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A B S T R A C T   

Objective: COVID-19 is a novel, severely contagious disease with enormous negative impact on humanity as well 
as the world economy. An expeditious, feasible tool for detecting COVID-19 remains yet elusive. Recently, there 
has been a surge of interest in applying machine learning techniques to predict COVID-19 using non-image data. 
We have therefore undertaken a meta-analysis to quantify the diagnostic performance of machine learning 
models facilitating the prediction of COVID-19. 
Materials and methods: A comprehensive electronic database search for the period between January 1st, 2021 and 
December 3rd, 2021 was undertaken in order to identify eligible studies relevant to this meta-analysis. Summary 
sensitivity, specificity, and the area under receiver operating characteristic curves were used to assess potential 
diagnostic accuracy. Risk of bias was assessed by means of a revised Quality Assessment of Diagnostic Studies. 
Results: A total of 30 studies, including 34 models, met all of the inclusion criteria. Summary sensitivity, spec
ificity, and area under receiver operating characteristic curves were 0.86, 0.86, and 0.91, respectively. The 
purpose of machine learning models, class imbalance, and feature selection are significant covariates useful in 
explaining the between-study heterogeneity, in terms of both sensitivity and specificity. 
Conclusions: Our study findings show that non-image data can be used to predict COVID-19 with an acceptable 
performance. Further, class imbalance and feature selection are suggested to be incorporated whenever building 
models for the prediction of COVID-19, thus improving further diagnostic performance.   

1. Introduction 

Coronavirus Disease 19 (COVID-19), caused by severe acute respi
ratory syndrome Coronavirus 2 (SARS-CoV-2) [1], has posed tremen
dous challenge due to the pandemic declared after March 2020 [2]. As of 
December 23, 2021, more than 27 million cases have been confirmed, 
including over 5 million deaths [3]. Currently, widely accepted man
agement strategies for minimizing the spread of COVID-19 include 
forced lockdowns, travel restrictions, quarantines, social distancing, 
isolation, and infection-control measures [4]. As for those individuals 
who were infected, supportive care is the primary treatment available 
since specific effective and curative therapeutics remain elusive [4]. 
Commonly, COVID-19 adverse prognosis includes hospitalization, 
transfer to intensive care units, or even mortality [5,6]. Further, 
advanced COVID-19 is combined with heterogeneous clinical features 
[5]. A large number of those infected remain asymptomatic due to the 

nature of COVID-19 symptomatology [7]. Efficient diagnosis of COVID- 
19 is difficult to achieve. The lack of optimal sensitivity and specificity in 
clinical detection methods has been shown to be a significant reason 
behind the rapid spread of COVID-19 [8]. The use of real-time, reverse 
transcription polymerase chain reaction (rRT-PCR) is presently the 
diagnostic gold standard used to confirm COVID-19 infection [1]. Ma
terials required for this assay however are reportedly in short supply, 
leading to possible delays in diagnostic results throughout the pandemic 
period [9]. In view of such complex circumstances, a rapid and early 
diagnostic tool, or a ready system efficacious to identify the infected 
individuals, thus plays a vital role in managing the spreading COVID-19 
pandemic. 

Compared with traditional model-building approaches, machine 
learning techniques can model data without strict statistical assump
tions [10], and there have been significant advances in modeling clinical 
data for predicting diagnosis or prognosis of differing diseases [11–13], 
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COVID-19 being no exception. Two types of clinical data are usually 
employed to establish COVID-19 predictive models by means of machine 
learning techniques: structured data and/or image data. Structured data 
may include demographic information [14–21], medical histories 
[22–24], symptoms [14,25–28], vital signs [20,25,29–32], or laboratory 
tests [6,15–19,32]; and, image data may include lung computed to
mography (CT) scan [33,34] and/or chest X-rays (CXR) [35,36]. Imag
ery data, especially CT scans, are found to be the most accurate 
diagnostic modality of SARS-CoV-2 according to several case reports, 
reviews and meta-analyses [8,37–42]. Compared with image data, 
structured clinical data can be easily obtained after patients’ first en
counters with frontline healthcare professionals, and thus can be 
incorporated into machine learning models to predict COVID-19 more 
efficiently. 

