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Excited state dynamics 
and exciton diffusion 
in triphenylamine/dicyanovinyl 
push–pull small molecule 
for organic optoelectronics
Benedito A. L. Raul1, Yuriy N. Luponosov2,3, Wenyan Yang4, Nikolay M. Surin2, 
Olivier Douhéret5, Jie Min4,6, Thomas L. C. Jansen1, Sergei A. Ponomarenko2,3 & 
Maxim S. Pshenichnikov1*

Triphenylamine-based small push–pull molecules have recently attracted substantial research 
attention due to their unique optoelectronic properties. Here, we investigate the excited state 
de-excitation dynamics and exciton diffusion in TPA-T-DCV-Ph-F small molecule, having simple 
chemical structure with asymmetrical architecture and end-capped with electron-withdrawing 
p-fluorodicyanovinyl group. The excited state lifetime in diluted solutions (0.04 ns in toluene and 
0.4 ns in chloroform) are found to be surprisingly shorter compared to the solid state (3 ns in PMMA 
matrix). Time-dependent density functional theory indicates that this behavior originates from non-
radiative relaxation of the excited state through a conical intersection between the ground and singlet 
excited state potential energy surfaces. Exciton diffusion length of ~ 16 nm in solution processed films 
was retrieved by employing time-resolved photoluminescence volume quenching measurements with 
Monte Carlo simulations. As means of investigating the device performance of TPA-T-DCV-Ph-F, we 
manufactured solution and vacuum processed bulk heterojunction solar cells that yielded efficiencies 
of ~ 1.5% and ~ 3.7%, respectively. Our findings demonstrate that the short lifetime in solutions does 
not hinder per se long exciton diffusion length in films thereby granting applications of TPA-T-DCV-
Ph-F and similar push–pull molecules in vacuum and solution processable devices.

Conjugated small molecules, by virtue of their well-defined molecular structure and high reproducibility are 
deemed attractive for organic optoelectronics applications. Triphenylamine (TPA) based small molecules with 
the push–pull character have attracted a lot of attention for showing great potential as donor materials in organic 
solar cells (OSCs)1,2 and hole transporting layers in perovskite solar  cells3. Among them, asymmetrical TPA/
dicyanovinyl (DCV) based π-conjugated push–pull small molecules can be considered as one of the simplest 
class of donor materials for  OSCs4,5.

TPA/DCV based compounds offer many attractive advantages over polymers counterparts, such as vacuum 
and solution processability, facile synthesis and purification which allows for flexibility in molecular design, and 
better batch-to-batch  reproducibility6–8. Kozlov et al. have demonstrated that such materials provide the possibil-
ity of long exciton diffusion  length9, while their push–pull character facilitates efficient intra- and intermolecular 
charge  separation10 which potentially might lead to high values of open-circuit  voltage9. The aforementioned 
properties make TPA/DCV based materials promising candidates for commercial scale applications.
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Despite the extensive research on TPA/DCV small molecules, there are just few experimental and theoreti-
cal works which investigate their excited state photophysical  behavior6,10–15. Specifically, studies geared towards 
understanding the ultrafast photo-induced processes in solution and the corresponding correlation to the solid-
state have not been thoroughly addressed. Therefore, a detailed knowledge about the underlying mechanism 
governing the excited state dynamics in such materials is of utmost research importance to further improve the 
molecular design and push the frontier of device performance to the next  level16–18.

In this paper, we report on the excited state relaxation pathways and exciton diffusion dynamics in a TPA/
DCV based small molecule (TPA-T-DCV-Ph-F). We show that the excited state lifetime in solutions amounts 
to ~ 0.04 ns in toluene and ~ 0.4 ns in chloroform, which is substantially shorter than ~ 3 ns in the PMMA matrix. 
This unusual behavior is assigned to excited state non-radiative depopulation via conical intersection between 
the ground and excited state potential energy surfaces. By combining time-resolved photoluminescence (PL) 
volume quenching experiments with Monte-Carlo simulations, the exciton diffusion length in solution processed 
films of TPA-T-DCV-Ph-F is obtained as ~ 16 nm and found to be limited by the energetic disorder. To study 
the potential of TPA-T-DCV-Ph-F as a donor material in OSCs, vacuum and solution processed solar cells were 
manufactured with 3.7% and 1.5% power conversion efficiencies (PCE), respectively. The obtained results sug-
gest that the TPA-T-DCV-Ph-F molecule offers promising properties for organic optoelectronics provided that 
the energetic disorder is reduced.

