
MINI REVIEW

published: 29 March 2016
doi: 10.3389/fnins.2016.00115

Frontiers in Neuroscience | www.frontiersin.org 1 March 2016 | Volume 10 | Article 115

Edited by:

Michael Pfeiffer,

University of Zurich and ETH (Swiss

Federal Institute of Technology of

Zurich), Switzerland

Reviewed by:

Emre O. Neftci,

University of California Irvine, USA

Soumyajit Mandal,

Case Western Reserve University,

USA

Gregory Kevin Cohen,

Western Sydney University, Australia

*Correspondence:

Anup Vanarse

avanarse@our.ecu.edu.au

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 05 October 2015

Accepted: 07 March 2016

Published: 29 March 2016

Citation:

Vanarse A, Osseiran A and Rassau A

(2016) A Review of Current

Neuromorphic Approaches for Vision,

Auditory, and Olfactory Sensors.

Front. Neurosci. 10:115.

doi: 10.3389/fnins.2016.00115

A Review of Current Neuromorphic
Approaches for Vision, Auditory, and
Olfactory Sensors

Anup Vanarse*, Adam Osseiran and Alexander Rassau

School of Engineering, Edith Cowan University, Joondalup, WA, Australia

Conventional vision, auditory, and olfactory sensors generate large volumes of redundant

data and as a result tend to consume excessive power. To address these shortcomings,

neuromorphic sensors have been developed. These sensors mimic the neuro-biological

architecture of sensory organs using aVLSI (analog Very Large Scale Integration) and

generate asynchronous spiking output that represents sensing information in ways

that are similar to neural signals. This allows for much lower power consumption due

to an ability to extract useful sensory information from sparse captured data. The

foundation for research in neuromorphic sensors was laid more than two decades

ago, but recent developments in understanding of biological sensing and advanced

electronics, have stimulated research on sophisticated neuromorphic sensors that

provide numerous advantages over conventional sensors. In this paper, we review the

current state-of-the-art in neuromorphic implementation of vision, auditory, and olfactory

sensors and identify key contributions across these fields. Bringing together these key

contributions we suggest a future research direction for further development of the

neuromorphic sensing field.

Keywords: neuromorphic sensors, retinomorphic sensors, neuromorphic audition, neuromorphic olfaction,

biomimetic sensors

INTRODUCTION

The field of neuromorphic engineering has been developing rapidly over the last decade. With
the growing trend toward embedding intelligence in day-to-day devices, we are constantly
making our surroundings smarter and more adaptive to our behavior. However, this technological
progression requires an ever increasing number of sensors and associated data storage (Tenore
and Etienne-Cummings, 2011). Along with the data processing challenges, factors such as power
consumption and financial viability limit the development of smart devices. Realizing these
limitations in the late 1980s, Carver Mead introduced the concept of neuromorphic engineering.
This interdisciplinary field addresses the underlying concepts of neurobiological architecture and
mimics its implementation using aVLSI. Neurobiological architecture is a low power consuming
system which learns through exposure; these attributes, along with sparse output are crucial design
criteria for neuromorphic systems (Mead, 1990).

Neuromorphic approaches have been applied in implementing neural processors, developing
neural networks, and particularly in electronic sensing where novel methodologies have been
developed (Chicca et al., 2014). In the mid 1980s, Max Delbrück, John Hopfield, Carver Mead,
and Richard Feynman collaborated to exploit the non-linear current characteristics of transistors
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(Indiveri and Horiuchi, 2011). Carver Mead, further highlighted
the excessive dissipation of energy through conventional
computing methods and the limitation of using transistors
merely as digital switching components. He proposed that the
analog physical properties of transistors could be exploited
to design adaptive and low power consuming sensors like
silicon retina and cochlea (Mead, 1990). With these models
as inspiration, neuromorphic concepts have been applied to
vision sensors, auditory sensors, and olfactory sensors. Current
sensor advances have been supported by massive parallelism,
asynchronous processing and self-organization (Douglas et al.,
1995; Liu et al., 2015).