Based on the notion that machine learning techniques have been 
emerging as a potential tool for healthcare professionals to accelerate 
their process of decision-making and to improve diagnostic accuracy. A 
meta-analysis to investigate the potential of using machine learning to 
identify COVID-19 is thus not only essential but also quite timely. Until 
recently, a systematic understanding of how machine learning tech
niques using non-imagery-based data can be used to predict COVID-19 is 
still lacking, not to mention a thorough meta-analysis of extant diag
nostic accuracy. To fill this research gap, the objectives of this study are, 
as follows: 1) to meta-analyze the accuracy of the diagnosis of and 
prognosis of COVID-19 based on non-image data via machine learning 
techniques; and, 2) to compare and to contrast the diagnostic accuracy 
of plausible covariates that can account for the heterogeneity found 
among selected studies. Hence, two research questions (RQ) were pro
posed: 1) RQ1: What is the diagnostic accuracy of machine learning 
models, based on non-image data, for the diagnosis and prognosis of 
COVID-19 patients?; and, 2) RQ2: What covariates may contribute to the 
heterogeneity between these selected studies? 

The remainder of the article will be organized accordingly. The 
“Material and methods” section describes the research method used in 
this study. The “Results” section presents the analytical results, the 
“Discussion” section discusses the significance of the findings, and the 
“Conclusions” section summarizes the findings of the current study. 

2. Material and methods 

This section describes the search strategy and selection process for 
the literature used to make up this study, as well as the method of 
extraction for required information taken from that literature. In this 
section, we also describe the tools for quality assessment and statistical 
techniques employed. 

2.1. Search strategy and selection process 

A comprehensive search of electronic databases was made. It 
included PubMed, ScienceDirect, and SpringerLink, and it was carried 
out between 1st January 2020 and 3rd December 2021 using the 
keyword combinations of COVID-19, machine learning, deep learning, 
and artificial intelligence. We did not search other databases such as 
Scopus or Web of Science for two principal considerations: 1) PubMed 
primarily focuses on medicine and biomedical sciences, which is more 
specific to this study, while Scopus and Web of Science cover multi- 
disciplinary fields [43]. 2) PubMed is free and easier to use than Sco
pus and Web of Science [43]. In addition, we used Google Scholar as a 
supplementary source to search articles. Despite Google Scholar not 
being suggested as stand-alone for purposes of a literature search [44], 
Google Scholar possesses sufficient stability in terms of article coverage 
to be used compared with either Scopus or Web of Science [45]. Detailed 
search queries for each database are shown in Table 1. Studies to be 
considered relevant were expected to meet the following criteria: 1) 
studies must have investigated the predictive accuracy of COVID-19; 2) 
studies should have leveraged structured data as features; 3) studies 

should have used artificial intelligence to predict the spread of the 
COVID-19 disease; 4) studies should have provided sufficient outcomes 
of predictive models; and, 5) studies taken from the literature must have 
been written in English and peer-reviewed. Studies meeting the 
following criteria were excluded: 1) studies using images (CT or CXR), 
image- associated reports, or unstructured data used as predictive fea
tures; 2) studies irrelevant to our research goal; and, 3) studies where 
full texts were unavailable for purposes of examination. Based on the 
stated inclusion and exclusion criteria, the data were first assessed by the 
first author (K.M.) and cross-checked by the third author (C.S.). Any 
discrepancies were resolved between both authors through a consensus 
discussion to ensure database accuracy/consistency. Finally, we located 
30 studies including 34 models that predicted COVID-19 (see Fig. 1). 
Among the 30 studies, 17 studies including 20 models were extracted 
from PubMed, ScienceDirect, and SpringerLink, and 13 studies 
[6,14,17,19,21,26–29,46–49] including 14 models were identified by 
Google Scholar. Furthermore, three studies [21,30,32] included more 
than one model. 

2.2. Data extraction 

From each of the included studies, the following information was 
extracted: purposes of the predictive models, types of prognostic pre
dictive models, types of features for establishing predictive models, 
geographic areas of the samples used to build predictive models, ma
chine learning techniques adopted to build the predictive models, 
whether class imbalance issues were handled substantively, and 
whether extra feature selection strategies were adopted. We extracted or 
calculated the original true/false positives and true/false negatives from 
each study to derive summary outcome measures. 

3. Methodological analysis 

Diagnostic accuracy studies are often at the risk of being biased since 
they originate from differences in methodology, sample recruitment, or 
data collection [50]. We therefore assessed the quality of studies ac
cording to the revised Quality of Diagnostic Studies (QUADAS-2) 
guidelines, including four domains: sample selection, index test, refer
ence standard, flow, and timing [51]. 

