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ABSTRACT: Sulfenylation or selenylation of enaminones of L-α-
amino esters requires mild reaction conditions due to the presence
of a racemization-prone chiral center and reactive side chains. An
N-chlorosuccinimide (NCS)-mediated methodology has been
developed for rapid sulfenylation of enaminones of L-α-amino
esters and aryl/alkyl amines at room temperature in open air under
metal-free conditions. Enaminones of L-α-amino esters bearing
aliphatic, aromatic, and heterocyclic side chains react efficiently
with diverse aryl/alkyl/heteroaryl thiols (R1SH) in the presence of
NCS to afford a library of biologically important sulfenyl
enaminones in good-to-excellent yields (71−90%). Under similar
reaction conditions, the enaminones also react with benzeneselenol
to produce selenyl enaminones in good yield (73−83%). The NCS-mediated pathway generates sulfenyl chloride (R1SCl) as an
intermediate which leads to rapid sulfenylation of enaminones through cross-dehydrogenative coupling (CDC) under mild reaction
conditions.

■ INTRODUCTION

Presently, C(sp2)−H bond functionalization is considered as
an essential transformation in organic synthesis,1 and a wide
range of reactions such as C−H alkylation,2 alkenylation,3

arylation,4 and acylation5 mostly based on transition-metal
catalysis and oxidative coupling have been reported. Similarly,
C−S, C−P, and C−N bond formation via transition-metal-
catalyzed C−H functionalization has become popular in recent
years.6−8 On the other hand, nowadays, chemists are more
concern about environmental pollution; therefore, metal-free
C−H functionalization is also receiving considerable atten-
tion.9 In this context, cross-dehydrogenative coupling (CDC)
is considered as an effective strategy for construction of C−C
and C-heteroatom bonds as it provides an atom economical
and environmentally benign short synthetic pathway without
any prerequisite functionalization of reactants.10,11 Since
aliphatic/heteroaromatic sulfides, diaryl sulfides, and their
derivatives are widely present in biologically active compounds
and natural products,12 chemists are fascinated in developing
efficient methods to create a C−S bond specially using a CDC
strategy.
The sulfenyl enamines with a C−S bond show important

biological and medicinal activities such as 5-fluoro-2′-
deoxyuridine (FUDR) phosphorylase inhibitory,13a HIV-1
integrase inhibitory,13b and potential peptide-mimicking
activities.13c Sulfenyl enamine 5-(phenylthio)acyclouridine
(AC1NA056) is important for treatment of AIDS and cancer

by improving oral uridine bioavailability with effective
pharmacokinetic properties (Figure 1).14 A cyclic thioenamine
peptide acts as a potential β-turn mimic,15 and NSC 128981
shows excellent growth inhibitory property against human
carcinoma cells (Figure 1).16 On the other hand, amino acids
are important in the production of drug molecules17 and
peptide-based soft materials.18 Amino acids are extensively
used as β-lactam antibiotics,19a anticoagulants,19b reproductive
medicines,19c and pesticides.19d Amino acid ester-based
prodrugs are used to increase oral bioavailability and reduce
toxicity of parent antiviral drugs (Figure 1).20 N-functionalized
amino acids are versatile building blocks in pharmaceutical
industries and key starting materials for the development of
peptide-based drug molecules.21 Plakohypaphorine D, one of
the indole alkaloids bearing N-functionalized L-tryptophan unit
isolated from marine sponge, shows cytotoxic activity against
leukemia and melanoma cells (Figure 1).22 Moreover,
organoselenium compounds also exhibit important biological
and pharmacological activities such as anti-HIV, antiviral,
anticancer, and antioxidant activities.23 For example, (E)-2-
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benzylidene-4-phenyl-1,3-diselenole (BPD) acts as an anti-
oxidant and a hepatoprotective agent against oxidative stress
(Figure 1).24 Because of all these important bioactivities, the
synthesis of sulfenyl and selenyl enaminones of α-amino esters
and aryl/alkyl amines is significant.

The creation of a C−S bond using transition-metal (Pd, Rh,
Au, Cu, Ni, etc.) catalysts,25 iodinating agents with oxidants,26

photocatalysts,27 and electrochemical oxidation28 has drawn
considerable attention in recent years. Sulfenylation of NH
enaminones utilizing a variety of catalysts and reagents such as

Figure 1. Some bioactive compounds bearing sulfenyl enamine, L-amino ester, N-alkyl-L-amino acid, and organoselenium moieties.

Scheme 1. Various Methodologies for Sulfenylation of Enaminones
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Cu(OAc)2 as metal catalysts and NaI-TBHP/DMSO as iodine
sources with oxidants has been reported (Scheme 1a,b).29,30

Synthesis of sulfur-bridged NH enaminones has been achieved
through I2-mediated double C(sp2)−H sulfenylation employ-
ing elemental sulfur (S8) as a “S” source (Scheme 1c).31

Sulfenylation and selenylation of tertiary enaminones have also
been accomplished through palladium catalysis32 and KIO3

catalysis33 (Scheme 1d). Although these methods are syntheti-
cally important, the requirement of transition-metal catalysts,
long reaction time, and consumption of external thermal
energy diminish their green credentials substantially. More-
over, for sulfenylation of enaminones of L-α-amino esters,
drastic reaction conditions such as prolonged heating or
heating in the presence of metal catalysts or oxidants should be
avoided due to the presence of a racemization-prone chiral
center and reactive side chains. Hence, the development of a
metal-free room-temperature methodology for sulfenylation of
enaminones/enamines becomes a chemist’s objective.
N-chlorosuccinimide (NCS), known as less toxic, is a

versatile reagent in organic synthesis with diverse applications
such as chlorination, oxidation, halocyclizations, C−C bond
formation, functional group transformations, and C−H
functionalization and rearrangements.34 In continuation of
our effort in developing an efficient C−H sulfenylation
method35 and sustainable room-temperature reactions,36

herein we report NCS-assisted metal-free sulfenylation and
selenylation of enaminones of L-α-amino esters and aryl/alkyl
amines at room temperature in open air (Scheme 1).