As described in Hasler and Marr (2013), analog
implementation of neural-like systems are capable of
approaching equivalence to biological systems in terms of
power consumption and efficiency. Most of the research in
neuromorphic sensors has involved aVLSI; however, with rapidly
changing technology, digital electronics has also been applied
to implement neuromorphic concepts, particularly as it has
proved to be robust to internal and external noise (Sarpeshkar,
1998). Systems implemented using digital electronics are easily
programmed and upscaled (Sarpeshkar, 2006). Regardless of
whether analog or digital implementations are used, the lack
of standards and benchmarks for the output of neuromorphic
sensors may limit their development and adoption. In the
same way that the interfacing for neuromorphic sensors
uses standard Address Event Representation (AER; Boahen,
2000), a standardized method to evaluate sensor outputs
could help establish appropriate benchmarks for further
improvement. In this paper we review significant recent
contributions to neuromorphic vision, auditory, and olfactory
sensing and compare them to identify potential benchmarks for
neuromorphic sensors.

NEUROMORPHIC VISION SENSORS

Neuromorphic engineering concepts have been successfully
implemented to emulate biological sensory systems with
silicon retinas being a prominent example (Tenore and
Etienne-Cummings, 2011). Currently, vision sensing depends on
the conventional frame-based approach but regardless of whether
the scene changes, these frames are captured continuously and
this generates significant volumes of redundant data (Lichtsteiner
et al., 2008; Brandli et al., 2014). However, reducing the frame
capture rate may cause excessive information loss between
consecutive frames, particularly for real-time applications such
as machine vision and robotics. Such frame-based approaches
also consume substantial power and make data management
challenging (Posch et al., 2014). Attempts were made to control
the data output from these sensors by relaying information only
for changed values of pixels. However, off-sensor processing
and complex control strategies increased the overall power
consumption of the system (Lichtsteiner et al., 2008).

Mahowald and Mead implemented the first silicon retina
model inMahowald andMead (1991), that was both adaptive and
energy efficient, by emulating retina functionalities, especially
the cone cells, through analog properties of transistors and

introducing adaptive vision sensing., improved this model by
adding the functionalities of inner retina and parvo-magno
cells (Zaghloul and Boahen, 2004a,b). These attempts could
only model the retina in silicon, however, and did not provide
a realistic implementation for practical use. In response, the
neuromorphic community focused on the operating principle
of the neurobiological architecture rather than modeling the
overall sensory system. Specifically, this problem could be
solved by realizing the difference between temporal and spatial
contrasts. With the developments in AER, pixels could operate
individually as processing units and report any deviations in
temporal contrast. The spiking output is similar to the action
potentials generated by ganglion cells and consequently most
retinomorphic sensors now use AER communication (Posch
et al., 2014).

Tobi Delbruck built on the idea of adaptive photoreceptor
circuits developed in Delbruck and Mead (1994) and introduced
strategies for enhancing retinomorphic sensors. The 128 × 128
pixel Dynamic Vision Sensor (DVS) can be considered as the
product of several improvements through (Lichtsteiner et al.,
2004, 2006; Lichtsteiner and Delbruck, 2005) where the concepts
of differentiating ON/OFF events with respect to lumosity
change and relative lumosity change were implemented. DVS
established a benchmark in neuromorphic vision sensing with its
AER- based approach in which each individual pixel processed
the normalized time derivative of the sensed light and provided
an output in the form of spikes of the pixel addresses that
detect lumosity change. As an alternative approach, frame-based
temporal detection imagers (Gottardi et al., 2009; Cottini et al.,
2013) were developed. The operating principle of these imagers
was based on integration of the photocurrent between successive
frames and computing of the difference between them. However
these implementations have a limited speed response and a
low-dynamic range, 100 dB for Gottardi et al. (2009) and 52 dB
for Cottini et al. (2013). With features such as sub-millisecond
precision, dynamic range >120 dB, and low power consumption
of 23mW, DVS was a path-breaking discovery and was used in
various robotic and real-time systems (Rüedi et al., 2003; Drazen
et al., 2011; Brandli et al., 2013).

