are indicated by blue triangles and magenta ovals, respectively. Secondary structure elements for
Bd1817 are given above the alignment, corresponding to the HD-GYP domain only. Residue numbering refers to Bd1817, which terminates at L308; the other
sequences have been cropped to match the region from A131 to the common DP element preceding �7. This alignment was prepared using T-Coffee (33) and
ESPript (34).
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checked by a �/� angle search using generous tolerance in PDBe-
Motif [18]) appears to have a novel conformation, forming a pair
of U-shaped turns whose planes are approximately 90° apart. De-
spite resembling a �-meander, the backbone residues in this re-
gion make very few classical �-sheet hydrogen bonds, and the
carbonyl groups of T240 and L249 point toward each other (2.9 Å
apart). A solvent molecule (W2) sits at the core of the two turns,
hydrogen bonding to E239, T240, G245, and L249. The first two
residues of the extended motif (H237 and E238) complex M2,
whereas conserved E239 acts to stabilize the backbone conforma-
tion of the second turn by interacting with the amide nitrogens of
K247 and L249. Residues N242GTGP (equivalent to the consensus
DGxGYP) form the common strand between the two turns and
thus are exposed (Fig. 7a). The first conserved glycine, G243, al-
lows for a tight kink in the backbone, and the second, G245, ap-
pears to be necessary in order to prevent steric clashes with E238
and E239. The lack of a tyrosine in the Bd1817 GYP sequence
precludes a thorough analysis of its role—we speculate that the
concurrent alteration of E238 in our structure (replacing the con-
sensus histidine) may hint at coevolution of these residues, and in
other HD-GYP proteins, the tyrosine may orient this histidine (at
N�1) for coordination with M2 (via N�2). The proximity of this
tyrosine location to the active site (G245 is ~12 Å from the bound
phosphate) may mean that it also has a role in substrate binding.
Mutagenesis of the HD-GYP protein RpfG (17, 19) implicated the
GYP residues in binding to GGDEF domains, an event important

in fine-tuning levels of c-di-GMP. The presence and exposure of
the representative N242GTG-P region in Bd1817 on the extremity
of the protein fold are consistent with binding by a partner protein
(Fig. 4a). Despite the absence of the conserved tyrosine in our
structure, we speculate that backbone atoms will play a large role
in such an interaction—all of the carbonyl groups of residues 241
to 248 (across the region which includes the DGxGYP consensus
sequence of canonical HD-GYP proteins) are available in our
structure.

Mechanistic implications for HD-GYP family proteins. The
metal-bound phosphate ion makes further contacts with residues
H187, W209, and R269 and is likely to represent the position of
the phosphodiester group of the c-di-GMP substrate in HD-GYP
proteins (a model of which is shown in Fig. 7b). The nonconsen-
sus residues of Bd1817 appear to cluster around the predicted site
of c-di-GMP binding (Fig. 7c), and conservation at these positions
(Fig. 1) is presumably related to interaction with the substrate, as
H187, W209, D242, R267, E274, or H293 cannot be said to play an
essential structural role, as ascertained from our well-ordered, dif-
ferent crystal forms. In keeping with this observation of deviation
from the consensus, purified Bd1817 had no detectable phospho-
diesterase activity or c-di-GMP binding in vitro (J. Dahbi and
M. Gomelsky, personal communication), a finding that may tally
with the nonconsensus nature of several active-site residues ap-
parent from our structure herein (or, less likely, may reflect a lack
of appropriate stimulus at the appended NTD). Identification of

FIG 2 Comparative transcriptional profiling of Bd1817 expression. Lanes AP to 4h contain total RNA taken from predatory B. bacteriovorus HD100 attacking
E. coli prey cells, i.e., wild-type attack phase cells outside prey (AP) and B. bacteriovorus HD100 wild-type cells that invaded and were replicating inside E. coli prey
cells for 15, 30, or 45 min or 1, 2, 3, 4 h. Lanes 1 to 4 contain Bd1817 RT-PCR products showing expression levels from matched 10-ng total RNA samples from
attack phase Bdellovibrio (lane 1) and axenically grown, independently isolated wild-type HI strains of B. bacteriovorus HD100. Lane 2, strain HID2; lane 3, strain
HID13; lane 4, strain HID26. Control lanes are as follows: S17-1, E. coli S17-1 RNA alone; –, no-template negative control; �, B. bacteriovorus genomic DNA
positive control; L, 100-bp DNA ladder. This figure shows that Bd1817 is most highly expressed in the growth and septation phases of the Bdellovibrio axenic and
predatory life cycles.