■ RESULTS AND DISCUSSION

The present synthesis was planned as a two-step one-pot
process where initially L-α-amino esters were condensed with
1,3-diketones to generate enaminones (step I) and sub-
sequently enaminones were reacted with thiols to form sulfenyl
enaminones (step II). The optimization of reaction conditions
was carried out employing 1,3-cyclohexanedione (1a), methyl
L-isoleucinate (2a), and p-thiocresol (4a) as reactants for the
synthesis of sulfenyl enaminone 5a (Table 1). Initially, 1a (1.0
mmol) was condensed with 2a (1.0 mmol) in CH2Cl2 (DCM)
to produce enaminone 3a in quantitative yield upon 30 min of
stirring at room temperature (step I). Then, 1.0 equiv of
thiophenol 4a was added to the reaction mixture and the
resultant mixture was stirred further for 24 h at room
temperature (step II). However, the reaction did not proceed
at all to form the expected sulfenyl enaminone 5a (Table 1,
entry 1). Then, a catalytic amount of I2 (10 mol %) with 3.0
equiv of DMSO as an oxidant was added to the reaction
mixture which was stirred further for 24 h at room
temperature. Again, the desired product 5a was not formed
even after prolonged stirring (Table 1, entry 2). At this point,

Table 1. Optimization of Reaction Conditions for Sulfenylation (Step II)a

entry catalyst/reagent oxidant (3.0 equiv) amount of thiophenol 4a (equiv) solvent (2.0 mL) temp (°C) time yield of 5ab (%)

1 1.0 CH2Cl2 rt 24 h
2 I2 (10 mol %) DMSO 1.0 CH2Cl2 rt 24 h
3 I2 (10 mol %) DMSO 1.0 DCE 80 4 h 68
4 KIO3 (10 mol %) DMSO 1.0 DCE 80 6 h 24
5 NaI (3.0 equiv) DMSO 1.0 DCE 80 6 h trace
6 NCS (0.5 equiv) 1.0 CH2Cl2 rt 20 min 60
7 NCS (1.0 equiv) 1.0 CH2Cl2 rt 5 min 86
8 NCS (1.0 equiv) 1.2 CH2Cl2 rt 5 min 88
9 NCS (1.0 equiv) 1.5 CH2Cl2 rt 5 min 90
10 NCS (1.2 equiv) 1.5 CH2Cl2 rt 5 min 90
11 NCS (1.0 equiv) 1.5 CH2Cl2 rt 10 min 90
12 NCS (1.0 equiv) 1.5 CH2Cl2 rt 20 min 90
13 NBS (1.0 equiv) 1.5 CH2Cl2 rt 30 min 37
14 NIS (1.0 equiv) 1.5 CH2Cl2 rt 30 min 25
15c NCS (1.0 equiv) 1.5 CH2Cl2 rt 5 min 87
16d NCS (1.0 equiv) 1.5 CH2Cl2 rt 1 h 58
17 NCS (1.0 equiv) 1.5 CH3CN rt 30 min 72
18 NCS (1.0 equiv) 1.5 toluene rt 30 min 78
19 NCS (1.0 equiv) 1.5 EtOH rt 2 h trace
20 NCS (1.0 equiv) 1.5 DMSO rt 2 h trace

aReaction conditions: At first, a mixture of 1a (1.0 mmol) and 2a (1.0 mmol) was stirred in DCM (2.0 mL) at rt for 30 min (step I). Then, 4a,
catalyst/reagent, and oxidant were added to the same reaction mixture for further stirring at rt, step II (entries 1−2 and 6−16). In other cases
(entries 3−5 and 17−20), the removal of solvent DCM was performed after step I followed by the addition of 4a, catalyst/reagent, oxidant, and
different solvents (2.0 mL) for further reaction (step II). bIsolated yield of product 5a. cReaction was carried out under a N2 atmosphere (entry
15). dReactants 1a, 2a, 4a, and NCS were added at a time for reaction (entry 16).
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Table 2. Library Synthesis of α-Amino Ester-Embedded Sulfenyl Enaminones 5a,b

aReaction conditions: initially, a mixture of 1 (1.0 mmol) and 2 (1.0 mmol) was stirred in DCM (2.0 mL) for 30 min at rt (step I). Then, thiol 4
(1.5 mmol) and NCS (1.0 mmol) were added to the same reaction mixture for further stirring at rt for 5 min in open air (step II). bIsolated yield of
product 5.
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we realized that probably some heating is necessary for
successful sulfenylation of 3a. Therefore, solvent DCM was
removed under vacuum from the reaction mixture after initial
condensation in step I and the intermediate 3a was dissolved in
higher boiling DCE (2 mL) for step II reaction. Then, 4a (1.0
equiv) and I2 (10 mol %) with 3.0 equiv of DMSO were added.
Interestingly, after 4 h of stirring of the reaction mixture at 80
°C, the desired product 5a was obtained in moderate yield,
∼68% (Table 1, entry 3). The other iodine sources such as
KIO3 and NaI in the presence of oxidant DMSO were less
productive compared to the I2/DMSO catalytic system (Table
1, entries 4 & 5).
Since our objective was to develop a metal-free room-

temperature method, next, we choose NCS as a promoter for
sulfenylation. Therefore, 0.5 equiv of NCS and 1.0 equiv of
thiophenol 4a were added to the reaction mixture obtained
from step I. Interestingly, we observed that the desired product
5a was formed in 60% yield within 20 min of open air stirring
of the reaction mixture at room temperature (Table 1, entry
6). To further improve the yield of 5a, the amounts of NCS
and 4a were varied from 0.5 to 1.2 equiv and 1.0−1.5 equiv,
respectively (Table 1, entries 6−10). It was observed that
employment of 1.0 equiv of NCS and 1.5 equiv of 4a produced
5a in the highest yield (∼90%) within just 5 min of stirring
(Table 1, entry 9). When the reaction time was increased from
5 to 10 and 20 min, the yield of 5a was essentially the same
(Table 1, entries 11 and 12). Next, we examined the
performance of other N-halosuccinimides such as N-
bromosuccinimide (NBS) and N-iodosuccinimide (NIS) in
the sulfenylation process (step II). In both cases, the oxidized
product of p-thiocresol (4a), that is, 1,2-di-p-tolyldisulfane
(ArS-SAr), was formed as a major product instead of sulfenyl
enaminone 5a (Table 1, entries 13 and 14).37 Additionally,
when the reaction with NCS in DCM was carried out in the
absence of air, that is, under a N2 atmosphere, the product 5a
was formed in 87% yield (Table 1, entry 15), comparable to
that of the open air reaction (Table 1, entry 9). The result
indicates that there is no effect of aerial oxygen on the

sulfenylation process. Furthermore, another reaction was
carried out by adding reactants 1a, 2a, 4a, and reagent NCS
at a time in DCM. However, after 1 h of stirring of the mixture,
the yield of product 5a was found in a lower range (∼58%)
possibly due to the formation of unwanted side products
(Table 1, entry 16). To examine the effect of solvents on the
NCS-mediated sulfenylation process (step II), different
solvents such as CH3CN, toluene, EtOH, and DMSO were
employed after the removal of DCM. Although the reaction
furnished 5a in good yield in CH3CN and toluene, 72−78%
(Table 1, entries 17 and 18), unsatisfactory results were
obtained in EtOH and DMSO (Table 1, entries 19 and 20).
Therefore, finally, it was established that stirring of a mixture of
3a (obtained from step I), 4a (1.5 equiv), and NCS (1.0
equiv) in DCM at room temperature for 5 min produces
sulfenyl enaminone 5a in the maximum yield, ∼90% (Table 1,
entry 9).
To explore the substrate scope and functional group