With DVS, a benchmark was established for essential
characteristics that a neuromorphic vision sensor should possess
and gave a clear direction for further research in vision sensing.
Developing on the basic idea of DVS, (Serrano-Gotarredona and
Linares-Barranco, 2013) enhanced the capabilities of DVS by
improving the contrast sensitivity by one order of magnitude
(down to 1.5%) and reducing power consumption to 4mW
and fixed pattern noise to 0.9% and thus the overall pixel
size of the sensor down to 30 × 31 µm2 per pixel. The
QVGA (304 × 240 pixel) ATIS (Asynchronous Time-based
Image Sensor) by Posch et al. (2011), implemented PWM (Pulse
Width Modulation) based intensity readout that improved the
dynamic range (143–125 dB) at the cost of increased pixel area
of 30 × 30 µm2. The inclusion of DVS pixel and PWM intensity
readout triples the sensor output data. Brandli et al. (2014)
proposed a hybrid approach between frame-based and frame-
free vision sensing. The 240 × 180 pixel DAVIS (Dynamic and
Active-pixel Vision Sensor) arose in part from contributions
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by Berner et al. (2013), in which the concept of integrating a
synchronous active-pixel sensor with asynchronous DVS pixels
was implemented.

The successful implementation of DAVIS set another
benchmark that will inspire future work toward neuromorphic
vision sensors that provides spatial details of static scenes while
also responding to dynamic temporal changes with minimum
latency. This will also drive efforts to improve the fill factor and
dynamic range.

NEUROMORPHIC AUDITORY SENSORS

The conventional method of sensing auditory signals is sampling
the data continuously for auditory input at an application specific
Nyquist frequency. This data undergoes Analog-to-Digital
Conversion (ADC) and further digital processing to generate
auditory frames. There is a significant power cost for high
resolution ADC and digital processing of auditory frames.
Although, this sampling rate can be altered dynamically to reduce
power consumption, there is a risk of losing critical information
due to low sampling rate. For applications such as auditory scene
analysis, it is necessary that such sensors use less power and
generate sparse data (Liu et al., 2014).

Lyon and Mead, proposed an auditory sensor in Lyon and
Mead (1988) that models the human cochlea using aVLSI. This
work addressed key concepts like automatic gain control, the
use of cascaded second-order resonant lowpass filters and the
necessary quality factors for auditory applications such as delay,
high-gain pseudoresonance, and sharp roll-off. Although, these
researchers implemented the bio-physics of both outer and inner
hair cells of the basilar membrane, this analog cochlea model
did not incorporate any biasing circuits for process, voltage, and
temperature variations. However, it was further improved by
addressing issues such as device mismatch, stability, and dynamic
range (Watts et al., 1992). By introducing “overlapping cochlear
cascades” (Sarpeshkar et al., 1998), established a novel approach
to the design of an aVLSI cochlea with dynamic range of 61 dB
that consumes 0.5mW. These early works underpinned further
studies in silicon cochlea design.

Crucially, the efforts in silicon cochlea research led to the
development of an auditory processor for cochlear implants
that operated on minimal power. Sarpeshkar and his colleagues
extending their work inWang et al. (1997) and Baker et al. (2003),
and taking inspiration from other contributions (Baker and
Sarpeshkar, 2003; Salthouse and Sarpeshkar, 2003), developed
an ultra-low power auditory processor for a bionic ear. This
processor can theoretically operate on a 100mAh rechargeable
battery for several years and features automatic gain control and
microphone pre-amplifier audio front end, so that the processor
converts the input signal to the desired dynamic range. The
digital output of the processor ensures its independence from
voltage and temperature variations. It operates over 16 channels
that are comprised of independently programmable bandpass
filters. Sarpeshkar et al. (2005) claimed that such processors
can be applied in systems needing low-powered portable speech
recognition front ends.

Along with cochlear implants, auditory scene analysis is a
crucial application for the silicon cochlea. The implementation
of AER to communicate output spikes stimulated further
research on developing a spatial auditory sensor. Building on
the silicon cochlea described by Van Schaik et al. (1996) and
a neuromorphic front end MEMS (Micro-Electro-Mechanical
Systems) microphone explained in Van Schaik and Shamma
(2004), Chan et al. (2007) developed AER EAR, a matched pair
of silicon cochlea with an AER interface. This auditory sensor
models the basilar membrane bio-physics by cascading low-pass
filters to provide output over 32 channels. The simplified
inner hair cell circuit and spiking neurons ensured sparse
asynchronous output; the design was tested for localization
applications by computing the interaural time delay between the
matched pair of silicon cochleas (Yu et al., 2009).