3.1. Statistical analysis 

We meta-analyzed the diagnostic accuracy by using lme4 [52], mada 
[53], and meta [54] packages for R statistics. Sensitivity and specificity 
were pooled in accordance with a bivariate model [55]. Area under 
receiver operating characteristic curve (AUROC), diagnostic odds ratio 
(DOR), positive likelihood ratio (LR+), and negative likelihood ratio 
(LR-) were also estimated for purposes of this study. Forest plots were 
created to show heterogeneity among the models up for further 
consideration. Moreover, a summary receiver operating characteristic 
curve with 95% confidence interval (CI) and 95% prediction interval 
(PI) were employed to assess the existence of a threshold effect among 
the models. 

Table 1 
Search strategy for each database.  

Database Search strategy 

PubMed COVID-19[Title/Abstract] AND ((machine learning[Title/ 
Abstract]) OR (deep learning[Title/Abstract]) OR (artificial 
intelligence[Title/Abstract])) 

ScienceDirect Title, abstract or author-specified keywords: COVID-19 AND 
((machine learning) OR (deep learning) OR (artificial intelligence)) 

SpringerLink “COVID-19′′ AND (”machine learning“ OR ”deep learning“ OR 
”artificial intelligence“) 

Google 
Scholar 

COVID-19 machine learning deep learning artificial intelligence  
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According to prior suggestions about possible sources of heteroge
neity between the selected studies [50], meta-regression was under
taken with three plausible types of covariates: 1) model purpose related 
covariates: including purpose of predictive models, and types of prog
nosis predicted; 2) sample related covariates: including feature type (e. 
g., demographic data, vital signs, laboratory data, medical history), and 
geographic areas of the patients; and, 3) machine learning related 
covariates: including types of artificial intelligence adopted, strategies 
for class imbalance, and feature selection strategies. Based on the due 
diligence performed, the Institutional Review Board of E-Da Hospital 
approved the study protocol (EMRP-109-158). 

4. Results 

In this section, we report the characteristics of included studies, as 
well as the results of the quality assessment made. Subsequently, we 
report the summary diagnostic accuracy of included studies and po
tential covariates used for explaining between-study heterogeneity. 

4.1. General study characteristics 

Among the 34 predictive models examined in this study, 14 models 
(41.18%) aim to diagnose the prevalent COVID-19 disease while 20 
models (58.82%) aim to predict the prognosis of the COVID-19 patients 
(see Table 2). In the study parameters, numbers 7, 12, and 1 models 
serve to predict whether patient status ends-up in critical care, 

mortality, or hospitalization, respectively. Twenty-four models used 
only laboratory data or combined laboratory data with other clinical 
data (such as demographic information, symptoms, vital signs, or his
tory) to predict the COVID-19 disease, while 10 models used only clin
ical data to predict COVID-19 disease without inclusion of any 
laboratory data. Most samples belong to a Western (75.76%) context, 
such as American or European. Thirty-two models (94.12%) were based 

Fig. 1. PRISMA flow diagram.  

Table 2 
Characteristics of included models (n = 34).  

Characteristics Values Frequency % 

Purpose Diagnosis 14  41.18 
Prognosis 20  58.82 

Prognosis (n = 20) Critical care 7  35.00 
Mortality 12  60.00 
Hospitalization 1  5.00 

Feature type Laboratory data included 24  70.59 
None laboratory data 10  29.41 

Geographic area (n = 33) Eastern 8  24.24 
Western 25  75.76 

AI techniques Machine learning 32  94.12 
Deep learning 2  5.88 

Class imbalance processed Yes 12  35.29 
No 22  64.71 

Feature selection Yes 9  26.47 
No 25  73.53 

Note: One study may be designed to predict more than one COVID-19 disease. 
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on machine learning techniques (e.g., random forest, support vector 
machine, or XGBoost), only 2 models used deep learning techniques 
[14,23]. About 35% of the models leveraged extra approaches (e.g., 
increasing the weight of the minority class or random under/over 
sampling) to deal with class imbalance issues. Finally, 9 models 
(26.47%) used additional strategies, such as recursive feature elimina
tion or least absolute shrinkage, to select important features before 
training the predictive model [6,16,23,27,28,48,49,56–58]. 

4.2. Quality assessment 

We assessed the quality of the selected studies based on QUADAS-2 
[51] (see Fig. 2). For identifying bias, the 10 and 24 models were clas
sified as having some concerns (29.41%) and low-risk of bias (70.59%) 
related to patient selecting domain, respectively. All 34 models were 
considered as low-risk of bias regarding index test and reference stan
dard domains. Further, 13 and 21 models were regarded as generating 
some concerns (38.24%) and low-risk of bias (61.76%) about their flow 
and timing domains, respectively. As for the applicability judgment, 11 
and 23 models were considered to be of some concern (32.35%) and low 
concern of applicability (67.65%), respectively. Finally, all 34 models 
were considered to be of low concern of applicability regarding the 
index test and reference standard domains. 