tolerance, a variety of 1,3-dicarbonyls (1), methyl ester of L-
α-amino acids (2), and aryl/alkyl/heteroaryl thiols (4) were
reacted to produce different sulfenyl enaminones (5) under the
optimized reaction conditions (Table 1, entry 9). It was
evident from Table 2 that L-α-amino esters (2) bearing
aliphatic, aromatic, and heterocyclic side chains underwent
sulfenylation quite smoothly to produce a library of sulfenyl
enaminones (5) in good-to-excellent yield (71−90%).
Importantly, both cyclic and acyclic 1,3-dicarbonyls (1) such
as 1,3-cyclohexanedione, dimedone, acetylacetone, and ben-
zoylacetone participated well in the reaction (Table 2).
Furthermore, different thiophenols (4) bearing electron-
donating and -withdrawing groups were well-tolerated in the
reactions to produce 5a−t. Aliphatic thiols such as 1-
butanethiol and cyclohexanethiol also participated significantly
in the reaction to furnish sulfenylated products 5u, 5v, 5b′, and
5c′ in very good yield, 78−81% (Table 2). The heterocyclic
thiols such as 2-mercaptobenzothiazole and 2-thiophenethiol
were found compatible with this reaction to produce the
sulfenylated products 5w−z and 5a′ in very good yield, 71−

Table 3. Substrate Scope in Synthesis of α-Amino Ester-Embedded Selenyl Enaminones 7a,b

aReaction conditions: initially, a mixture of 1 (1.0 mmol) and 2 (1.0 mmol) was stirred in DCM (2.0 mL) at rt for 30 min to produce 3. Then, 6
(1.5 mmol) and NCS (1.0 mmol) were added to the same reaction mixture for further stirring at rt for 5 min in open air. bIsolated yield of product
7.
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88% (Table 2). Benzeneselenol 6 also produced selenyl
enaminones 7a−d in very good yield (73−83%), under the
same reaction conditions as that of sulfenylation (Table 3).
Furthermore, different aryl/alkyl/heteroaryl thiols (4)

successfully reacted with enaminones of aryl and alkyl amines
(8) to produce a series of β-amino sulfide derivatives 9a−j in
good-to-excellent yield, 77−90% (Table 4). When benzenese-
lenol 6 was employed, the corresponding selenyl enaminone
9k was also formed in good yield, ∼73% (Table 4). Therefore,
successful synthesis of diverse sulfenyl and selenyl enaminones
in good-to-excellent yield (71−90%) demonstrated a large
substrate scope and high degree of functional group tolerance
of this mild and eco-friendly synthesis (Tables 2−4). All the
sulfenylated and selenylated products (5, 7, and 9) were
characterized by 1H and 13C NMR and HRMS/elemental
analyses. Furthermore, the X-ray crystal structure of sulfenyl
enaminone 5w corroborated the product formation and also
established the preferred geometrical isomer of 5w where the
bulky heteroaryl sulfenyl and L-phenylalanyl groups are in trans
disposition (Figure 2).
The industrial applicability of this sulfenylation approach

was tested by gram-scale synthesis of sulfenyl enaminone 5a.
An one-pot sequential reactions of 1,3-cyclohexanedione 1a
(6.5 mmol), methyl L-isoleucinate 2a (6.5 mmol) and p-
thiocresol 4a (9.75 mmol) in the presence of NCS (6.5 mmol)

under the optimized conditions afforded the desired
sulfenylated product 5a in very high yield, 86% (Scheme 2).
Some control experiments were carried out to decipher the

mechanism of the sulfenylation reaction (Scheme 3). Initially,
1,3-cyclohexanedione (1a) and methyl L-isoleucinate (2a)
were reacted at room temperature to afford a compound which

Table 4. Substrate Scope in Synthesis of β-Amino Sulfide/Selenide Derivatives 9a,b

aReaction conditions: 8 (1.0 mmol) and NCS (1.0 mmol) were added to a solution of thiols 4 (1.5 mmol) or benzeneselenol 6 (1.5 mmol) in
DCM and the mixture was stirred at rt for 5 min in open air. bIsolated yield of product 9.

Figure 2. ORTEP diagram of compound 5w; thermal ellipsoids are
drawn at the 50% probability level (CCDC 2104278); crystal was
grown in DMSO solvent.
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was isolated and characterized as enaminone 3a by 1H/13C
NMR and HRMS analysis (Scheme 3a). To gain more
mechanistic insights, two reactions were performed sequen-
tially. At first, 3a was treated with NCS in DCM which
afforded the chlorinated product methyl 2-((2-chloro-3-
oxocyclohex-1-en-1-yl)amino)-3-methylpentanoate 3aa. Then,
3aa was exposed to p-thiocresol 4a in DCM for sulfenylation at
rt (Scheme 3b). Interestingly, the reaction did not proceed at
all, which nullified the involvement of 3aa as an intermediate in
the sulfenylation reaction (Scheme 3b). Then, a reaction
between enaminone 3a and thiol 4a was carried out in the
presence of 0.5 equiv of radical scavenger TEMPO (2,2,6,6-
tetramethyl-1-piperidinyloxy) under the optimized conditions
(Scheme 3c). After 10 min of stirring of the reaction mixture at
rt, the sulfenylated product 5a was formed in 76% yield which
clearly suggested that the sulfenylation process does not follow
a radical-mediated pathway. When dimeric 1,2-di-p-tolyldisul-
fane 4aa was treated with enaminone 3a, the desired product
5a was not formed even after 2 h of stirring under the standard
conditions (Scheme 3d). This result indicated that the
disulfide 4aa was not involved in this sulfenylation as an
intermediate. To examine the role of visible light as a catalyst
in sulfenylation, the reaction was carried out in a dark chamber.
The formation of sulfenyl enaminone 5a in high yield (∼88%)
nullified the role of visible light in the sulfenylation reaction
(Scheme 3e). Next, 1.0 equiv of Et3N was added as proton
sponge to the reaction mixture during sulfenylation (Scheme
3f), and the formation of product 5a in high yield (∼87%)
implied that the in situ-generated HCl neither inhibited nor
catalyzed the sulfenylation process. Next, thiol 4a was treated
with NCS under standard conditions in the absence of
enaminone 3a (Scheme 3g). The formation of p-tolyl
hypochlorothioite 4ab (isolated and characterized by 1H/13C
NMR) and succinimide (detected by LCMS, Supporting
Information) clearly indicated the involvement of sulfenyl
chloride (R1SCl) as an intermediate in the sulfenylation
reaction.
Based on the control experiments and the existing

literature,34c,37 a plausible mechanism of the sulfenylation
reaction is depicted in Scheme 4. Initially, nucleophilic attack
of the thiol (R1SH) to the N-halosuccinimide produces
sulfenyl halide R1SX (II, X = Cl, Br, and I) and succinimide
(I). Since NCS is a milder oxidizing agent than NBS and NIS,
the generated sulfenyl chloride (R1SCl) has a longer life period
than sulfenyl bromide/iodide (R1SBr/R1SI).37 The more
reactive R1SBr/R1SI reacts rapidly with starting material thiols
4 (R1SH) to furnish disulfide R1S-SR1 (IV) as a major product
(Table 1, entries 13 and 14). The disulfide R1S-SR1 is
significantly less reactive and requires drastic reaction

conditions such as prolonged heating and external oxidants
for sulfenylation of enaminones. On the other hand, the
enaminone 3 undergoes nucleophilic displacement reaction
smoothly with sulfenyl chloride (R1SCl) at room temperature
and produces the iminium ion intermediate III. Finally,
dehydrochlorination of III affords the sulfenylated product 5.
The starting thiols 4 might be oxidized to disulfide R1S-SR1

when dimethyl sulfoxide (DMSO) was used as a solvent
causing the formation of 5 in trace amounts (Table 1, entry
20).