FIG 3 Electron density of chain A P21
A crystal form, 1.28-Å resolution data, final refined map at 1.2�. (a) Binuclear metal-binding site, with bridging hydroxide

ion (W1) and tetrahedral ion, modeled as phosphate. (b) Region of GYP motif (glycine 245 and proline 246, “missing” the conserved tyrosine), electron density
of aa 237 to 249 demonstrating the ordered nature of the fold.
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the role of the NTD of Bd1817 (and also the homologous Bd2325,
Bd1762, Bd1822, and Bd3880 Bdellovibrio HD-GYP proteins)
would potentially allow mutagenesis experiments to assess the
function of the above conserved residues.

Access to the phosphate-binding pocket is restricted by a
smaller domain formed by residues 188 to 211 which resembles a
“lid” over the active site (Fig. 4a and 7b). The bridging solvent
molecule (W1) is located 2 Å from M1 and 1.9 Å from M2 and is
therefore likely to be a hydroxide ion and not H2O or a �-oxo
species (15). The EAL c-di-GMP phosphodiesterases possess a bi-
nuclear metal center with softer metal ions (e.g., the Mn2� of
BlrP1; hence, acidic residues dominate the metal-binding pocket,
in contrast to the histidines of Bd1817) and utilize an active-site
lysine residue to assist in the generation of hydroxide species (20,

21). The Bd1817 structure reveals that HD-GYP proteins probably
utilize one of the M1 coordinating residues for hydroxide activa-
tion, as the Nd2 group of N265 is 2.9 Å from W1 (Fig. 4b). Most
HD-GYP proteins possess an aspartate residue at the position
equivalent to N265 which would be able to perform acid-base
catalysis and be functionally homologous to similarly placed res-
idues in other binuclear phosphodiesterases (e.g., D392 of PDE4
[22]). Like the proposed EAL enzymatic mechanism (20, 21), the
bridging hydroxide is positioned to perform an in-line nucleo-
philic attack on the phosphorus atom (of the bound c-di-GMP
substrate; W1 is 3.1 Å from the bound phosphate ion). The direct
coordination of the phosphate oxygens by M1 (2.1 Å) and M2
(2.1 Å) will also polarize the substrate and assist in bond breakage
and transition state stabilization (formation of a pentacoordinate

TABLE 1 Data collection and refinement statisticsa

Parameter P21
A P21

B P1 P3121

Data collectionb

Space group P21 P21 P1 P3121
Cell dimensions

a, b, c (Å) 47.2, 79.8, 84.8 83.2, 45.5, 98 47.1, 49.4, 78.4 101, 101, 94.5
�, �, 	 (°) 90, 96, 90 90, 113.3, 90 73.2, 75.9, 67.4 90, 90, 120

Resolution (Å) 1.28 (1.35–1.28) 1.7 (1.79–1.7) 1.55 (1.63–1.55) 2.6 (2.78–2.6)
Rsym 11.0 (65.4) 5.3 (64.4) 8.0 (17.2) 7.9 (46.7)
Rpim 6.9 (41.6) 1.7 (29.3) 4.7 (13.8) 6.7 (42.2)
I/�I 9.8 (3.4) 25.0 (2.4) 13.4 (3.3) 5.9 (1.6)
Completeness (%) 99.6 (98.6) 97.7 (85.4) 90.0 (62.9) 97.2 (97.5)
Redundancy 6.9 (6.6) 10.1 (4.8) 5.5 (2.0) 1.9 (1.9)

Refinement
Resolution (Å) 1.28 1.7 1.55 2.6
No. of reflections 161,271 72,760 80,548 4,568
Rwork/Rfree 16.5/19.6 19.4/21.9 21.0/23.6 21.2/25.1
No. of atoms

Protein 5,024 4,997 4,887 2,424
Ligand/ion 34 14 22 7
Water 574 316 352 11

B factors
Protein 13.1 31.8 10.9 86.5
Ligand/ion 21.0 22.2 8.5 74.0
Water 25.0 32.6 16.2 64.6

RMS deviation
Bond length (Å) 0.005 0.006 0.006 0.008
Bond angle (°) 1.0 1.0 1.0 1.1

a Values in parentheses are for highest-resolution shell.
b Rsym, �|(Ihkl) � �I�|/�(Ihkl); Rpim, multiplicity-weighted merging R-factor.