Further improvements including microphone pre-amplifiers
and per-channel capability led to the development of AEREAR2
(Liu et al., 2014), a 64 channel binaural audition sensor that
set a benchmark in neuromorphic audition. By integrating local
Digital-to-Analog Converters (DAC) that enable the quality
factors of individual channels to be adjusted, this sensor
overcomes most of the drawbacks of AEREAR. With improved
dynamic range, binaural structure, integrated microphone
preamplifiers, and biasing circuits for stability against voltage
and temperature variance, this sensor provides precise timing
of spikes over a USB interface. This approach was used in
complex applications like speaker identification (Li et al., 2012).
A thorough comparison between conventional cross-correlation
approaches and spike-based sound localization algorithms
shows that event-driven methods are about 40 times less
computationally demanding (Liu et al., 2014). Even more precise
and efficient neuromorphic auditory systems will be developed by
applying interesting approaches such as spike based audio front
ends described in Koickal et al. (2011).

NEUROMORPHIC OLFACTORY SENSORS

The development of artificial olfaction devices started with
Moncrieff (1961), who applied mechanical concepts to
measuring and determining odors. Since the development
of the electronic nose (Persaud and Dodd, 1982), emphasis has
been placed on developing olfactory sensors that are portable
and precise. Conventional olfactory sensors are large with
restricted portability and also impede reliability as the chemical
constituents in a target gas vary rapidly. These factors along
with high manufacturing costs have largely restricted the use of
such sensors to laboratory experiments and industries (Chiu and
Tang, 2013).

The electronic nose has benefited from CMOS and MEMS
technologies, advanced pattern matching methods and new
sensing materials (Gardner et al., 2010). Biologically based
olfaction systems have inspired a general structure for electronic
nose systems that are composed of a sensor array, signal
conditioning circuitry, and a pattern recognition unit (Raman
et al., 2008). By applying neuromorphic concepts, improvements
were made to this structure by integrating all these units on
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a single chip and implementing neural networks for pattern
recognition. Thomas Koickal and colleagues made a notable
contribution to developing an adaptive neuromorphic olfaction
chip. The CB polymer sensor array used in that system was
fabricated using the AMS 0.6 µm CMOS process (Koickal
et al., 2007). A novel design was implemented to cancel the
baseline sensor variations due to sensor poisoning and variation
in operating current specifications across different sensors. The
neuromorphic implementation simplified the odor detection
especially in the presence of background odor signals. This design
proved to be a technological benchmark to stimulate further
study in neuromorphic olfaction by introducing features like
on-chip Spike Timing Dependent Plasticity (STDP) learning,
reduced power consumption, and temporal spiking signals
output. Covington et al. (2007) developed a biomimetic mucosa
that can generate spatio-temporal output but improvements were
needed for reduced response times and odor delivery channel size
in this design.

Researchers have focused on implementing the critical
olfaction characteristics rather than emulating the entire
biological olfactory pathway. A 4 × 4 tin oxide gas sensor array
was designed (Ng et al., 2011) such that each row forms a group
of sensors showing similar drift behavior. It is possible to detect
a wide range of chemical gases by assigning the same catalyst to
each group of sensors. The firing delay in the spiking output from
these sensors generates a unique sequence of drift-insensitive
spikes (Ng et al., 2009). This output represents a signature for
a specific gas which is determined by matching it in a library
of 2-D spatio-temporal spike signatures. This approach reduces
the computation challenges involved in pattern matching (Ng
et al., 2010). The entire gas recognition circuit is fabricated and
implemented on a single CMOS chip and the power consumption
is as low as 6.6mW with 94.9% identification accuracy.