■ CONCLUSIONS
In summary, a two-step one-pot protocol has been developed
for rapid synthesis of biologically important sulfenyl and
selenyl enaminones of L-α-amino esters at room temperature
through NCS-mediated sulfenylation and selenylation. The
method is also suitable for sulfenylation and selenylation of
enaminones of other aryl and alkyl amines. The employment of
NCS is advantageous over NBS/NIS, as the in situ-generated
sulfenyl chloride (R1SCl) undergoes cross-dehydrogenative
coupling with enaminones, whereas more reactive sulfenyl
bromide/iodide (R1SBr/R1SI) produces oxidized product
disulfides (R1S-SR1) as the major product. This NCS-mediated
sulfenylation has several advantages such as mild and eco-
friendly reaction conditions, operational simplicity, wider
substrate scope, and avoidance of metal catalysts. The
synthetic modification of natural amino acids is extremely
important owing to their applications in proteomics, diagnosis,
drug delivery, and so forth. In this context, the NCS-mediated
mild and eco-friendly method may be useful for synthesis of
sulfur- and selenium-containing bioactive N-functionalized L-α-
amino acids/esters/peptides and related medicinally active
molecules in the industry.

■ EXPERIMENTAL SECTION
General Remarks. All the chemicals and solvents were

purchased from commercial suppliers and used without
additional purification. Methyl L-amino esters 2 were
synthesized from the corresponding L-amino acids according
to the literature procedure.38 Column chromatography was
performed using silica gel (60−120 mesh, Merck). Melting
points were determined in open capillary tubes. A Perkin-
Elmer 782 spectrophotometer was used for recording IR
spectra. 1H (300/500 MHz) and 13C NMR (75/126 MHz)
spectra were recorded on Bruker instruments (300 MHz and
DRX 500) in CDCl3 and DMSO-d6. The X-ray diffraction
crystallography data were collected with MoKα radiation at
296 K using a Bruker APEX-II CCD System. HRMS spectra
were obtained from Xevo G2-S QTof instrument. Elemental

Scheme 2. Gram-Scale Synthesis
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analyses (C, H, and N) were performed using a Perkin-Elmer

2400 elemental analyzer. LCMS was performed using a

Shimadzu Prominence LC-20AD Binary pump, Shimadzu

SIL-HTC autosampler, and applied biosystem API-2000 triple

quadruple mass spectrometer equipped with an ESI source.

Experimental Procedure and Characterization Data
of Isolated Intermediates. Methyl-3-methyl-2-((3-oxocy-
clohex-1-en-1-yl)amino)pentanoate (3a). A mixture of 1,3-
cyclohexanedione, 1a (1.0 mmol, 112 mg), and methyl L-
isoleucinate, 2a (1.0 mmol, 145 mg), in 2.0 mL of DCM was
taken in a 50 mL round-bottom flask and the mixture was

Scheme 3. Some Control Experiments
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stirred at rt (25−30 °C) for 30 min in open air. After
completion of the reaction (observed by TLC monitoring), the
reaction mixture was diluted with water and the organic layer
was extracted with ethyl acetate (3 × 20 mL). The extracted
organic part was dried over anhydrous sodium sulphate and
concentrated in vacuo. The crude mass was purified by silica
gel column chromatography using 40% ethyl acetate in hexane
as an eluent to afford pure 3a.
Yellow gum (232 mg, 97%); IR (Neat) ν ̅max: 3255, 2962,

1741, 1580, 1542 cm−1; 1H NMR (300 MHz, CDCl3): δH
5.26−5.23 (m, 1H), 5.09 (s, 1H), 4.00−3.95 (m, 1H), 3.75 (s,
3H), 2.41−2.37 (m, 2H), 2.33−2.29 (m, 2H), 2.00−1.94 (m,
2H), 1.92−1.84 (m, 1H), 1.56−1.45 (m, 1H), 1.29−1.21 (m,
1H), 0.96−0.87 (m, 6H); 13C{1H} NMR (75 MHz, CDCl3):
δC 197.9, 172.00, 163.6, 97.6, 59.2, 52.3, 37.4, 36.2, 29.8, 25.8,
21.8, 15.0, 11.5; HRMS (ESI-TOF) m/z: [M + H]+ calcd for
C13H22NO3, 240.1600; found, 240.1614.
Methyl-2-((2-chloro-3-oxocyclohex-1-en-1-yl)amino)-3-

methylpentanoate (3aa). NCS (1.0 mmol, 133.5 mg) was
added to a stirred solution of enaminone 3a (1.0 mmol, 239
mg) in 2.0 mL of DCM taken in a 50 mL round-bottom flask.
The resulting reaction mixture was stirred at rt (25−30 °C) for
45 min in open air. After completion of the reaction (checked
by TLC monitoring), the reaction mixture was diluted with
water and the organic layer was extracted with ethyl acetate (3
× 15 mL). The extracted organic part was dried over
anhydrous sodium sulphate and concentrated under reduced
pressure. The crude mass was purified by silica gel column
chromatography using 40% ethyl acetate in hexane as an eluent
to afford pure 3aa.
Yellow gum (232 mg, 85%); IR (Neat) ν ̅max: 3310, 2971,

1745, 1614, 1550 cm−1; 1H NMR (300 MHz, CDCl3): δH
5.91−5.88 (m, 1H), 4.03−3.98 (m, 1H), 3.72 (s, 3H), 2.48−
2.39 (m, 4H), 1.99−1.91 (m, 2H), 1.89−1.79 (m, 1H), 1.54−
1.40 (m, 1H), 1.26−1.13 (m, 1H), 0.92−0.87 (m, 6H);
13C{1H} NMR (75 MHz, CDCl3): δC 187.9, 171.2, 158.3,
104.7, 60.1, 52.5, 38.9, 36.5, 26.3, 25.0, 20.6, 15.3, 11.5; HRMS
(ESI-TOF) m/z: [M + H]+ calcd for C13H21ClNO3 274.1211;
found, 274.1212.

