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An epidemic can be characterized by its strength (i.e., the reproductive number
R) and speed (i.e., the exponential growth rate r). Disease modellers have his-
torically placed much more emphasis on strength, in part because the
effectiveness of an intervention strategy is typically evaluated on this scale.
Here, we develop a mathematical framework for the classic, strength-based
paradigm and show that there is a dual speed-based paradigm which can pro-
vide complementary insights. In particular, we note that r = 0 is a threshold for
disease spread, just likeR ¼ 1 [1], and show that we can measure the strength
and speed of an intervention on the same scale as the strength and speed of an
epidemic, respectively. We argue that, while the strength-based paradigm
provides the clearest insight into certain questions, the speed-based paradigm
provides the clearest view in other cases. As an example, we show that evalu-
ating the prospects of ‘test-and-treat’ interventions against the human
immunodeficiency virus (HIV) can be done more clearly on the speed than
strength scale, given uncertainty in the proportion of HIV spread that happens
early in the course of infection. We also discuss evaluating the effects of the
importance of pre-symptomatic transmission of the SARS-CoV-2 virus. We
suggest that disease modellers should avoid over-emphasizing the reproduc-
tive number at the expense of the exponential growth rate, but instead look
at these as complementary measures.
1. Introduction
An epidemic can be described by its strength and speed. The strength of an
epidemic is characterized by the reproductive number R, which measures
how many new infections are caused by a typical infected individual. The
speed of an epidemic is characterized by the exponential growth rate r, which
measures how fast an epidemic grows at the population level. Knowing the
strength and speed of an epidemic allows predictions about the course of
the epidemic and the effectiveness of intervention strategies.

Much researchhasprioritized estimates ofR, andparticularly its value in a fully
susceptible population—called the basic reproductive numberR0—becauseR has a
threshold value (i.e.R ¼ 1) that determines whether a disease can invade, the level
of equilibrium, and the effectiveness of control efforts [2,3]. The insight that an infec-
tion must, on average, cause at least one new infection in a naive population for a
disease to persist goes back >100 years [4]; the idea of averaging by defining a ‘typi-
cal’ infectionwas formalized30years ago [3].R is also of interest because it provides
a prima facie prediction about the total size of an epidemic [2,5–8].

Here, we argue that the dominance ofR over r in the disease-dynamics litera-
ture is excessive: r has been under-rated as a metric. Like R, r can serve as a
threshold, and we show that it can also provide a useful metric for difficulty of
elimination (cf. [9]). We first generalize the idea that R measures the difficulty
of elimination by showing we can measure an intervention’s ‘strength’ on the
same scale as the reproductive number. We then show that we can likewise
measure an intervention’s ‘speed’ on the same scale as the growth rate. Thus,
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Figure 1. Effects of constant-strength and constant-speed intervention on infection kernels. Ebola-like gamma infection kernel ( pre-intervention) K pre(t) (mean:
16.2 days, CV: 0.58 and Rpre: 1.5) is shown in black [21]. The post-intervention kernel after applying each intervention strategy K post(t) is shown in red. (a) The
effect of a constant-strength intervention with θ = 1.5. A constant-strength intervention reduces the density by a constant proportion: K post(t) ¼ Kpre(t)=u; when
the strength of intervention matches the strength of epidemic (u ¼ Rpre), the resulting distribution is equivalent to the intrinsic generation-interval distribution
(K post(t) ¼ g(t)). (b) A constant-speed intervention with ϕ≈ 0.0267/day is applied to the same kernel. A constant-speed intervention reduces the density expo-
nentially: K post(t) ¼ K pre(t) exp (�ft); when the speed of intervention matches the speed of epidemic (f ¼ rpre), the resulting distribution is equivalent to the
initial backward generation-interval distribution (K post(t) ¼ b(t)). (Online version in colour.)
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there is a dual sense in which r also measures difficulty of elim-
ination. We argue that the primacy ofR over r is partly due to
history, and that there are caseswhere speed provides the better
framing for practical disease questions than strength (as well as
the reverse). We provide examples of both situations, for both
human immunodeficiency virus (HIV) and COVID-19.
2. Mathematical theory
(a) Epidemic model
We model disease incidence using the renewal equation, a
simple, flexible framework that can cover a wide range of
model structures [10–16]. In our model, disease incidence at
time t is given by:

i(t) ¼
ð
K(t, t)i(t� t) dt: (2:1)

Here, K(τ, t) is the infection kernel describing how infectious
we expect an individual infected τ time units ago to be in the
population. In general, K(τ, t) will depend on population
characteristics that may change through time t—notably, the
proportion of the population susceptible, S(t).