4.3. RQ1: Diagnostic accuracy of non-image predictive models based on 
machine learning 

The effect size pooled by traditional univariate meta-analysis can 
sometimes be misleading [59]. We therefore pooled the effect sizes 
based on the bivariate model [55]. As shown in Table 3, the overall 
pooled area under receiver operating characteristic curve for machine 
learning to predict the COVID-19 disease is about 0.91. Moreover, 
pooled sensitivity, specificity, diagnostic odds ratio, positive likelihood 
ratio, and negative likelihood ratio were 0.86, 0.86, 37.93, 6.20, and 
0.16 respectively (see Table 3). Fig. 3 and Fig. 4 show the forest plot of 
sensitivity/specificity and the summary receiver operating character
istic curves with 95% confidence interval and prediction interval for the 
34 predictive models, respectively. Two χ2 tests were conducted to test 
for equality of sensitivity and of specificity, and these showed significant 
results, χ2(33) = 1090.94, p < 0.001 and χ2(33) = 113615.20, p < 0.001, 
indicating significant between-study heterogeneity existed in terms of 

both sensitivity and specificity. 

4.4. RQ2: Plausible covariates explaining between-study heterogeneity 

Due to the significant between-study heterogeneity for both sensi
tivity and specificity, we also conducted sub-group analysis by means of 
meta-regression to further identify potential covariates that might in
fluence the performance of the COVID-19 disease predictive models. As 
shown in Table 4 and Fig. 5(a), the sensitivity was significantly (p =
0.002) higher for the 14 models designed to diagnose COVID-19 (0.92; 
95% CI, 0.88–0.95) than for the other 20 models for predicting the 
prognosis of COVID-19 (0.79; 95% CI, 0.71–0.86). The corresponding 
specificity of the 14 models for COVID-19 diagnosis (0.80; 95% CI, 
0.67–0.89) was albeit lower than those of the 20 models for COVID-19 
prognosis (0.89; 95% CI, 0.82–0.94), but didn’t reach statistical signif
icance (p = 0.144). If we go deeper into the models for COVID-19 
prognosis, the sensitivity of the 7 models for predicting critical care (i. 
e., patients getting transferred to intensive care units or using ventilation 
apparatus) (0.73; 95% CI, 0.49–0.88) due to COVID-19 was lower than 
for the 12 models for predicting mortality (0.81; 95% CI, 0.73–0.87) due 
to COVID-19, but didn’t reach statistical significance (p = 0.255), as 
shown in Table 4 and Fig. 5 (b). The corresponding specificity was 
proximate between the 7 models for critical care and the 12 models for 
mortality (0.88 vs. 0.90, p = 0.689). There is only one model for pre
dicting hospitalization due to COVID-19, as such we did not include that 
model into the sub-group analysis. 

The 24 models used laboratory data with/without other data (e.g., 

Fig. 2. Methodological assessment by QUADAS-2.  

Table 3 
Performance of predicting COVID-19 disease by artificial 
intelligence.  

Metrics Performance (95% CI) 

AUROC 0.91 
Sensitivity 0.86 (0.81, 0.90) 
Specificity 0.86 (0.79, 0.91) 
DOR 37.93 (21.96, 53.90) 
LR+ 6.20 (3.78, 8.63) 
LR- 0.16 (0.12, 0.21) 

Note: AUROC: Area under receiver operating characteristic 
curve, DOR: Diagnostic odds ratio, LR+: Positive likelihood 
ratio, LR-: Negative likelihood ratio, CI: confidence interval. 
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demographic information, symptoms, vital signs, or history) as features 
achieved a higher sensitivity (0.88; 95% CI, 0.83–0.92 vs. 0.80; 95% CI, 
0.66–0.90), but didn’t reach statistical significance (p = 0.154), and a 
near-tie specificity (0.86; 95% CI, 0.76–0.93 vs. 0.87; 95% CI, 
0.80–0.92) than models incorporating data other than laboratory test 
results (e.g., demographic information, symptoms, vital signs, or his
tory) as depicted in Table 4 and Fig. 5 (c). 