1,2-Di-p-tolyldisulfane (4aa).39 The disulfide was produced
as a major side product (IV, Scheme 4). Light yellow
amorphous solid; mp 94−96 °C; 1H NMR (300 MHz,
CDCl3): δH 7.59 (d, J = 7.8 Hz, 2H), 7.46 (d, J = 7.5 Hz, 2H),
7.32 (d, J = 7.8 Hz, 2H), 7.21 (d, J = 7.5 Hz, 2H), 2.44 (s,
3H), 2.40 (s, 3H); 13C{1H} NMR (75 MHz, CDCl3): δC
142.2, 140.9, 140.8, 135.4, 130.1, 129.7, 126.2, 124.3, 21.6,
21.4.

p-Tolyl hypochlorothioite (4ab).40 NCS (1.0 mmol, 133.5
mg) was added to a stirred solution of p-thiocresol 4a (1.0
mmol, 124 mg) in 2.0 mL of DCM taken in a 50 mL round-
bottom flask. The resulting reaction mixture was stirred at rt
(25−30 °C) for 1 min in open air. The reaction mixture
became deep yellow-colored after the addition of NCS. After
completion of the reaction (observed by TLC monitoring), the
reaction mixture was diluted with water and the organic layer
was extracted with ethyl acetate (2 × 15 mL). The extracted
organic part was dried over anhydrous sodium sulphate and
concentrated in vacuo. The crude mass was purified by silica
gel column chromatography using 5% ethyl acetate in hexane
as an eluent to afford pure 4ab. Light yellow crystalline solid
(135 mg, 85%); mp 44−46 °C; 1H NMR (300 MHz, CDCl3):
δH 7.45 (d, J = 8.1 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 2.38 (s,
3H); 13C{1H} NMR (75 MHz, CDCl3): δC 137.5, 133.9,
129.9, 128.6, 21.1.

General Procedure for Synthesis of α-Amino Ester-
Embedded Sulfenyl Enaminones (5). Initially, a mixture of
1,3-dicarbonyls 1 (1.0 mmol) and methyl L-amino esters 2 (1.0
mmol) in 2.0 mL of DCM was taken in a 50 mL round-bottom
flask and the mixture was stirred at rt (25−30 °C) for 30 min
in open air. Then, thiols 4 (1.5 mmol) and NCS (1.0 mmol,
133.5 mg) were added to the same reaction pot and the
resulting mixture was stirred further for 5 min at rt. After
completion of the reaction (observed by TLC monitoring), the
reaction mixture was diluted with water and the organic layer
was extracted with ethyl acetate (3 × 20 mL). The extracted
organic part was dried over anhydrous sodium sulphate and
concentrated in vacuo. The crude mass was purified by silica
gel column chromatography using 10−50% ethyl acetate in
hexane as an eluent to afford pure sulfenyl enaminones 5.

Spectral Data. Characterization data of compounds 5a−z
and 5a′−c′.

Methyl-3-methyl-2-((3-oxo-2-(p-tolylthio)cyclohex-1-en-
1-yl)amino)pentanoate (5a). The product was purified by
column chromatography on silica gel (eluted with hexane/
EtOAc, 1/1). Yellow gum (325 mg, 90%); IR (neat) νm̅ax:
3311, 2960, 1740, 1635, 1555 cm−1; 1H NMR (300 MHz,
CDCl3): δH 7.02−6.96 (m, 3H), 6.93−6.90 (m, 2H), 3.99−
3.94 (m, 1H), 3.62 (br s, 1H), 2.49−2.41 (m, 4H), 2.17 (s,
3H), 2.00−1.91 (m, 2H), 1.79−1.69 (m, 1H), 1.28−1.17 (m,
1H), 0.98−0.86 (m, 1H), 0.77−0.72 (m, 6H); 13C{1H} NMR
(75 MHz, CDCl3): δC 192.3, 170.7, 166.9, 134.8, 132.4, 129.2,
126.7, 100.5, 60.1, 52.1, 38.3, 36.6, 26.2, 24.4, 20.6, 20.5, 15.0,
11.1; HRMS (ESI-TOF) m/z: [M + H]+ calcd for
C20H28NO3S 362.1791; found, 362.1767.

Methyl-2-((2-((4-chlorophenyl)thio)-3-oxocyclohex-1-en-
1-yl)amino)-3-methylpentanoate (5b). The product was
purified by column chromatography on silica gel (eluted
with hexane/EtOAc, 1/1). Yellow gum (336 mg, 88%); IR
(neat) ν ̅max: 3314, 2954, 1745, 1644, 1557 cm−1; 1H NMR
(300 MHz, CDCl3): δH 7.12−7.07 (m, 2H), 7.05−7.00 (m,
2H), 6.95−6.92 (m, 1H), 4.01−3.96 (m, 1H), 3.64 (s, 3H),
2.51−2.44 (m, 4H), 2.03−1.95 (m, 2H), 1.81−1.73 (m, 1H),

Scheme 4. Plausible Mechanism for Sulfenylation
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1.31−1.18 (m, 1H), 1.02−0.90 (m, 1H), 0.80−0.75 (m, 6H);
13C{1H} NMR (75 MHz, CDCl3): δC 192.3, 170.8, 167.5,
134.9, 130.9, 128.7, 127.7, 99.8, 60.3, 52.4, 38.5, 36.8, 26.4,
24.7, 20.6, 15.2, 11.3; HRMS (ESI-TOF) m/z: [M + H]+ calcd
for C19H25ClNO3S 382.1244; found, 382.1215.
Methyl-2-((2-((2-bromophenyl)thio)-3-oxocyclohex-1-en-

1-yl)amino)-3-methylpentanoate (5c). The product was
purified by column chromatography on silica gel (eluted
with hexane/EtOAc, 1/1). Yellow gum (341 mg, 80%); IR
(neat) νm̅ax: 3350, 2935, 1741, 1642, 1552 cm−1; 1H NMR
(300 MHz, CDCl3): δH 7.39 (dd, J1 = 7.8 Hz, J2 = 1.2 Hz, 1H),
7.08−7.02 (m, 1H), 6.90−6.78 (m, 3H), 3.96−3.91 (m, 1H),
3.61 (s, 3H), 2.55−2.47 (m, 4H), 2.06−1.97 (m, 2H), 1.83−
1.74 (m, 1H), 1.31−1.17 (m, 1H), 1.03−0.88 (m, 1H), 0.78−
0.71 (m, 6H); 13C{1H} NMR (75 MHz, CDCl3): δC 192.5,
170.8, 167.8, 137.2, 132.6, 127.6, 126.4, 126.3, 121.9, 99.7,
60.7, 52.5, 38.4, 37.0, 26.6, 24.8, 20.8, 15.4, 11.3; HRMS (ESI-
TOF) m/z: [M + H]+ calcd for C19H25BrNO3S, 426.0739;
found, 426.0763.
Methyl-2-((5,5-dimethyl-3-oxo-2-(p-tolylthio)cyclohex-1-

en-1-yl)amino)-3-methylpentanoate (5d). The product was
purified by column chromatography on silica gel (eluted with
hexane/EtOAc, 3/2). Yellow liquid (342 mg, 88%); IR (neat)
ν ̅max: 3325, 2972, 1740, 1650, 1555 cm