E-Nose described in Tang et al. (2011), consists of a
conducting polymer sensor chip, interface circuitry, ADC, and
a microprocessor with a pattern recognition algorithm and
an associated memory module. The output of this chip is a
unique signature of the target gas, but the inclusion of a pattern
matching algorithm instead of a neural network makes this
approach computationally expensive. This approach was also
used by Tang et al. (2010) to identify and classify fruity odors
and led to the development of a spiking neural network chip
that implements the Spike Timing Dependent Plasticity (STDP)
learning rule (Hsieh and Tang, 2012). The sensor array used for
sampling odor data is a commercial electronic nose (Cyranose
320). This work focused on the backend computation to identify
odor and the developed chip can identify three different odors
concurrently. The average power consumption is as low as 3.6
µW and mean testing accuracy is 87.59%. NEUROCHEM is an
important project lead by European universities that is focused
on developing a large sensor array for neuromorphic olfactory
systems (Bernabei et al., 2012). This conductive polymer sensor
array mimics the essential characteristics of biological Odor
Receptor Neurons (ORNs) including redundancy and sensitivity
to a wide range of volatile compounds.

The neuromorphic olfactory sensor literature indicates that
there is considerable scope for improving these sensors. The

CMOS chip by Thomas Koickal is a notable contribution in
neuromorphic olfaction and can be considered as a highly cited
research contribution in neuromorphic olfaction. Although,
there are several shortcomings in this implementation,
it proposes a novel architecture for olfactory sensors.
Improvements proposed in Ng et al. (2011) are promising
if the response time can be improved further. Chiu and Tang
(2013) also exposes gaps in interfacing, signal conditioning, and
pattern matching computations in neuromorphic olfaction.

TRENDS IN SENSOR FUSION

APPLICATION

While neuromorphic sensors offer benefits of low-power
consumption and sparse output data generation, the means to
process the spike-based data format is still limited. Decades
of research in digital image processing and digital signal
processing, has led to the development of advanced algorithms
and hardware architectures that allowed efficient processing of
conventional outputs (e.g., frame-based and audio samples). As
techniques for high-level processing of event-based data are still
under development, the large-scale application of neuromorphic
sensors depends on the introduction of these techniques.
However, advanced research in neuromorphic sensors has
increased the application scope of these sensors in intelligent
embedded systems. Prototypes of neuromorphic vision and
auditory sensors evolved into commercial products such as
the DVS128 PAER and DAS1. However, most of the systems
that make use of neuromorphic sensing implement only a
single type of sensor such as vision or auditory. Rajapakse and
Acharya (1991) and Bečanović et al. (2005) were among the
first who targeted the development of platforms for interfacing
multiple neuromorphic sensors. Chan et al. (2012) implemented
sensor fusion of Audio-Video (AV) neuromorphic sensors and
presented an advanced version of the Koala robot that was
first developed by Bečanović et al. (2005) for object tracking.
Development of neuromorphic processing boards under large
scale projects such as CAVIAR, BrainScaleS and SpiNNaker,
promotes the idea of sensor fusion, and data correlation. By
utilizing concepts like the spiking Deep Belief Network (DBN;
O’Connor et al., 2013), the idea of multi-sensor neuromorphic
systems can be brought to fruition. Such systems can have
numerous applications in fields such as robotics, biosecurity and
environmental monitoring to name a few.

CONCLUSION

In this paper, we have reviewed some of the most
significant research contributions toward the improvement
of neuromorphic vision, auditory, and olfactory sensors. The
distinctive properties of neuromorphic sensors, such as sparse
data output and low power consumption have led to extensive
research and commercialization. The concept of developing
neuromorphic sensors by emulating neuro-biological sensing
in silicon has been progressing for many years. More recently,
path-breaking research in biological sensing has provided an
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impetus to developments in neuromorphic sensing, especially
in vision and auditory sensors. Pioneering contributions such
as DVS and DAVIS, and AEREAR2 have provided considerable
progress toward a sensor design that simulates neuro-biological
vision and auditory sensing. Accordingly, these have led to the
development of several applications for these sensors aiming at
replacing conventional sensors in vision and audition. What is
lacking is research that provides benchmarks for olfactory sensor
implementation and its performance evaluation. Subsequently,
future development in neuromorphic sensing should focus on
the correlation of inputs from different sensors and efficient
pre-processing. With this review we have identified challenges
for future research on neuromorphic olfaction, building on
the advancements made in vision and audition. In addition to
neuromorphic olfaction, future research directions should target
neuromorphic sensing of parameters such as pressure, vibration,

thermal, and magnetic field as well as their intercorrelated sensor
fusion functions which would be ideal for applications such as
the Internet of Things (IoT).
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