FIG 4 Modular nature of the Bd1817 HD-GYP protein and active-site coordination of metal ions. Selected side chains and bound phosphate are shown in stick
form, and metal ions (tan, M1 leftmost and M2 rightmost) and bound hydroxide (red, W1) are shown in sphere form. (a) Ribbon diagram of Bd1817 with
individual domains colored separately as follows: NTD (aa 1 to 78), blue; linker helices (aa 79 to 146), yellow; HD-GYP domain (aa 147 to 308), white; lid region
subdomain (aa 188 to 211), green; GYP motif subdomain (aa 239 to 255), orange. (b) Detail of binuclear metal active site (HD-GYP domain). Fe-protein
interactions, purple dashed lines; hydroxide-protein interaction, green dashed line. (c) Schematic of binuclear metal site with coordination distances shown
(taken from chain A of the 1.28-Å P21

A crystal form).
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intermediate). With the leaving group (O3=) situated opposite the
attacking species (hydroxide), the Bd1817 structure predicts that
the O3= end of the c-di-GMP substrate would face toward L194
and F273, with the O5A end oriented toward E238 and the GYP
motif (Fig. 7b). A consensus arginine (corresponding to Bd1817
E274, at the end of �5) is located opposite the edge of the lid, and
its conservation and position suggest possible complexation with
the second phosphodiester group of c-di-GMP. Leaving group
protonation in EAL enzymes has been postulated to occur via a
water-acidic residue relay (20, 21), but the precedent in HD su-

perfamily proteins is to use a residue one helical turn on from the
HD motif (e.g., HDxxE72 in YfbR, correlating with no observable
activity for the E72A mutant [13]). The equivalent residue in
Bd1817 is H187, which hydrogen bonds to the M1-interacting
phosphate oxygen atom, not the atom corresponding to the c-di-
GMP O3= group. This situation may be altered in other members
of the HD-GYP family, where the consensus residue at this posi-
tion is lysine, with its longer side chain; indeed, the HDxxK127

region in the HD superfamily protein myo-inositol oxygenase is in
such a “productive” orientation (15). The lack of space around the
non-metal-complexed oxygens of the bound phosphate ion sug-
gests that a conformational change would be necessary to accom-
modate the c-di-GMP substrate, commensurate with the pro-
posed regulation of HD-GYP activity by appended sensory
domains (2). A small rearrangement of the lid region would allow
an expansion of the active-site cleft, and the analogous region in
other HD superfamily proteins has been shown to envelop the
substrate in a lid-like manner (15) and also to be subject to mo-
bility/disorder (e.g., the unstructured nature of this loop in YfbR
[13]). Residues W209 and R269 have smaller counterparts in con-
sensus sequences (Fig. 1 and 7c), which may also aid substrate
binding and may be the reason why no c-di-GMP binding was
observed—although again, the possibility of a lack of an appro-
priate stimulus at the NTD cannot be ruled out. Comparatively,
the HD-GYP domain active site is likely to “enclose” the substrate
(as judged by the relative burial of the binuclear metal center), in
contrast to EAL �8�8 barrels, which bind the substrate largely via
one face (20). It is tempting to speculate that this enclosure, in
tandem with an architecture that results in greater contact with
the “proximal,” as opposed to “distal,” phosphate of the cyclic
substrate, would endow HD-GYP proteins with relatively greater
activity than EAL proteins in hydrolyzing the linear pGpG inter-
mediate occurring during the conversion of c-di-GMP to GMP.
Further studies with substrate or substrate analogues are necessary
to determine the precise mechanism of recognition and enzymatic
regulation, but the general features of the HD-GYP family out-
lined by the structure of Bd1817 (modularity, active-site architec-
ture, a GYP domain, and a binuclear metal center) will provide a

FIG 5 Features of the NTD. (a) The Bd1817 NTD (blue) possesses weak structural homology with the Ral-binding domain of Exo84 (cyan; PDB code 1ZC3
[11]), ending at the point where the Bd1817 linker region (yellow) starts. In the P21

B crystal form, residues �11 to 3 of chain B (the polyhistidine tag with the
thrombin site left uncleaved [red]) are highly ordered and bind into a cleft formed between the NTD and linker region of chain A. This interaction occurs in a
region identical to that of the Exo84 binding partner RalA (magenta), albeit running in different chain directions. (b) Detail of affinity tag-NTD interaction.
Selected side chains are shown in stick form.