Results and discussion
Synthesis, solubility, thermal stability, and electrochemical properties. Fluorination of chemi-
cal blocks in conjugated systems is regarded as a promising tool to control intramolecular and intermolecular 
 interactions19–23. The phase behavior, glass transition temperature and crystallinity of conjugated molecules can 
be precisely tuned by adjusting the number and positions of fluorine atoms. Furthermore, incorporating fluorine 
atoms into the chemical structure can effectively modulate the optical and optoelectronic properties, and there-
fore affect the device performance.

The synthetic route to TPA-T-DCV-Ph-F (Fig. 1) consists of two steps and is similar to its non-fluorinated 
analog TPA-T-DCV-Ph9. In the first step, {5-[4-(diphenylamino)phenyl]-2-thienyl}(4-fluorophenyl)metha-
none (2) was prepared in a reaction between lithium derivative of diphenyl[4-(2-thienyl)phenyl]amine9 (1) and 
4-fluorobenzoyl chloride in 50% yield. In the final second step, TPA-T-DCV-Ph-F was obtained in 80% yield by 
Knӧvenagel condensation between ketone (2) and malononitrile in pyridine using a microwave heating.

TPA-T-DCV-Ph-F has good solubility in chloroform (56 g/L) and in commonly used organic solvents, such 
as toluene, tetrahydrofuran and chlorobenzene; making the compound highly attractive for solution processed 
organic optoelectronics.

TPA-T-DCV-Ph-F exhibits excellent thermal stability both in air and under nitrogen with high decomposition 
temperatures at 389 °C and 397 °C (ESI, Sect. 1.2) respectively, which is similar to that of its analog TPA-T-DCV-
Ph9. The differential scanning calorimetry (DSC) studies of TPA-T-DCV-Ph-F revealed that the introduction 
of fluorine into the structure of the molecule influences the phase behavior. The first heating DSC scan (ESI, 
Sect. 1.2) shows high values of melting temperature  (Tm) but significantly lower value of melting enthalpy (ΔHm) 
compared to its non-fluorinated analog TPA-T-DCV-Ph9. This indicates that the fluorinated phenyl weakens 
intermolecular interactions that affect the molecular packing as it was previously reported for other fluorinated 
conjugated  materials23–25. However, after having melted TPA-T-DCV-Ph-F becomes amorphous as is evidenced 
by the subsequent second heating DSC scan, showing only a glass transition temperature (Tg) of about 70 °C.

Excited state dynamics in solution. The absorption and PL spectra of TPA-T-DCV-Ph-F in diluted 
solutions (toluene and chloroform) and in poly(methyl methacrylate) (PMMA) matrix are depicted in Fig. 2a. 
The dispersed TPA-T-DCV-Ph-F molecules in the PMMA matrix is used as a proxy to mimic the solutions 
with restriction of any potential photo-induced molecular motions, while still preventing intermolecular 
 interactions10,15. The absorption spectra consist of two bands (at ~ 300 nm and ~ 500 nm) that are typical for 
push–pull  molecules11,26. These bands have been previously assigned as having the mixed character due to the 
π–π* transition in the conjugated triphenyl-thiophene fragment and intramolecular charge transfer between the 
electron donating and the electron withdrawing  groups11,26.

The PL spectra were obtained upon excitation near the absorption maximum (at ~ 520 nm) for optimal 
light absorption; the Stokes shift values amount to ~ 0.34 eV in toluene and ~ 0.48 eV in chloroform. The larger 
Stokes shift in chloroform as compared to toluene is ascribed to the higher polarity of the former that leads to 
increased energy relaxation to longer  wavelengths27,28. The absorption and PL spectra maxima peak positions of 
the molecules dispersed in PMMA matrix are slightly shifted compared to the diluted solutions, which is also 
attributed to the difference in medium  polarizability10,15.