−1; 1H NMR (300 MHz,
CDCl3): δH 7.04−6.98 (m, 3H), 6.93−6.90 (m, 2H), 4.02−
3.95 (m, 1H), 3.61 (s, 3H), 2.31−2.28 (m, 4H), 2.16 (s, 3H),
1.80−1.70 (m, 1H), 1.28−1.16 (m, 1H), 1.03 (s, 3H), 1.01 (s,
3H), 0.93−0.87 (m, 1H), 0.79−0.69 (m, 6H); 13C{1H} NMR
(75 MHz, CDCl3): δC 192.1, 171.0, 165.7, 135.1, 132.9, 129.4,
127.3, 99.8, 60.3, 52.4, 50.3, 39.8, 38.5, 31.8, 28.5, 28.4, 24.6,
20.8, 15.2, 11.3; HRMS (ESI-TOF) m/z: [M + H]+ calcd for
C22H32NO3S, 390.2104; found, 390.2108.
Methyl-2-((2-((4-fluorophenyl)thio)-5,5-dimethyl-3-oxocy-

clohex-1-en-1-yl)amino)-3-methylpentanoate (5e). The
product was purified by column chromatography on silica gel
(eluted with hexane/EtOAc, 3/2). Yellow semisolid (334 mg,
85%); IR (neat) νm̅ax: 3322, 2970, 1738, 1654, 1545 cm−1; 1H
NMR (300 MHz, CDCl3): δH 7.13−7.06 (m, 2H), 7.00−6.97
(m, 1H), 6.84−6.76 (m, 2H), 4.01−3.96 (m, 1H), 3.61 (s,
3H), 2.35−2.23 (m, 4H), 1.81−1.71 (m, 1H), 1.31−1.20 (m,
1H), 1.01 (s, 3H), 0.99 (s, 3H), 0.95−0.84 (m, 1H), 0.78−
0.72 (m, 6H); 13C{1H} NMR (75 MHz, CDCl3): δC 191.9,
171.0, 165.8, 161.1 (d, 1JC‑F = 242.2 Hz), 131.8 (d, 4JC‑F = 3.0
Hz), 129.0 (d, 3JC‑F = 7.5 Hz), 115.6 (d, 2JC‑F = 21.75 Hz),
99.7, 60.3, 52.4, 50.4, 39.8, 38.5, 31.8, 29.5, 28.4, 24.7, 15.2,
11.3; HRMS (ESI-TOF) m/z: [M + H]+ calcd for
C21H29FNO3S, 394.1853; found, 394.1847.
Methyl-(5,5-dimethyl-3-oxo-2-(phenylthio)cyclohex-1-en-

1-yl)phenylalaninate (5f). The product was purified by
column chromatography on silica gel (eluted with hexane/
EtOAc, 3/2). Yellow semisolid (348 mg, 85%); IR (neat) νm̅ax:
3318, 2950, 1745, 1635, 1557 cm−1; 1H NMR (500 MHz,
CDCl3): δH 7.22−7.17 (m, 5H), 7.14−7.09 (m, 4H), 6.94−
6.92 (m, 2H), 4.41−4.37 (m, 1H), 3.71 (s, 3H), 3.13 (dd, J1 =
13.5 Hz, J2 = 4.5 Hz, 1H), 2.92−2.87 (m, 1H), 2.34−2.26 (m,
2H), 2.21−2.18 (m, 1H), 1.84−1.81 (m, 1H), 1.00 (s, 3H),
0.85 (s, 3H); 13C{1H} NMR (126 MHz, CDCl3): δC 192.2,
170.8, 165.7, 136.7, 135.0, 129.4, 128.9, 128.7, 127.5, 126.9,
125.4, 99.2, 57.3, 52.8, 50.3, 39.9, 39.8, 31.6, 28.7, 28.2; HRMS
(ESI-TOF) m/z: [M + H]+ calcd for C24H28NO3S, 410.1791;
found, 410.1776.
Methyl-(5,5-dimethyl-3-oxo-2-(p-tolylthio)cyclohex-1-en-

1-yl)phenylalaninate (5g). The product was purified by

column chromatography on silica gel (eluted with hexane/
EtOAc, 3/2). Yellowish white amorphous solid (381 mg,
90%); mp 86−88 °C; IR (KBr) νm̅ax: 3311, 2960, 1740, 1638,
1552 cm−1; 1H NMR (300 MHz, CDCl3): δH

1H NMR (300
MHz, CDCl3): δH 7.17−7.09 (m, 3H), 7.06−6.93 (m, 5H),
6.88−6.85 (m, 2H), 4.34−4.27 (m, 1H), 3.66 (s, 3H), 3.07
(dd, J1 = 13.8 Hz, J2 = 4.2 Hz, 1H), 2.85−2.78 (m, 1H), 2.26−
2.14 (m, 5H), 2.12−2.07 (m, 1H), 1.73−1.67 (m, 1H), 0.91
(s, 3H), 0.75 (s, 3H); 13C{1H} NMR (75 MHz, CDCl3): δC
192.0, 170.7, 165.2, 135.0, 134.9, 133.0, 129.3, 129.2, 128.6,
127.3, 127.2, 99.7, 57.0, 52.6, 50.1, 39.8, 39.5, 31.3, 28.4, 27.9,
20.8. HRMS (ESI-TOF) m/z: [M + H]+ calcd for
C25H30NO3S, 424.1947; found, 424.1976.

Methyl-(2-((4-chlorophenyl)thio)-5,5-dimethyl-3-oxocy-
clohex-1-en-1-yl)phenylalaninate (5h). The product was
purified by column chromatography on silica gel (eluted
with hexane/EtOAc, 3/2). Yellowish white amorphous solid
(373 mg, 84%); mp 132−134 °C; IR (KBr) νm̅ax: 3360, 2975,
1740, 1650, 1530 cm−1; 1H NMR (300 MHz, CDCl3): δH
7.17−7.06 (m, 5H), 6.98−6.94 (m, 3H), 6.90−6.87 (m, 2H),
4.37−4.30 (m, 1H), 3.67 (s, 3H), 3.09 (dd, J1 = 13.8 Hz, J2 =
4.2 Hz, 1H), 2.90−2.83 (m, 1H), 2.28−2.22 (m, 2H), 2.16−
2.11 (m, 1H), 1.83−1.77 (m, 1H), 0.93 (s, 3H), 0.79 (s, 3H);
13C{1H} NMR (75 MHz, CDCl3): δC 192.1, 170.8, 165.9,
135.4, 134.9, 131.1, 129.3, 128.9, 128.8, 128.2, 127.6, 98.9,
57.1, 52.9, 50.3, 39.9, 39.8, 31.6, 28.6, 28.2; HRMS (ESI-TOF)
m/z: [M + H]+ calcd for C24H27ClNO3S, 444.1401; found,
444.1396.