The models that used patients from western contexts, as demon
strated in Table 3 and Fig. 5 (d), achieved a lower sensitivity (0.86; 95% 
CI, 0.79–0.90 vs. 0.88; 95% CI, 0.74–0.95) and specificity (0.83; 95% CI, 
0.75–0.88 vs. 0.93; 95% CI, 0.76–0.98) than models using patients from 
the eastern contexts, but neither reached statistical significance (p =
0.650 and p = 0.107). The 2 models that adopted deep learning tech
niques had a higher sensitivity (0.99; 95% CI, 0.32–1.00 vs. 0.85; 95% 
CI, 0.79–0.89) and a tied specificity (0.86; 95% CI, 0.81–0.90 vs. 0.86; 
95% CI, 0.79–0.91) than the remaining 32 models that adopted machine 
learning techniques, but both did not reach statistical significance (p =

0.090 and p = 0.780), as illustrated in Table 4 and Fig. 5 (e). 
The 12 models that adopted extra strategies, as depicted in Table 4 

and Fig. 5 (f), to deal with class imbalance had a lower sensitivity (p =
0.001) than models without extra strategies for handling class imbalance 
(0.74; 95% CI, 0.60–0.84 vs. 0.90; 95% CI, 0.87–0.93). The specificity of 
the models that adopted extra strategies to deal with class imbalance 
was however higher than the remaining models without extra strategies 
for handling class imbalance (0.92; 95% CI, 0.83–0.96 vs. 0.82; 95% CI, 
0.72–0.89), but no statistical difference was established (p = 0.076). 

Finally, the 9 models that leveraged feature selection strategies 
before building predictive models had a higher sensitivity than models 
without employing feature selection strategies (0.88; 95% CI, 0.77–0.95 
vs. 0.85; 95% CI, 0.79–0.90), but no statistical significance was 
confirmed (p = 0.520). However, the models that leveraged feature se
lection strategies showed a significant higher specificity (p = 0.022) 
compared to models without feature selection strategies (0.95; 95% CI, 
0.83–0.99 vs. 0.82; 95% CI, 0.74–0.88), as shown in Table 4 and Fig. 5 

Fig. 3. Forest plot of sensitivity and specificity in this study.  

Fig. 4. Summary receiver operating characteristic curves for collected studies.  
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(g). 

5. Discussion 

The global COVID-19 pandemic is a growing public health concern 
requiring unprecedented efforts in nearly every field of endeavor. 
Effective coping strategies for this disease are however still under 

development or of nascent consideration. Machine learning has the 
potential to play a key role in this fight against the COVID-19 pandemic. 
However, there has been a lack of meta-analysis studies that are focused 
on the diagnostic accuracy of COVID-19 casework based on non-image 
data. Based on such an understanding, our study investigated the per
formance of machine learning approaches based on non-image data for 
predicting COVID-19 incidence, undertaking a bivariate meta-analysis. 

Table 4 
Summary estimates for sensitivity and specificity with covariates, Note: CI denotes confidence interval.  

Type of covariates Covariates Values Metrics Summary estimates 95% CI P value  

Overall (n = 34) Sensitivity 0.86 [0.81, 0.90] < 0.001 
Specificity 0.86 [0.79, 0.91] < 0.001 

Model purpose related Purpose Diagnosis (n = 14) Sensitivity 0.92 [0.88, 0.95] 0.002 
Specificity 0.80 [0.67, 0.89] 0.144 

Prognosis (n = 20) Sensitivity 0.79 [0.71, 0.86] [Reference] 
Specificity 0.89 [0.82, 0.94] [Reference] 

Prognosis Critical care (n = 7) Sensitivity 0.73 [0.49, 0.88] 0.255 
Specificity 0.88 [0.73, 0.95] 0.689 

Mortality (n = 12) Sensitivity 0.81 [0.73, 0.87] [Reference] 
Specificity 0.90 [0.79, 0.96] [Reference] 

Sample related Data type Lab data included (n = 24) Sensitivity 0.88 [0.83, 0.92] 0.154 
Specificity 0.86 [0.76, 0.93] 0.754 

Lab data not included (n = 10) Sensitivity 0.80 [0.66, 0.90] [Reference] 
Specificity 0.87 [0.80, 0.92] [Reference] 

Geographic area Western (n = 25) Sensitivity 0.86 [0.79, 0.90] 0.650 
Specificity 0.83 [0.75, 0.88] 0.107 

Eastern (n = 8) Sensitivity 0.88 [0.74, 0.95] [Reference] 
Specificity 0.93 [0.76, 0.98] [Reference] 

Machine learning related AI techniques Machine learning (n = 32) Sensitivity  0.85 [0.79, 0.89] 0.090 
Specificity  0.86 [0.79, 0.91] 0.780 