When K remains constant over time, the renewal
equation is equivalent to the Von Foerster equations (e.g.
[17]). Since we are interested in invasion and control, we will
often assume that changes in S through time are negligible
(as would be expected when disease levels are small)—that
is, S(t)≈ S(0). However, this focus does not mean we are only
interested in the initial period of exponential growth: the ability
of a disease to spread under conditions characteristic of a naive
population is commonly used as a criterion for whether it can
be eliminated under general conditions [17,18].
(b) Strength-based decomposition
If the infection kernel K is not changing with time, we can
write:

K(t) ¼ Rg(t), (2:2)
where g(τ) is the ‘intrinsic’ generation-interval distribution. The
generation interval is defined as the time between when a
person becomes infected and when that person infects another
person [19]; therefore, the intrinsic generation-interval distri-
bution g(τ) gives the relative infectiousness of an average
individual as a function of time since infection [20]. Since g is
a distribution, it integrates to 1, and the reproductive number
R is thus the integral of K.

Imagine we have a pre-intervention Kpre ¼ Rpreg(t) (we
generally suppress the suffix in gpre for readability) and a con-
trol measure that proportionally reduces K by a factor of θ, for
example, by protecting a fixed fraction of susceptibles
through vaccination (figure 1a). We then have:

Kpost(t) ¼
Rpre

u

� �
g(t): (2:3)

Since g integrates to 1, the reduction needed to prevent inva-
sion (or to eliminate disease) is exactly u ¼ Rpre. We call θ the
‘strength’ of the intervention; transmission is interrupted
when the strength of the intervention θ is larger than the
pre-intervention strength of spread Rpre.

We generalize this idea by allowing an intervention strat-
egy to reduce K by different proportions over the course of an
individual infection. We write the post-intervention kernel:

Kpost(t) ¼ Kpre(t)=L(t), (2:4)

where L(τ) is the average multiplicative reduction for
an individual infected time τ ago. The post-intervention
reproductive number is thus:

Rpost ¼
ð
Kpost(t) dt: (2:5)

This framework generalizes the work of [17], who made
parametric assumptions about the shape of L(τ).

We define the strength of the intervention L to be
u ¼ Rpre=Rpost. It is then straightforward to show that θ
is the harmonic mean of L(τ) weighted by the intrinsic
generation-interval distribution:

u ¼ 1=h1=L(t)ig(t): (2:6)
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As in the constant-L case above, we have that the disease
cannot spread when u � Rpre. In other words, θ generalizes
the well-known idea that R is a metric for how hard a disease
is to eliminate: we can measure the ‘strength’ of a control
measure, this must exceed the strength of the disease (R) to
achieve elimination.

We note that intervention function L and the strength of
intervention θ need not be calculated explicitly in many
contexts: they can usefully be thought of as abstractions
of existing modelling practices. Modellers typically rely on
mechanistic models (often based on ordinary differential
equations) to model disease spread and evaluate intervention
effects. By doing so, they make implicit assumptions about
the shape of L and therefore about θ.

(c) Speed-based decomposition
The above decomposition generalizes the argument that R is
the key parameter in evaluating whether a disease can be con-
trolled—one of the main foundations of historical primacy of
R. But we can in fact do an analogous decomposition based
on speed, and place r in a similar role.

The Euler–Lotka equation allows us to calculate the initial
exponential growth rate r of an epidemic given an infection
kernel K:

1 ¼
ð
K(t) exp (� rt) dt (2:7)

By analogy with the strength-based factorization (2.2), we can
rewrite (2.7) as a speed-based factorization:

K(t) ¼ b(t) exp (rt) (2:8)

Like g, b is a distribution: in this case, the initial backward
generation interval, which gives the distribution of realized
generation times (measured from the infectee’s point of
view) when the disease spreads exponentially [20,22].