Figure 1.  Synthetic route to TPA-T-DCV-Ph-F.
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Figure 2b shows the PL transients of TPA-T-DCV-Ph-F in solutions and in PMMA matrix with the respective 
independently measured PL quantum yield (QY) values. The PL transients are fitted with mono-exponential 
function convoluted with a Gaussian apparatus function. The exponential fitting of the PL transients in solu-
tion yielded lifetime values of ~ 0.04 ns in toluene and ~ 0.4 ns in chloroform which is in line with increased PL 
QY from 0.01 to 0.04 in toluene and chloroform, respectively. Both short lifetimes and low PL QYs suggest the 
prevalence of non-radiative relaxation channels.

TPA-T-DCV-Ph-F undergoes strong change in dipole moment upon photoexcitation, with the electron den-
sity in the LUMO mainly delocalized on the acceptor unit DCV-Ph-F and in part on the thiophene linker (ESI, 
Sect. 3). This causes substantial reorientation of the polar solvent (such as chloroform with the dipole moment of 
1.1  D29) around TPA-T-DCV-Ph-F  molecules6; in the less polar toluene (dipole moment of 0.3  D29) the effect is 
much weaker. Therefore, the excited-state lifetimes and the PL QYs appear to be correlated with the solvent polar-
ity. These results are in agreement with earlier studies performed on other dissolved molecules in solvents with 
descending polarities, in which it was also found that the PL lifetime becomes shorter in less polar  solvents28,30. 
It was  suggested28,30 that the higher dipole moment of the solvent tends to stabilize the conformational changes 
at the excited state due to stronger solvent-fluorophore dipole–dipole interaction, causing by this manner the 
reduction in non-radiative decay and the subsequent increase in lifetime.

To demonstrate the applicability of this scenario, we dispersed TPA-T-DCV-Ph-F molecules in a PMMA 
matrix to restrain the possible molecular  conformations10,15. This resulted in much longer excited state lifetime 
of ~ 3 ns with the corresponding increase in PL QY (Fig. 2b). Similar behavior (known as solid state luminescence 
enhancement) has been previously  reported31,32 and assigned to a conical intersection (CI) between excited and 
ground states of the molecule in the liquid phase. To support such scenario for the TPA-T-DCV-Ph-F molecule, 
we performed time-dependent density functional theory (TDDFT).

TDDFT calculations. Electronic structure calculations were performed using the ORCA 4.0.133. We used 
the ω97X-D334 exchange correlation functional including dispersion in combination with the  TZV35 basis set. 
First, the geometry was optimized on the ground state potential energy surface. Then  TDDFT36 was used to 
calculate the excited states. The lowest excitation was found at 27,172 cm−1 and identified to be the strongest 
transition. It was verified that the ground state geometry and the lowest excitation energy were not significantly 
different (< 1% for the excitation energy) than that obtained with the larger and computationally demanding 
 TZVP36 basis set. The vibrational frequencies were obtained on both the ground state and the lowest excited 
state. On the excited state potential, two unbound degrees of freedom were identified. One involves rotation of 

Figure 2.  (a) Absorption (thick solid lines) and PL spectra (thin solid lines) of TPA-T-DCV-Ph-F in toluene 
(red) solution, chloroform solution (green), and in PMMA matrix (blue). (b) Experimental TPA-T-DCV-Ph-F 
PL transients (thin solid lines) in toluene (red) solution, chloroform (green) solution and in PMMA matrix 
(blue), obtained by integrating the PL maps (ESI, Sect. 2) in the 620–700 nm spectral range. The thick solid lines 
represent the result of mono-exponential fitting. The decay times and respective PL QY’s are shown next to the 
transients.
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the thiophene (Fig. 3a), while the other one involves motion of the nitrogen atoms in the DCV moiety as well as 
rearrangements around the TPA donating group in the other end of the molecule (Fig. 3b). The unbound degrees 
of freedom on the Franck–Condon point of the excited state surface demonstrate that in the excited state this 
geometry is not a local minimum, and the molecule can be expected to move when  excited37. Further analysis is 
needed to identify the excited state potential minimum.

A geometry optimization on the excited state potential energy surface starting in the ground state minimum 
configuration (Fig. 3c) deforms the molecule and leads to a geometry where the TDDFT calculations would not 
converge (Fig. 3d). This is because in this geometry the ground state and lowest excited state are near-degenerate, 
which leads the TDDFT procedure to fail. We therefore propose that this geometry is close to a CI. From the 
CI geometry, a further geometry optimization on the ground state potential surface leads to a new ground state 
geometry (Fig. 3e) with a slightly higher energy than the original geometry. This demonstrates that the molecule 
has at least one CI and at least two stable configurations on the ground state potential energy surface. The atomic 
movements (indicated by the arrows) have a large resemblance to the 27i  cm−1 mode (Fig. 3b) suggesting that 
this mode indeed plays a crucial role in the photo-isomerization.