Deep learning (n = 2) Sensitivity  0.99 [0.32, 1.00] [Reference] 
Specificity  0.86 [0.81, 0.90] [Reference] 

Class imbalance processed Yes (n = 12) Sensitivity  0.74 [0.60, 0.84] 0.001 
Specificity  0.92 [0.83, 0.96] 0.076 

No (n = 22) Sensitivity  0.90 [0.87, 0.93] [Reference] 
Specificity  0.82 [0.72, 0.89] [Reference] 

Feature selection Yes (n = 9) Sensitivity  0.88 [0.77, 0.95] 0.520 
Specificity  0.95 [0.83, 0.99] 0.022 

No (n = 25) Sensitivity  0.85 [0.79, 0.90] [Reference] 
Specificity  0.82 [0.74, 0.88] [Reference] 

Note: CI denotes confidence interval. 

Fig. 5. Pooled sensitivity and specificity with 95% confidence interval for different covariates.  
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The results demonstrate strong diagnostic performance with a pooled 
sensitivity of 0.86, a pooled specificity of 0.86, and an AUC of 0.91, 
respectively. Prior meta-analysis [42] shown the pooled sensitivity and 
specificity of artificial intelligence for CT scan was 0.90 and 0.91, 
respectively which is higher than those of artificial intelligence based on 
non-image data. Nonetheless, non-image data are often far more 
obtainable than image data among those hospitals with limited material 
resources. 

The purpose of predictive models, type of prognosis, feature type, 
geographic area, type of AI techniques, whether class imbalance issues 
were dealt with, and where extra feature selection strategies were 
implemented, were further included in bivariate meta-regression. This 
was done to account for potential instances of heterogeneity among the 
primary studies made. The findings demonstrated that sensitivity was 
significantly dependent on the purpose of predictive models and upon 
whether class imbalance issues were handled. It may be noted that 
specificity was significantly dependent on whether the extra-strategies 
technique was used to select features before training predictive models. 

In terms of predictive models purposefulness, the sensitivity of 
diagnostic models is significantly higher than that of models for prog
nosis (0.92 vs. 0.79) while specificity of models for diagnosis is lower 
than models for prognosis (0.80 vs. 0.90). There was however no sig
nificant difference between the specificity of models for diagnosis and 
prognosis. It may be reasoned that models for diagnosis had a higher 
sensitivity may be because infection by COVID-19 can be confirmed by a 
comparison of the rRT-PCR testing results [60]. The prognosis of the 
COVID-19 disease however is more complicated since it relates to 
various factors such as age, gender, obesity, comorbidities, or time of 
anti-viral treatment [61,62]. For example, there is prior evidence [62] 
that COVID-19 patients experiencing diabetes and hypertension or some 
other comorbidities such as cardiovascular disease, chronic obstructive 
pulmonary disease, and cancer are more likely to have adverse out
comes. Further, the time span between onset of severe outcomes and 
anti-viral treatment application for COVID-19 are major factors influ
encing the prognosis [62]. 

We further analyzed the 19 models for predicting two types of 
prognoses: critical care and mortality. The pooled sensitivity and spec
ificity is 0.73 and 0.88 when the models are used to predict critical care 
regimens for COVID-19 patients. These two figures are lower than those 
of models used for the prediction of patient risk-of-mortality, but no 
statistically significant difference was confirmed. The plausible reason 
that mortality predictive models reached a higher sensitivity and spec
ificity than did critical care models may be due in large part to the fact 
that the situations of patients close to mortality are simpler to explain 
than those of critical care patients. This situation includes various pa
tient situations, such as being transferred to intensive care units or using 
ventilation apparatus, that are readily apparent. Especially during the 
apex of the epidemic, the number of patients exceeded the service ca
pacity of most primary healthcare facilities; as such, the criteria for 
defining critically ill patients would thus be different from the more 
stable pandemic contagion periods. Furthermore, the variant of the 
SARS-CoV-2 virus continues to mutate [63] making it difficult to esti
mate its exact impact on current patient-loads. Available evidence [64] 
suggests that the incidence of SARS-CoV-2 should be closely monitored 
since patients from different locations have already shown different 
mutated COVID-19 sequences. 