Now imagine an idealized intervention that reduces
transmission at a constant hazard rate ϕ across the disease
generation (figure 1b), for example, by identifying and
isolating infectious individuals. We then have:

Kpost(t) ¼ Kpre(t) exp (�ft) (2:9)

The interpretation is that average infectiousness for under
this control regime is the product of the original infectious-
ness Kpre(t) (at age of infection τ) and the probability
exp (−ϕτ) of escaping the hazard of control up to that time.

Substituting (2.8):

Kpost(t) ¼ Kpre(t) exp (�ft) ¼ b(t) exp ((rpre � f)t) (2:10)

Since b is a distribution (which integrates to 1), the reduction
needed to prevent invasion (or to eliminate disease) is exactly
f ¼ rpre. We call ϕ the ‘speed’ of the intervention; trans-
mission is interrupted when the speed of the intervention is
faster than the speed of spread.

We generalize this idea by allowing the hazard rate h(τ) at
which K is reduced to vary through time, thus:

Kpost(t) ¼ Kpre(t) exp �
ðt
0
h(s) ds

� �
(2:11)

The associated post-intervention epidemic speed rpost is
given by:

1 ¼
ð
Kpost(t) exp (�rpostt) dt: (2:12)
We define the speed of a general intervention to be
f ¼ rpre � rpost. We can then show that ϕ is a (sort of ) mean
satisfying the implicit equation:

1 ¼ exp (ft)
exp

Ð t
0 h(s) ds

� �
* +

b(t)

(2:13)

Specifically, the speed ϕ is a mean of the hazard h in the sense
that an increase (or decrease) in h produces the same sign of
change in ϕ, and if h is constant across the generation then ϕ =
h. Like intervention strength θ, intervention speed ϕ is also an
abstraction—that is, the mechanistic models of interventions
make implicit assumptions about the shape of the hazard
rate h and therefore ϕ.

The disease cannot spread when f � rpre. In other words,
r, like R, is a metric for how hard a disease is to eliminate: we
can measure the ‘speed’ of a control measure, this must
exceed the speed of the disease (r) to achieve elimination.
Since both f � rpre and u � Rpre are conditions for control,
they are necessarily equivalent: the speed paradigm does
not provide a different answer, it provides a different way
of thinking about the steps to the correct answer.
3. Example: HIV
In this section, we use both strength- and speed-based
decompositions to evaluate intervention strategies for HIV. In
particular, we study how the amount of earlyHIV transmission
affects estimates of intervention effectiveness. These examples
are not detailed estimates for specific scenarios; instead, they
are meant to demonstrate how strength- and speed-based per-
spectives provide different qualitative insights, while yielding
the same quantitative answers.

We model the pre-intervention infection kernel of the HIV
as a sum of two gamma distributions:

Kpre(t) ¼ Rpre( pearly fearly(t)þ (1� pearly) f late(t)): (3:1)

The first component, fearly(t), models early HIV transmission
during the acute infection stage. We assume that fearly(t) has
a mean of three months [23] and a shape parameter of 3. The
second component, f late, models HIV transmission during
the asymptomatic stage and the disease stage (after pro-
gression to acquired immune deficiency syndrome (AIDS)).
We assume that f late(t) has a mean of 10 years [24,25] and a
shape parameter of 2 (to roughly match the wide generation-
interval distribution of HIV [17]). Finally, pearly is the
proportion of early HIV transmission.

The infection kernel is shown in (figure 2a) for our baseline
value of pearly ¼ 0:23. We assume that the pre-intervention
speed of the epidemic is rpre ¼ 0:452year�1 (figure 2b), and
ask what value of Rpre would produce this rate of growth.
When transmission is fast, (i.e. when pearly is large), individuals
do not need to transmit as much to achieve this speed, so the
estimated value of Rpre decreases (figure 2c). Therefore, as
pearly gets smaller, we expect stronger intervention to be
required in order to control the disease. Here,we are estimating
the pre-intervention reproductive number Rpre, using infor-
mation about the initial rate of spread rpre, as a proxy for the
difficulty of eventually eliminating HIV.