The illustration of the potential energy surfaces of the lowest electronic states and the ground state as obtained 
by interpolation between energies obtained for the initial CI, and final geometries is presented in Fig. 4. The 
energy crossing point is observed between the singlet excited state and the ground state, indicating a non-
radiative de-excitation transition at the estimated CI position. The exact energy of the crossing point may be 
higher as the CI geometry was assigned at the excited state geometry optimization when the TDDFT calculation 

Figure 3.  Structures and motion of TPA-T-DCV-Ph-F in the excited states. Two unbound degrees of freedom 
identified at the excited state at the Frank–Condon point with imaginary frequency of 27i (a) and 88i  cm−1 (b). 
The arrows indicate atomic movements towards the CI. (c) The structure of the lowest energy configuration. (d) 
The structure identified near the conical intersection. (e) The local minimum configuration on the ground state 
potential energy surface identified from the energy minimization on the ground state potential energy surface 
starting from the conical intersection point. The arrows in (c) indicate the atomic movement towards the conical 
intersection structure shown in (d), while the arrows in (d) indicate the atomic movement towards the local 
minimum in (e). In all panels, the light green atoms are carbon, white is hydrogen, blue is nitrogen, yellow is 
sulfur and cyan is fluorine. The figure was created using VPython 7 (https ://vpyth on.org).

Figure 4.  Illustration of the energies along potential energy surfaces. The red, blue and black lines represent 
the energies of the singlet excited state, the excited triplet, and the ground state, respectively. FC are the Franck–
Condon points, CI is the conical intersection position, and ISC represents the singlet–triplet states intersystem 
crossing positions. The effective reaction coordinate indicates the consecutives excited state configurations.

https://vpython.org
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stopped converging. While excited state relaxations involving CI often happen on sub-picosecond  timescales38, 
for the TPA-T-DCV-Ph-F molecule dissolved in toluene, the timescale is ~ 40 ps. In a rigid environment, where 
the relatively large molecular deformation needed to reach the CI is efficiently suppressed, the relaxation process 
should be significantly slower, as observed in the experiments above.

Figure 4 also illustrate energy crossing points between the singlet excited state and the lowest triplet state, 
thereby potentially allowing the intersystem crossing (ISC). We did not explicitly calculate the rates for ISC and 
CI; however, ISC requires relativistic effects to change the spin while the TPA-T-DCV-Ph-F molecule does not 
contain heavy atoms. Therefore, the rate for this process is expected to be very low (typically sub-0.1 ns−1)39 so 
that the transition through the CI is likely much faster.

Excited state lifetime and energetic disorder in film. After having established that the excited state 
lifetime of the isolated TPA-T-DCV-Ph-F molecule varies from 40 ps in toluene solution to 3 ns in a PMMA 
matrix, we shift to TPA-T-DCV-Ph-F films where conformational movements of the molecule are restricted but 
intermolecular interactions becomes important. Figure 5a shows the PL transient of TPA-T-DCV-Ph-F solution 
processed neat film. The bi-modal behavior of the PL transient indicates that several photophysical processes 
contribute to the excited state dynamics. The fast decay is attributed to intermolecular energy  transfer40, with 
contribution of non-radiative decay induced by excitonic  traps41–43.

The PL transient was fitted with a bi-exponential function convoluted with a Gaussian apparatus function 
of ~ 10 ps. The average excited state lifetime was determined as:

where ai represent the pre-exponential factor and ti is the time constant. The weighted average exciton lifetime 
was determined to be ~ 3.7 ns while the measured PL QY was ~ 0.17. Both values are similar to those obtained 
in the PMMA matrix, which further substantiates our previous findings that the photo-induced molecular 
conformations are mostly restricted in the solid state.