FIG 6 Comparison of the HD-GYP fold with a representative of the wider
HD family. Bd1817 (yellow; GYP motif orange) and the HD protein YfbR
(PDB code 2PAQ [13]; blue) are shown superimposed, with the HD residues of
Bd1817 in stick form and the active-site binuclear metal center in sphere form.
It is apparent that all of the �-helices of the HD-GYP fold have counterparts in
the generalized HD fold, although �6 sits at an angle different from that of its
counterpart in YfbR. The lid region of Bd1817 corresponds to a flexible loop of
YfbR (lower left-hand area of image, left unmodeled). Comparatively, the GYP
motif of Bd1817 replaces the short interhelical loop of HD proteins (between
�4 and �5 equivalents, the 20 residues between Bd1817 aa 236 and 255 con-
trasting with the 5 residues between YfbR aa 122 and 126).
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model for investigating other members of this diverse class of
signaling proteins.

MATERIALS AND METHODS
Cloning of the Bd1817 gene. Nucleotide primers 5= GCAGCGGCCTGG
TGCCGCGCGGCAGCCATATGGATTATGTTTCTATACGAGTAAGC
3= and 5= CTCAGTGGTGGTGGTGGTGGTGCTCGAGCTAGAGCCCC
TTCAGGATGTCGTTCAG 3= were used to amplify the region encoding
Bd1817 (the full-length protein, aa 1 to 308) from B. bacteriovorus HD100
genomic DNA. The product, inserted into expression plasmid pET28b
(Novagen) in a restriction-free process (23), was utilized in a second-
round PCR. The construct was confirmed by sequencing and introduced
into E. coli expression strain BL21 
DE3.

In vivo studies of Bd1817. The Bd1817 gene was deleted silently to
leave the first two and the last three codons in frame, using reciprocal
recombination of a construct conjugated into B. bacteriovorus HD100
from suicide vector pK18mobsacB, and exconjugants were screened by
Southern blotting and reverse transcription (RT)-PCR to verify the gene
deletion. The mobilizable vector pSUP404.2 (24) was used to express
Bd1817 with 200 bp of up- and downstream DNA for complementation
studies. RT-PCR was used to confirm gene expression during comple-
mentation by this plasmid construct, and RT-PCR by standard methods
(25) was used to detect the expression of Bd1817 during predatory and
axenic growth. The predicted open reading frame of Bd1817 without the
stop codon was fused to the mCherry gene with a 5-aa linker, and this
construct was cloned into pK18mobsacB. This construct was conjugated
into B. bacteriovorus HD100 to recombine with the genomic copy of the
gene, resulting in a tagged gene with the nascent promoter and a promot-
erless second copy of the gene. Kanamycin selection maintained this con-
struct.

Protein expression and purification. Cells were grown at 37°C until
they reached an optical density at 600 nm of ~0.8. Gene expression was
then induced with 0.2 mM isopropyl-�-D-thiogalactopyranoside for 21 h
at 20°C. Harvested cells (approximately 10 g from a 1.5-liter cell culture in
2� yeast extract-tryptone medium) were resuspended by tumbling in
30 ml buffer A (20 mM HEPES [pH 7.2], 0.3 M NaCl, 20 mM imidazole,
5% [vol/vol] glycerol) and lysed using sonication. Unbroken cells were
pelleted by centrifugation at 6,000 � g for 20 min, the supernatant was

clarified by a second centrifugation at 200,000 � g for 1.5 h, and the final
supernatant was applied to a 1-ml Hi-Trap His column preequilibrated in
buffer A. Fractions were eluted in a stepwise manner using buffer A con-
taining 40 and 300 mM imidazole. Approximately pure fractions of
Bd1817 were dialyzed overnight in buffer B (10 mM Tris [pH 7.2],
150 mM NaCl) and concentrated to a protein concentration of ~40 mg/
ml. The final yield from 1.5 liters of cell culture was ~80 mg of purified
protein. Bd1817 protein (and crystals) was noticeably yellow in color.