We compare two different possible intervention strategies
to shed light on the strength and speed decompositions.
First, we consider a condom intervention that reduces HIV
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Figure 2. The infection kernel of HIV. (a) The infection kernel of HIV is approximated using a sum of two gamma distributions. We assume that the baseline
proportion of early transmission is 23% [26]. (b) Time series of HIV prevalence in pregnant women in South Africa, 1990–2010 [27]. The initial exponential growth
rate of the HIV is estimated by fitting a straight line to log-prevalence (1990–1997) by minimizing the sum of squares. (c) Increase in the estimate of the amount of
early transmission reduces the estimate of the reproductive number. The black circle indicates the baseline scenario.
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transmission by an average of approximately 75%. Assuming
that condoms act as a physical barrier, and that condom use
will, on average, remain roughly constant through time, it is
reasonable to model the multiplicative reduction in trans-
mission due to condom use as constant across the course of
infection: Lcondom ¼ 1=(1� 0:75) ¼ 4 (figure 3a). The estimated
strength of such an intervention is simply the average of
Lcondom, i.e. θ = 4, whereas the estimated strength of the epi-
demic Rpre decreases as the proportion of early transmission
pearly increases (figure 3b). Thus, the predicted effectiveness
of the condom intervention will depend strongly on our esti-
mate of the importance of early transmission: if the amount
of early transmission is low, we infer that disease spread is
too strong to be controlled completely by our intervention.

Next, we consider a ‘test-and-treat’ strategy in which
infected individuals are identified, linked to care and receive
antiretroviral therapy (ART) with the goal of both preserving
health and preventing transmission through viral suppression.
[28–30]. Our assumptions for this scenario are shown in
figure 4.We assume that the hazard rate htest of this intervention
starts at 0 (because there is no way for newly infected individ-
uals to know that they have HIV) but increases very quickly
(because sexually active individuals are the most likely to seek
testing); after a few months, the assumed hazard rate goes
down to account for the effects of people who avoid identifi-
cation, persistent treatment failures, and the possibility of rare
transmission even under effective treatment (figure 4c). The cor-
responding strength of intervention Ltest is shown in figure 4a
and details of the assumption are given in the caption.

In this example, we see that, as pearly goes down and our
estimate of epidemic strength increases, the estimate of inter-
vention strength increases roughly in parallel. The increase in
intervention strength makes sense: less early transmission
means more time to reach people before they transmit and
higher strength of control. This is the core of the result of
[31]. In our scenario, we predict that the intervention remains
effective over the range of considered parameters.

Though there is a clear intuition for why both strengths
increase as early transmission goes down, the speed paradigm
provides insight intowhy these two increases are so close to par-
allel. The estimated epidemic speed depends only on the
observed growth rate—it does not change if we change our
assumption about the proportion of early transmission. For the
test-and-treat intervention, the effective intervention speed also
stays relatively constant (figure 4d), in part because we have
(plausibly) assumed that the hazard stays relatively constant
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for a few key months, and in part because the backward gener-
ation-interval distributions for different scenarios are relatively
similar (electronic supplementary material figure). The effective
intervention speed increases slightly as the proportion of early
transmission increases because the subpopulation that the inter-
vention fails to reach becomes relatively more important if late
transmission is more important. Thus, the speed paradigm pro-
vides an intuitive underpinning for the originally surprising
result of [31]: the effectiveness of test-and-treat interventions
shouldnotdependmuchon theproportionof early transmission.

We reiterate that a complete calculation using the same
assumptions under either paradigm will necessarily provide
consistent answers. But in this particular case, the speed
paradigmprovides an answerwhose causes are easier to under-
stand. We argue that it is therefore easier to assess and
investigate the necessarily incomplete assumptions that
underlie the conclusion.
4. Example: COVID-19
There has been a great deal of discussion of the importance
of pre-symptomatic transmission of COVID-19 [9,32,33].
Pre-symptomatic transmission is likely to be hard to detect,
and therefore hard to prevent. Thus, it might be supposed
that an increase in the estimated importance of pre-
symptomatic transmission would lead to an increase in the
estimated difficulty of control.