Exciton diffusion in disordered medium is primarily characterized by downhill migration towards lower 
energy sites, which results on the dynamical red shift of  PL44. The total shift of PL mean energy stabilizes at 
�EPL = EPL(t = 0)− EPL(t = ∞) ∼=

σ 2

kT
 , where σ stands for standard deviation of the Gaussian density of states 

(i.e., the energetic disorder). Here the quasi-equilibrium is reached and the thermally activated hopping mainly 
contributes to the diffusion  process44. Figure 5b depicts the experimentally tracked dynamical PL mean energy 
for each time step. The total PL mean energy shift is �EPL ∼ 155meV , so that σ ∼ 65meV (at room temperature, 
kT ∼ 26meV).

Exciton diffusion length and coefficient. As means of acquiring quantitative information about the 
temporal and spatial evolution of the excited state population in solution processed films of TPA-T-DCV-Ph-F, 
we performed time-resolved PL volume quenching experiments combined with MC simulations, out of which 
the exciton diffusion length and exciton diffusion coefficient were  determined45,46.

(1)τav =

∑
i ait

2
i∑

i aiti
.

Figure 5.  (a) PL transient of neat film, was obtained by stitching the fast (< 2 ns) and slow (< 14 ns) transients 
after the respective integrations of the spectral kinetics in the 550–840 nm range (see ESI, Sect. 4). The solid 
pink line represents the experimental data, while the solid gray line is the result of bi-exponential fitting. The 
fitting parameter and PL QY are given next to the transient. (b) Experimental (solid pink line) and MC modeled 
(solid gray line) dynamical shift of PL mean energy. The experimental data was obtained by stitching the fast 
(< 2 ns) and slower dynamics (< 14 ns). As the density of states in the simulations is centered at 0 eV, we blue-
shifted the MC simulations value by 1.95 eV to match the experimental conditions. For clarity, the data is shown 
up to 8 ns as there are no changes afterwards.
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The commonly used acceptor in OSCs [6,6]-Phenyl-C61-butyric acid methyl ester  (PC60BM) was selected 
as a quenching molecule. The neat film and films mixed with various content of  PC60BM molecules (0.11%, 
0.27% and 0.55% molar ratios) were prepared by spin coating. The respective PL transients are shown in Fig. 6a. 
As expected, concentration increase of the quencher causes acceleration on the PL transients decay due to the 
diffusion-limited exciton  quenching45.

To quantify the quenching process, we plotted the PL quenching efficiency vs. PC60BM content (Fig. 6b). The 
PL quenching efficiency was determined  as47:

where Q is the PL quenching efficiency, PLquenched is the PL transient for the samples with different  PC60BM 
content, PLneat is the PL transient for the neat film. Quenching efficiency close to zero is an indication of mini-
mal exciton quenching, which occurs when the average separation of the quenchers is much longer than the 
exciton diffusion length. Significant quenching sets in when the average separation of the quenchers is shorter 
than the exciton diffusion length. Therefore, in the one-dimension case excitons diffuse for ~ 10 nm before being 
quenched, but in three-dimension (3D) there are additional pathways so that the average exciton diffusion length 
should be longer.

The experimental measured PL transients were modeled using MC simulations of a 3D exciton random 
walk in a cubic grid (for more details, see ESI, Sect. 6). As the energetic disorder has been obtained earlier, the 
modeled PL transients (Fig. 6a) were used to extract the exciton hopping time (τ ~ 0.1 ps), which was the only 
fit parameter. Then the PL quenching efficiencies (Fig. 6b) were calculated using the modeled PL transients. The 
simulated and experimental results are in good agreement; some discrepancies observed might be attributed 
to the non-homogenous distribution of PC60BM quencher molecules in the films or even possibly due to the 
formation of small PC60BM clusters as reported by Mikhnenko et al.47. This discrepancy only affects a small 
population of the excited state (~ 10%); therefore, it has little effect on the obtained results. The dynamical PL 
mean energy shift (Fig. 5b) is also satisfactorily described with some inconsistency at early times most probably 
caused by the limited resolution of the streak-camera.

The MC simulation data were further used to extract the values of exciton diffusion length and exciton dif-
fusion coefficient. The exciton diffusion length of ~ 16 nm was derived from the exciton displacement statistics 
as the mean value of displacement (Fig. 7a). In disordered organic semiconductors, exciton diffusion lengths 
typically range from 5 to 20  nm13,48,49; hence, the 16 nm exciton diffusion length in TPA-T-DCV-Ph-F falls into 
the long range. This is attributed to the long exciton average lifetime of ~ 3.7 ns and the relatively low energetic 
disorder of ~ 65 meV.