In addition to rRT-PCR test, laboratory data (e.g., transaminases, 
lymphocytes, eosinophils, calcium, and separate aminotransferase) 
with/without other demographic and clinical data (e.g., symptoms, vital 
signs, or medical histories) predicted COVID-19 in 24 models, while the 
remaining models used only demographic/clinical data as features for 
similarly predicting COVID-19. Our meta-analysis showed that models 
that included laboratory data performed better than with models 
without laboratory data. This included heightened sensitivity (0.88 vs. 
0.80). Models without any laboratory data included slightly out- 
performed models with laboratory data included in terms of specificity 

(0.87 vs. 0.86). Both sensitivity and specificity however did not reach 
any real statistical significance. Previous studies [65–67] found that 
laboratory data can provide useful information for COVID-19 di
agnostics. For example, prior evidence [67] has found that the platelet 
count can dynamically reflect patho-physiological changes prevalent in 
COVID-19 patients. Other evidence [68] however found that some lab
oratory results involved with COVID-19 patients are different between 
pregnant women, children, and other members of a general population. 
Including and testing a wider variety of laboratory data may be required 
to achieve a more stable predictive platform when dealing with COVID- 
19 as a whole. Further, before the widely acknowledged rRT-PCR test 
[69] becomes universal, other data such as laboratory tests that have 
shown potential should be identified in order to effectively widen the 
prediction of COVID-19 incidence. It would be more helpful if machine 
learning models can incorporate routinely available laboratory tests to 
correctly predict COVID-19, which would streamline the diagnosis and 
treatment of COVID-19 patients, saving considerable time and decision- 
making. 

Since the first case of COVID-19 was reported in Wuhan, China and 
then the rest of the world, knowledge about COVID-19 has altered and 
expanded to a certain extent. Hence, the question remains of whether it 
is possible that the performance of predictive models based on eastern 
countries may be different from western-based predictive models 
through a variety of circumstances (i.e., transparency of research pro
cedures, availability of data, reliability of findings, geo-political con
siderations). We therefore conducted a sub-group analysis based on 
samples from different geographic areas to make such a determination. 
The sub-group analysis showed that models using samples from the 
western contexts had a lower sensitivity (0.86 vs. 0.88) and specificity 
(0.83 vs. 0.93) than models using samples taken from eastern contexts. 
The plausible reason for this result is complex; so, we suspect it may be 
due to the algorithms adopted by these models. In the eastern category, 
eight models adopted only two major types of algorithms, including 
ensemble learning and deep learning. With appropriate configurations, 
these two types of machine learning models are generally considered to 
have a better predictive performance when compared with other algo
rithms [70,71]. On the other hand, the western group, consisting of 25 
models, applied seven different types of algorithms in the mix. Such a 
variety of different algorithms may thus contribute to a higher variation 
status in the models’ predictive performance, which may explain why 
the pooled sensitivity and collective specificity of the western group 
appeared lower than that of the eastern group. 

The pooled sensitivity and specificity are (0.85, 0.86) and (0.99, 
0.86) respectively when machine learning and deep learning techniques 
were in use. Deep learning outperformed machine-learning in terms of 
sensitivity, but it tied with machine-learning in specificity. There was 
however no significant difference between these two techniques shown. 
Despite the sensitivity of deep learning being quite high (0.99) in our 
study, its 95% confidence interval however is also very wide (0.32–1), 
indicating the sample sizes were too small, which is just the case in our 
study (n = 2 for deep-learning). Still more deep learning studies are 
required to verify if its true performance in predicting the COVID-19 is 
based on non-image data. 

In regards to classification tasks, the receiver operator characteristic 
(ROC) plot and the AUROC delineate how an adaptable threshold causes 
changes in two types of errors: false-positives and false-negatives [72]. 
However, the ROC curve and AUROC are only partially informative 
whenever used with imbalanced data [72]. The explainability, trace
ability, and interpretability of performance measures will have greater 
future importance in dealing with imbalanced data. Hence, problems 
relevant to class imbalance are often dealt with by use of various stra
tegies such as with a synthetic minority over-sampling technique [73]. 
Our study demonstrates that the pooled sensitivity for models without 
extra-strategies for class imbalance is significantly higher than that of 
models with extra-strategies for class imbalance (0.90 vs. 0.74). This 
may be compared to the pooled specificity for models with extra- 
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strategies being higher than that of models without extra-strategies for 
class imbalance (0.92 vs. 0.82), but it did not show a statistically sig
nificant difference. Ramezankhani, Pournik, Shahrabi, Azizi, Hadaegh 
and Khalili [74] adopted an over-sampling strategy to deal with class 
imbalance problems for predicting type 2 diabetes. It was found that the 
original training dataset had a higher sensitivity, and a lower specificity, 
than a balanced-training dataset, therefore indicating such a strategy 
does not guarantee for better performance. Our study however showed a 
lower sensitivity and a higher specificity which may be due to the re- 
sampling strategies propounded by Ramezankhani, Pournik, Shahrabi, 
Azizi, Hadaegh and Khalili [74] and applied only in the training dataset. 
The performance data that our study collected was mainly adapted from 
the test dataset, and that may indicate class-imbalance handling stra
tegies cannot necessarily guarantee the overall performance of test 
dataset. 