A generation-interval perspective [21] can be used to chal-
lenge this view. Here, we use a compartmental model as a
concrete example (see electronic supplementary materials
for details); however, the qualitative conclusions are not
specific to the example. The model assumes that infected
individuals progress sequentially through three stages of
infection: exposed, pre-symptomatic and symptomatic. We
assume that pre-symptomatic and symptomatic individuals
can transmit infection at rates βp and βs for average durations
of Dp and Ds days, respectively; thus, the pre-intervention
proportion of pre-symptomatic transmission is given by:

p ¼ bpDp=(bpDp þ bsDs): (4:1)

We are interested in the effect of the proportion of pre-
symptomatic transmission on different intervention strategies,
assuming that rpre is known.

More early transmission means shorter generation inter-
vals (figure 5a) and, for a given value of observed rpre, less
transmission per individual—that is, a lower value of Rpre

(figure 5b). Thus, although earlier transmission could make
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intervention less effective, it also means that less intervention
may be necessary. For generalized interventions like lock-
downs, which are generally assumed to affect everyone
roughly equally, the strength-based perspective thus gives a
clear answer: more early transmission means we will con-
clude that non-targeted interventions are more effective,
because the effectiveness of intervention is not affected by
the amount of early transmission (figure 5b).

For interventions that target infected individuals, like con-
tact tracing or test-based isolation, the speed-based paradigm
provides clearer insight into the likely effects of early trans-
mission (figure 5c). More early transmission does not change
our estimate of the pre-intervention speed of the epidemic
rpre, which is inferred from data. But it changes our estimate
of the effective speed of a given intervention because more
early transmission gives more weight in the calculation of
effective speed (ϕ) to the early period of infection.
For symptom-based interventions (e.g. self-isolation of
symptomatic cases), the hazard of intervention will increase
over time as individuals have higher probability of developing
symptoms later on—therefore, more early transmission causes
the speed of intervention to decrease and makes the control
harder. For infection-based interventions (e.g. contact tracing),
the hazard of intervention will start high and decrease as cases
are most likely to be identified early on—in this case, more
early transmission causes the effective speed of intervention
to increase, and makes control easier—a result that is not
obvious without the speed-based paradigm.

We also find that symptom-based interventions are extre-
mely sensitive to the proportion of early transmission. This is
because early transmission cannot, in our definition, be
controlled by symptom-based interventions.
5. Discussion
The effectiveness of an epidemic intervention is often
measured by its ability to reduce the reproductive number—R,
or outbreak ‘strength’—below 1. The exponential growth
rate—r, or outbreak ‘speed’—is often seen just as a stepping
stone to R or even overlooked entirely [34]. We argue that R
and r provide equally valid, complementary perspectives on
epidemic control, and that there are situations where each
provides a clearer picture than the other.

In this study, we first extended the standard paradigm of
R as a critical parameter for control, by defining the strength
of an intervention on the same scale as R, the strength of the
epidemic (if control strength u . Rpre then Rpost , 1 and the
epidemic will be controlled). We then constructed a parallel
interpretation which measures the speed of an intervention
on the same scale as r, the speed of an epidemic (if control
speed f . rpre then rpost , 0 and the epidemic will be con-
trolled). We thus showed that the standard paradigm for R
and control has a natural parallel interpretation in terms of r.

To illustrate this idea, we used simple assumptions to
explore the effects of two HIV intervention strategies (con-
doms and test-and-treat), using both strength- and speed-
based frameworks. In particular, we provided an alternative
explanation for the result of [31] who used detailed math-
ematical modelling of HIV transmission to show that the
amount of early transmission has little effect on predicted
effectiveness of a test and treat intervention: we can control
an outbreak if we can identify infected individuals and
enroll them on ART faster than the observed rate at which
new cases are generated, which does not depend on the esti-
mates of the amount of early transmission. The original
explanation of the result relied on a strength-based argument:
increasing the amount of early transmission decreases the
basic reproductive number, which negatively correlates with
the outcome of the ART intervention [31]. The speed para-
digm provides an additional insight: since we expect more
early transmission to make our estimate of intervention
speed (a little) faster, higher amounts of early transmission
(when controlling for the observed initial growth rate) are
expected to make control via test-and-treat (a little) easier.