Methyl-(3-oxo-2-(p-tolylthio)cyclohex-1-en-1-yl)-
phenylalaninate (5i). The product was purified by column
chromatography on silica gel (eluted with hexane/EtOAc, 1/
1). Yellow gum (316 mg, 80%); IR (neat) νm̅ax: 3375, 2970,
1748, 1638, 1562 cm−1; 1H NMR (300 MHz, CDCl3): δH
7.23−7.14 (m, 4H), 7.05−6.99 (m, 4H), 6.93−6.89 (m, 2H),
4.42−4.35 (m, 1H), 3.71 (s, 3H), 3.12 (dd, J1 = 13.8 Hz, J2 =
4.2 Hz, 1H), 2.91−2.84 (m, 1H), 2.41−2.36 (m, 2H), 2.26 (s,
3H), 2.02−2.01 (m, 1H), 1.96−1.79 (m, 2H), 1.75−1.66 (m,
1H); 13C{1H} NMR (75 MHz, CDCl3): δC 193.0, 170.8,
167.6, 135.1, 135.0, 132.8, 129.5, 129.4, 128.8, 127.5, 127.1,
100.7, 57.3, 52.8, 40.0, 36.7, 26.3, 20.9, 20.6; HRMS (ESI-
TOF) m/z: [M + H]+ calcd for C23H26NO3S, 396.1634;
found, 396.1620.

Methyl-(2-((4-chlorophenyl)thio)-3-oxocyclohex-1-en-1-
yl)phenylalaninate (5j). The product was purified by column
chromatography on silica gel (eluted with hexane/EtOAc, 1/
1). Yellow gum (340 mg, 82%); IR (neat) νm̅ax: 3326, 2981,
1745, 1634, 1551 cm−1; 1H NMR (300 MHz, CDCl3): δH
7.22−7.10 (m, 5H), 7.03−6.97 (m, 3H), 6.93−6.89 (m, 2H),
4.43−4.35 (m, 1H), 3.70 (br s, 3H), 3.11 (dd, J1 = 13.8 Hz, J2
= 3.9 Hz, 1H), 2.94−2.86 (m, 1H), 2.39−2.28 (m, 3H), 2.06−
1.96 (m, 1H), 1.89−1.83 (m, 1H), 1.78−1.69 (m, 1H);
13C{1H} NMR (75 MHz, CDCl3): δC 192.5, 170.8, 167.9,
135.2, 134.8, 130.9, 129.2, 128.8, 128.7, 127.7, 127.5, 99.5,
57.1, 52.9, 39.7, 36.9, 26.4, 20.6; HRMS (ESI-TOF) m/z: [M
+ H]+ calcd for C22H23ClNO3S, 416.1088; found, 416.1063.

Methyl-(E)-(4-oxo-3-(p-tolylthio)pent-2-en-2-yl)-
phenylalaninate (5k). The product was purified by column
chromatography on silica gel (eluted with hexane/EtOAc, 9/
1). White amorphous solid (345 mg, 90%); mp 100−102 °C;
IR (KBr) νm̅ax: 3414, 2954, 1745, 1582 cm−1; 1H NMR (300
MHz, CDCl3): δH 12.70 (br s, 1H), 7.28−7.15 (m, 5H), 6.97−
6.95 (m, 2H), 6.78 (br s, 2H), 4.42−4.34 (m, 1H), 3.71 (s,
3H), 3.21 (dd, J1 = 13.8 Hz, J2 = 4.5 Hz, 1H), 3.01−2.93 (m,
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1H), 2.24 (s, 3H), 2.21 (s, 3H), 1.86 (s, 3H); 13C{1H} NMR
(75 MHz, CDCl3): δC 200.5, 170.9, 169.7, 136.6, 135.8, 134.1,
129.7, 129.4, 128.8, 127.4, 124.1, 95.0, 59.5, 52.8, 40.0, 29.1,
20.8, 17.0; HRMS (ESI-TOF) m/z: [M + H]+ calcd for
C22H26NO3S, 384.1634; found, 384.1621.
Methyl-(5,5-dimethyl-3-oxo-2-(phenylthio)cyclohex-1-en-

1-yl)valinate (5l). The product was purified by column
chromatography on silica gel (eluted with hexane/EtOAc, 3/
2). Yellow gum (282 mg, 78%); IR (neat) νm̅ax: 3373, 2965,
1741, 1632, 1546 cm−1; 1H NMR (300 MHz, CDCl3): δH
7.15−7.13 (m, 4H), 7.05−6.96 (m, 2H), 3.97−3.92 (m, 1H),
3.65 (s, 3H), 2.40−2.34 (m, 4H), 2.13−2.04 (m, 1H), 1.09 (s,
3H), 1.07 (s, 3H), 0.82−0.75 (m, 6H); 13C{1H} NMR (75
MHz, CDCl3): δC 191.9, 170.8, 165.6, 136.3, 128.6, 126.6,
125.2, 99.1, 61.1, 52.3, 50.3, 39.8, 31.8, 31.7, 28.5, 28.3, 18.6,
17.3. HRMS (ESI-TOF) m/z: [M + H]+ calcd for
C20H28NO3S, 362.1791; found, 362.1767.
Methyl-(5,5-dimethyl-3-oxo-2-(p-tolylthio)cyclohex-1-en-

1-yl)valinate (5m). The product was purified by column
chromatography on silica gel (eluted with hexane/EtOAc, 3/
2). Yellow gum (320 mg, 85%); IR (neat) νm̅ax: 3328, 2974,
1740, 1640, 1555 cm−1; 1H NMR (300 MHz, CDCl3): δH
7.03−6.99 (m, 3H), 6.92−6.89 (m, 2H), 3.99−3.93 (m, 1H),
3.60 (s, 3H), 2.37−2.24 (m, 4H), 2.15 (s, 3H), 2.09−1.98 (m,
1H), 1.02 (s, 3H), 1.00 (s, 3H), 0.78−0.72 (m, 6H); 13C{1H}
NMR (75 MHz, CDCl3): δC 192.1, 171.0, 165.9, 135.1, 132.9,
129.4, 127.2, 99.7, 61.0, 52.4, 50.3, 39.8, 31.8, 31.7, 28.5, 28.3,
20.8, 18.6, 17.4; HRMS (ESI-TOF) m/z: [M + H]+ calcd for
C21H30NO3S, 376.1947; found, 376.1934.
Methyl-(2-((4-fluorophenyl)thio)-5,5-dimethyl-3-oxocy-

clohex-1-en-1-yl)valinate (5n). The product was purified by
column chromatography on silica gel (eluted with hexane/
EtOAc, 3/2). Light yellow gum (292 mg, 77%); IR (neat)
ν ̅max: 3335, 2982, 1745, 1635, 1564 cm