The differential form of the Einstein–Smoluchowski relation (ESI, Sect. 6) was used to obtain the dependence 
of the exciton diffusion coefficient on time (Fig. 7b). The early times (< 0.1 ns) are dominated by fast exciton 
cooling followed by slower diffusion where the thermal quasi-equilibrium is reached at the value of diffusion coef-
ficient of D ∼ 4.2× 10−4cm2s−1 . For comparison, diffusion coefficient of D ∼ 3.5× 10−3cm2s−1 was obtained 
in the highly ordered (energetic disorder of < 5 meV) vacuum-deposited  C70

50. According to MC simulations, 
had the energetic disorder been reduced from 65 to 5 meV in solution-processed films of TPA-T-DCV-Ph-F, the 
exciton diffusion length would have amounted to 50 nm. Therefore, the energetic disorder of ~ 65 meV limits the 

(2)Q = 1−
∫PLquencheddt

∫PLneatdt

Figure 6.  (a) Experimental PL transients of neat film and films with different PC60BM content. Their respective 
modeled PL transients with MC simulations are depicted in solid gray lines. See ESI, Sect. 6 for all the input 
parameters. (b) Relative quenching efficiency versus PC60BM content. The black circles are the experimental 
results and the gray line represent the modeled results. The average separation between PC60BM molecules was 
determined as described in ESI, Sect. 5.
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exciton diffusion coefficient (and the exciton diffusion length) in TPA-T-DCV-Ph-F solution processed films. In 
order to circumvent this limitation, the energetic disorder should be reduced; this can potentially be achieved 
by molecular  encapsulation51,52.

Device performance. To study the potential application of TPA-T-DCV-Ph-F as a donor material in 
organic solar cells, we fabricated solution processed devices with the conventional structure of indium tin oxide 
(ITO)/poly(3,4-ethylene dioxythiophene)poly(styrene sulfonate) (PEDOT:PSS)/active layer/perylene diimide 
functionalized with amino N-oxide (PDINO)/Al53, where [6,6]-Phenyl-C71-butyric acid methyl ester  (PC70BM) 
was chosen as the electron acceptor material. In order to obtain the best device performances, we carefully opti-
mized the fabrication parameters, including the donor:acceptor weight ratios and doctor-blading speeds (ESI, 
Sect. 7 for statistics and an AFM surface image). Figure 8a shows the current–density-voltage (J-V) curve of the 
optimized device and the corresponding photovoltaic parameters.

It has been demonstrated that in solution processed bulk heterojunction solar cells with non-optimal mor-
phology, a gradual increase in exciton diffusion length was followed by increase in short-circuit current when 
the films crystallinity and roughness were improved by meticulous post-deposition  treatments54,55. Hence, we 
speculate that the shorter exciton diffusion length of ~ 16 nm in solution processed films of TPA-T-DCV-Ph-F 
(compared to a longer exciton diffusion length of ~ 25 nm in vacuum evaporated films of its non-fluorinated 
analog TPA-T-DCV-Ph9), limits the device short-circuit current density (Jsc) to ~ 4.87 mA cm−2. In order to 
support this supposition, we fabricated vacuum processed bulk heterojunction devices (using the structure 
ITO/MoO3/1:1 TPA-T-DCV-Ph-F:  C70/bathocuproine/Al) (ESI, Sect. 7 for statistics) and obtained higher Jsc 

Figure 7.  (a) Monte-Carlo simulated distribution of exciton displacement in neat thin films of TPA-DVC-Ph-F. 
(b) Time dependent diffusion coefficient. The dash line corresponds to the value where the diffusion coefficient 
is stabilized at D ∼ 4.2× 10

−4
cm

2
s
−1 . The first 2 ns are presented in the log scale.

Figure 8.  (a) Solution processed OSC J-V characteristics and the photovoltaic parameters. (b) Vacuum 
processed OSC J-V characteristics and the photovoltaic parameters.
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of ~ 8.06 mA cm−2 (Fig. 8b), which probably indicates improvements in film morphology. Furthermore, the 
surface morphology of evaporated pristine TPA-T-DCV-Ph-F thin films, showed an initial bare crystallinity of 
the material that can be deduced by the observed decrease of the RMS roughness of the surface, from 0.55 nm 
to 0.32 nm after thermal annealing at 100 °C for 10 min (ESI, Sect. 7 for AFM images). The initial roughness is 
already extremely low which indicates sharp control of thickness and flatness on evaporated TPA-T-DCV-Ph-F 
pristine films.