We also discussed the question of uncertainties introduced
by the unknown proportion of COVID-19 transmission that is
pre-symptomatic. We showed that the strength-based para-
digm provides clear insight into how this uncertainty affects
interventions targeted to the general population, while the
speed-based paradigm is a clearer way to think about interven-
tions targeted to infected people. We concluded that a higher
estimate of pre-symptomatic transmission increases estimated
effectiveness of contact-based interventions and decreases
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estimated effectiveness of symptom-based interventions. In
hindsight, these conclusions are consistent with common
sense, but in practice the speed-based framework provides a
clear way to think about these questions.

While both strength- and speed-based frameworks can
give the same conclusion about the outcome of an interven-
tion, sometimes one provides a clearer understanding of a
given measure, as we’ve argued above. In general, we
expect the speed-based framework to be clearer for character-
izing newly invading pathogens: when an epidemic is
growing exponentially, r can be directly observed from case
data but the reproductive number cannot be estimated with
confidence [35], especially when there is large uncertainty
in the shape of the generation-interval distribution [34]. Con-
versely, we expect the strength-based framework to be clearer
for evaluating established pathogens (based on the effective
proportion of the population susceptible).

Thinking explicitly about the two perspectives can also
reduce confusion. Because of the dominance of the strength
paradigm, researchers often explore different scenarios while
holding R fixed. Fixed R is in fact a good default assumption
for many endemic diseases. For invading diseases, however, r
is likely to be better constrained by data than R. In this case,
comparing scenarios while holding R fixed creates a bias that
makes scenarios with faster transmission at the individual
level (i.e. higher proportion of early transmission) look rela-
tively more dangerous, because these scenarios will have r
faster than the observed value [21,31,36].

For interventions, we expect the speed-based frame-
work to be clearer for evaluating intervention strategies that
target infected people, like test-and-treat for HIV [29], or
contact-tracing and quarantine for COVID-19 [33]. We
expect the strength-based framework to be clearer for inter-
vention strategies that target the general population, like
condom use, or susceptible people, like prophylaxis. In
other cases, such as real-time rollout of vaccines during an
outbreak, both strength and speed approaches might be simi-
larly uncertain because the result depends both on the speed
of the rollout and the (strength-like) final coverage [37].

When comparing proposed interventions with estimated
epidemic parameters to evaluate strategies, the situation is
similar. Some scenarios lend themselves naturally to a
single approach. For example, in the classic case of vacci-
nation to eliminate a previously established childhood
disease, both disease spread and intervention can be clearly
characterized using strength [18]. In our HIV example, both
the HIV epidemic and the test-and-treat intervention can be
best characterized using speed. Other cases, such as using
social distancing (a strength-like intervention) in the early
stages of COVID-19 (epidemic speed is observed) may not
fit so neatly into either paradigm, however. With sufficiently
detailed assumptions, we could do a correct calculation for
any scenario in any paradigm. But in many of these
examples, using the more appropriate paradigm for each
scenario lets us know what to expect, and may strengthen
our intuition for how the assumptions lead to the result.

In population ecology, the duality between strength and
speed is more widely recognized. For example, when a popu-
lation is regulated by density dependence that affects all
individuals identically, r may be the best measure of fitness,
but when regulation primarily affects juvenile mortality, R
is likely to be superior [38,39]. There is also a link between
the duality of these perspectives and the evolutionary trade-
off between speed and strength, commonly theorized as a
trade-off between r and carrying capacity K [40].

The importance of speed-based perspectives are still
rarely recognized in the case of infectious disease, however.
Responses to the 2014 Ebola outbreak in West Africa and the
recent COVID-19 outbreak show an over-emphasis on strength
at the expense of speed: during the early phases of both out-
breaks, many disease modellers tried to estimate R0 but
overlooked r. For example, only one out of seven preliminary
analyses of the COVID-19 outbreak that were published as pre-
prints between 23 and 26 January 2020 reported the doubling
time of an epidemic [41–47]. Subsequent studies then relied
on strength-based frameworks to evaluate the efficacy of
speed-like interventions, such as contact tracing [33,48,49],
with a few exceptions [9]. We suggest that infectious disease
modellers should be aware of the complementarity of these
two frameworks when analysing disease outbreaks.
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