Crystallization and cryoprotection. Crystals were grown by the
hanging-drop method at 18°C using 1 �l of protein solution mixed with
an equal volume of reservoir solution. Initial crystallization conditions
were identified, giving several crystal forms—P21

A (0.1 M bis-Tris
[pH 5.5], 0.2 M ammonium acetate, 25% [wt/vol] PEG 3350, 20% [vol/
vol] dimethyl sulfoxide [DMSO]), P21

B (identical to the P21
A condition

except that no DMSO was used), P1 (identical to the P21
B condition

except for a doubling to 0.4 M ammonium acetate), and P3121 (2.1 M
DL-malic acid [pH 7.0]). Cryoprotection was attained by the sequential
addition of increments of mother liquor supplemented with 20% (vol/
vol) ethylene glycol, followed by subsequent flash cooling in liquid nitro-
gen.

Data collection and structure determination. Diffraction data (Ta-
ble 1) were collected on a home source (P21

B and P1 crystal forms) and at
beamline ID 23-1 of the European Synchrotron Radiation Facility (ESRF),
Grenoble, France (P21

A and P3121 crystal forms). Data were processed
using XDS (26) and scala (27), and data file manipulations were per-
formed using the CCP4 suite of programs (28). Initial phasing was accom-
plished using the P21

B crystal form home source data (Cu-K�, Rigaku
Micromax). Despite a relatively low anomalous multiplicity of 5.3, excel-
lent SAD phases were obtained using PHENIX autosolve (29), which lo-
cated 24 sites at 2.5-Å resolution (4 Fe, 2 PO4, 16 Met sulfur, 2 Cys sulfur).
The overall figure of merit for phasing was 0.49. Density modification and
2-fold noncrystallographic symmetry averaging with PHENIX yielded a
readily interpretable map, and the molecule was built manually using
COOT (30). Chain A from the P21

B crystal form was used as a search
model to determine the other crystal form structures by molecular re-
placement with PHASER (31). All crystal forms were refined using
PHENIX (29) and possess essentially identical structures. The final mod-

FIG 7 Structure of the GYP region of the fold and possible site for c-di-GMP binding. (a) Detail of the GYP motif (residues 239 to 255; orange), illustrating fold
stabilization by the conserved E239 side chain and tightly bound solvent molecule W2 (hydrogen bond interactions represented by dashed green line, backbone
amide and carbonyl groups represented by blue and red spheres, respectively). Proline 246 of the GYP motif (G-P for Bd1817, this structure) sits at the edge of
the second of two perpendicular U-shaped turns (with glycine 245, N atom shown as a blue sphere, preceding it). The GYP motif is located in a region close to
that of the binuclear metal active site (liganding residues are yellow). (b) Possible binding site modeled for a c-di-GMP substrate in HD-GYP proteins. The bound
phosphate in the Bd1817 structure was used as a guide to place c-di-GMP (stick form, C atoms magenta), with the 3= end located proximal to H187 (postulated
to protonate this group upon bond cleavage; see text). One of the guanine bases is positioned toward the GYP motif and a region formed by the S262 and H293
residues (consensus A and D, respectively), while the other base clashes with the lid region (green). Regardless of how c-di-GMP is positioned next to the
binuclear center, the restricted space available in this region suggests that a small conformational rearrangement of the lid region would be required to
accommodate the substrate if this structure of Bd1817 is representative of other HD-GYP active-site geometry. (c) Detail of several nonconsensus residues of
Bd1817 (single-letter code, C atoms blue, HD-GYP family consensus in parentheses; derived from Fig. 1), illustrating the position around the predicted
c-di-GMP-binding site (in surface representation, transparent to show side chain detail, metal sites and bound phosphate ion). In particular, the consensus
arginine at Bd1817 E274 would be well placed to contact the second c-di-GMP phosphate group (oriented toward the top in this view). The nonconsensus GYP
motif at aa 245 and 246 has been left unnumbered for clarity.
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els are of excellent stereochemical quality (Table 1). Structural figures
were prepared using Chimera (32).

Protein structure accession number. The atomic coordinates and
structure factors determined in this study have been deposited in the
Protein Data Bank (PDB; http://www.rcsb.org) under the following PDB
ID codes: 3TM8, P21

A; 3TMB, P21
B; 3TMC, P1; 3TMD, P3121.
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