The obtained results demonstrate the potential application of simple TPA-T-DCV-Ph-F molecules for both 
vacuum and solution processed organic optoelectronics devices.

Conclusions
In this paper, we have investigated the excited-state and exciton dynamics of a small push–pull molecule TPA-
T-DCV-Ph-F. The experimental results revealed that the excited state lifetime in solutions (0.04 ns in toluene 
and 0.4 ns in chloroform) are shorter than in solid state (3 ns in PMMA matrix). With the support of TDDFT 
calculations, we concluded that this phenomenon is attributed to excited state non-radiative depopulation in 
solution from conical intersection between the ground and singlet excited state potential energy surfaces. Fur-
thermore, by combining time-resolved PL and MC simulations we extracted exciton diffusion length of ~ 16 nm 
in solution-processed layer of TPA-T-DCV-Ph-F. To investigate the potential of TPA-T-DCV-Ph-F as donor 
material in OSCs, we manufactured vacuum and solution processed solar cells that yielded efficiencies of ~ 3.7% 
and 1.5%, respectively. Our findings shed light on the photophysics of TPA-T-DCV-Ph-F and pave the way for 
vacuum and solution processable TPA/DCV based materials with long exciton diffusion length for organic 
optoelectronic applications.

Methods
Sample preparation. The solutions for the neat and mixed thin films were initially separately prepared 
using chloroform at different concentrations of 10 g/L for TPA-T-DCV-Ph-F and 0.02–0.04 g/L for PC60BM , 
then it was let stir for 2 h at room temperature. The solutions were then mixed to achieve the desired PC60BM /
TPA-T-DCV-Ph-F molar ratios (0.11%, 0.27% and 0.55%) and stirred for another 2 h. The films were prepared 
by spin coating the solution in a plain glass substrate (1 cm x 1 cm). For the matrix, PMMA (sigma Aldrich, 
Mw = 120,000 g/mol) was dissolved in chloroform at a concentration of 150 g/L and stirred at room temperature 
for 8 h. Solution of TPA-T-DCV-Ph-F and PMMA were mixed to achieve the volume ratio TPA-T-DCV-Ph-F/
PMMA of 0.2 and stirred for 2 h. The matrix was prepared by spin coating the solution in a plain glass substrate. 
For the highly diluted toluene and chloroform solutions, the concentrated solutions (10 g/L) were further diluted 
to obtain optical densities in range of 0.06 to 0.12 at absorption maximum in a 2 mm quartz cuvette.

Time resolved photoluminescence, absorption and photoluminescence quantum yield. Time-
resolved photoluminescence measurements were performed using a streak camera (Hamamatsu, C5680) and a 
spectrograph. To measure the early time dynamics (< 2 ns), the mode-locked output from the Ti:sapphire oscil-
lator (Mira 900, 76 MHz repetition rate) was focused on the Newport SGC-800 hollow fiber producing a super-
continuum. The excitation wavelength of 520 nm was obtained by selecting a portion of the supercontinuum 
with a bandpass filter of 520 nm central wavelength and FWHM of 10 nm. For the slower dynamics (< 14 ns), 
a pulse picker was used to lower the repetition rate of the Ti: sapphire oscillator from 76 to 2 MHz. A long pass 
filter (OG550) was placed before the spectrograph to filter the excitation stray light. The excitation power was set 
between 0.5–4 µW to avoid the possibility of exciton-exciton annihilation and photobleaching.

The absorption spectra were obtained with a PerkinElmer Lambda 900 UV/VIS/NIR spectrometer.
The photoluminescence quantum yield of toluene and chloroform solutions were determined by comparing 

with the known quantum yield of the standard solution of 1,4-bis(5-phenyloxazol-2-yl)benzene (POPOP) in 
cyclohexane (PL QY ~ 1), using the fluorescence measurement method for optically diluted  solutions56. Measure-
ments of the photoluminescence quantum yield in PMMA matrix and polycrystalline thin films were carried 
out using integrating sphere.
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