In order to enhance the performance of predictive models, pre- 
processing such as a feature-selection aspect can be adopted before 
training machine learning models [10]. Our study showed that 9 models 
with feature-selection had a higher sensitivity (0.88 vs. 0.85) and 
specificity (0.95 vs. 0.82) than did 25 models that were without feature- 
selection, but only specificity reached any statistical significance. Based 
on the findings of our meta-analysis, the importance of feature-selection 
should not be overlooked during preliminary model-building processes. 

The findings based on our study identified some current gaps in the 
state-of-the-art and in future research challenges. First, despite more 
studies based on machine learning leveraging non-image-specific data 
for the prediction of COVID-19, the number of studies remain less than 
those studies utilizing image data. More studies are thus required to 
better investigate the potential of non-image data for predicting COVID- 
19. Second, the paucity of studies using deep learning techniques for 
non-image data is another plausible issue since deep learning is 
considered better-suited for use with image data than other machine 
learning techniques. Future studies can be used to leverage various deep 
learning techniques for predicting COVID-19 based on non-image data. 
Third, the diagnostic accuracy achieved by machine learning based on 
non-image data is still lower than that of diagnostic accuracy based on 
image data. Future studies may combine image and non-image data to 
establish a sufficient model that can achieve better diagnostic 
performance. 

Our findings may have important implications for the medical 
practice as well. First, hospitals that are short of material and staff re
sources can adopt these machine learning models based on non-image 
data routinely available to assist those who are identifying possible 
COVID-19 patients. By doing so, the contact risk of COVID-19 infection 
due to a lack of rRT-PCR or CT testing measures may be diminished. 
Second, developers of machine learning models can consider adopting 
strategies for feature-selection and class-imbalance features during 
model-building planning and formulation. By doing so, a predictive 
model with better performance, to support informed decision-making by 
healthcare professionals, may be established. Further, models based on 
machine learning techniques may be applied to predict other epidemics 
and/or diseases in future times. To achieve this purpose, specific fea
tures can be carefully selected based on the specific pandemic/disease, 
and then different types of machine learning algorithms can be 
compared. In this way, the best performed algorithm can be determined 
based on their demonstrated learning capabilities. 

6. Conclusions 

Our study aims to meta-analyze the accuracy of diagnostic tests of 
artificial intelligence techniques to confront the COVID-19 pandemic. By 
searching multiple electronic databases, 30 studies including 34 pre
dictive models were included in this meta-analysis. A bivariate meta- 
analysis of diagnostic test accuracy was conducted to estimate sensi
tivity, specificity, and summary receiver operating characteristic curve. 
Strong diagnostic performances were obtained with the models used in 

this study. These findings may indicate that machine learning models 
that use non-image data can be implemented in hospital settings, espe
cially in diminished-resource locations, in order to effectively predict 
the incidence or prevalence of COVID-19. These models show the po
tential of becoming more accurate and further representative as data sets 
increase in terms of their size. Furthermore, covariates including diag
nosis purpose, whether class-imbalance issues are processed, and 
whether extra-feature selection strategies being adopted were found to 
partially explain some of the heterogeneity found among the primary 
studies evaluated. 

7. Summary points 

What was already known on the topic? 

• COVID-19 has had a serious impact on human lives and upon eco
nomic livelihoods; however, a quick and feasible tool for detecting 
COVID-19 incidence remains elusive.  

• Real-time reverse transcription polymerase chain reaction is 
currently the “gold standard” for diagnosing COVID-19, but it re
quires a longer turn-around time in terms of efficacy.  

• Pulmonary computed-tomography scan and chest radiography can 
be used to complement the practical diagnosis COVID-19. 

What this study added to our knowledge?  

• Strong diagnostic test accuracy of COVID-19 can be achieved by 
using non-image data.  

• Non-image data, taken as predictive features, can assist hospitals 
with limited financial and human resources to identify cases of 
COVID-19.  

• Class-imbalance and feature-selection strategies may be considered 
before building predictive models useful for diagnosing COVID-19. 
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