−1; 1H NMR (300 MHz,
CDCl3): δH 7.17−7.10 (m, 2H), 7.04−6.99 (m, 1H), 6.88−
6.80 (m, 2H), 3.99−3.93 (m, 1H), 3.64 (br s, 3H), 2.38−2.25
(m, 4H), 2.13−2.04 (m, 1H), 1.06−1.02 (m, 6H), 0.83−0.76
(m, 6H); 13C{1H} NMR (75 MHz, CDCl3): δC 191.9, 171.0,
165.9, 161.2 (d, 1JC‑F = 243.0 Hz), 131.7 (d, 4JC‑F = 3.0 Hz),
129.0 (d, 3JC‑F = 7.5 Hz), 115.7 (d, 2JC‑F = 21.7 Hz), 99.8, 61.1,
52.5, 50.4, 39.9, 31.9, 31.8, 28.6, 28.4, 18.7, 17.5; HRMS (ESI-
TOF) m/z: [M + H]+ calcd for C20H27FNO3S, 380.1696;
found, 380.1682.
Methyl-(2-((4-chlorophenyl)thio)-5,5-dimethyl-3-oxocy-

clohex-1-en-1-yl)valinate (5o). The product was purified by
column chromatography on silica gel (eluted with hexane/
EtOAc, 3/2). Yellow semisolid (316 mg, 80%); IR (neat) νm̅ax:
3325, 2980, 1740, 1641, 1548 cm−1; 1H NMR (300 MHz,
CDCl3): δH 7.12−7.03 (m, 4H), 6.95−6.92 (m, 1H), 3.97−
3.92 (m, 1H), 3.65 (br s, 3H), 2.34−2.31 (m, 4H), 2.12−2.04
(m, 1H), 1.06−1.03 (m, 6H), 0.83−0.76 (m, 6H); 13C{1H}
NMR (75 MHz, CDCl3): δC 191.9, 171.0, 166.1, 135.3, 131.1,
128.8, 128.1, 98.9, 61.1, 52.5, 50.4, 39.9, 31.9, 31.8, 28.6, 28.4,
18.8, 17.5; HRMS (ESI-TOF) m/z: [M + H]+ calcd for
C20H27ClNO3S, 396.1401; found, 396.1387.
Methyl-(2-((2-bromophenyl)thio)-3-oxocyclohex-1-en-1-

yl)leucinate (5p). The product was purified by column
chromatography on silica gel (eluted with hexane/EtOAc, 1/
1). Yellow gum (370 mg, 87%); IR (neat) ν ̅max: 3364, 2984,
1747, 1652, 1542 cm−1; 1H NMR (300 MHz, CDCl3): δH 7.40
(dd, J1 = 7.8 Hz, J2 = 1.2 Hz, 1H), 7.10−7.05 (m, 1H), 6.92−
6.86 (m, 1H), 6.83−6.80 (m, 1H), 6.67−6.64 (m, 1H), 4.16−
4.08 (m, 1H), 3.63 (s, 3H), 2.55−2.47 (m, 4H), 2.07−1.98

(m, 2H), 1.67−1.49 (m, 2H), 1.40−1.29 (m, 1H), 0.80−0.75
(m, 6H); 13C{1H} NMR (75 MHz, CDCl3): δC 192.4, 171.8,
168.1, 137.2, 132.6, 127.6, 126.4, 126.3, 121.7, 99.4, 54.6, 52.7,
41.6, 37.0, 26.6, 24.6, 22.6, 21.6, 20.7; HRMS (ESI-TOF) m/z:
[M + H]+ calcd for C19H25BrNO3S, 426.0739; found,
426.0753.

Methyl-(2-((4-nitrophenyl)thio)-3-oxocyclohex-1-en-1-yl)-
leucinate (5q). The product was purified by column
chromatography on silica gel (eluted with hexane/EtOAc, 1/
1). Yellow semisolid (332 mg, 85%); IR (neat) νm̅ax: 3330,
2961, 1745, 1628, 1563 cm−1; 1H NMR (300 MHz, CDCl3):
δH 7.98 (d, J = 9.0 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 6.60−
6.57 (m, 1H), 4.19−4.11 (m, 1H), 3.66 (s, 3H), 2.58−2.48
(m, 4H), 2.09−2.01 (m, 2H), 1.69−1.60 (m, 1H), 1.57−1.51
(m, 1H), 1.48−1.40 (m, 1H), 0.82−0.79 (m, 6H); 13C{1H}
NMR (75 MHz, CDCl3): δC 191.9, 171.7, 168.5, 146.5, 145.1,
125.4, 123.8, 97.5, 54.4, 52.7, 41.6, 36.8, 26.6, 24.6, 22.5, 21.7,
20.6; HRMS (ESI-TOF) m/z: [M + H]+ calcd for
C19H25N2O5S, 393.1485; found, 393.1472.

Methyl-(E)-(3-((4-bromophenyl)thio)-4-oxo-4-phenylbut-
2-en-2-yl)leucinate (5r). The product was purified by column
chromatography on silica gel (eluted with hexane/EtOAc, 9/
1). Brown semisolid (371 mg, 78%); IR (neat) νm̅ax: 3434,
2954, 1745, 1571 cm−1; 1H NMR (300 MHz, CDCl3): δH
13.03−13.00 (m, 1H), 7.39−7.24 (m, 7H), 6.96−6.91 (m,
2H), 4.41−4.34 (m, 1H), 3.82 (s, 3H), 2.29 (s, 3H), 1.91−
1.88 (m, 2H), 1.31−1.25 (m, 1H), 1.05−0.99 (m, 6H);
13C{1H} NMR (75 MHz, CDCl3): δC 197.5, 171.7, 142.3,
140.5, 131.8, 129.1, 128.2, 127.3, 126.6, 125.8, 117.8, 93.7,
56.3, 52.8, 41.6, 24.9, 22.7, 21.8, 17.6; Anal. Calcd for
C23H26BrNO3S: C, 57.98; H, 5.50; N, 2.94. Found: C, 57.87;
H, 5.63; N, 2.86.

Methyl-(2-((2-bromophenyl)thio)-3-oxocyclohex-1-en-1-
yl)tryptophanate (5s). The product was purified by column
chromatography on silica gel (eluted with hexane/EtOAc, 1/
1). Yellow amorphous solid (414 mg, 83%); mp 128−130 °C;
IR (KBr) ν ̅max: 3390, 2954, 1745, 1628, 1542 cm−1; 1H NMR
(300 MHz, CDCl3): δH 9.00−8.96 (m, 1H), 7.58−7.50 (m,
2H), 7.40−7.37 (m, 1H), 7.31−7.28 (m, 1H), 7.20−7.15 (m,
1H), 7.10−7.05 (m, 1H), 7.02−6.96 (m, 1H), 6.50 (dd, J1 =
7.8 Hz, J2 = 1.5 Hz, 1H), 5.09 (br s, 1H), 5.05−5.03 (m, 1H),
4.43−4.37 (m, 1H), 3.71 (s, 3H), 3.52−3.45 (m, 1H), 3.37−
3.30 (m, 1H), 2.29−2.22 (m, 2H), 2.16−2.03 (m, 2H), 1.93−
1.83 (m, 2H); 13C{1H} NMR (75 MHz, CDCl3): δC 197.8,
171.6, 163.1, 138.3, 137.4, 132.9, 128.2, 127.8, 126.8, 124.1,
122.0, 120.3, 119.8, 119.0, 117.9, 111.6, 100.0, 97.9, 55.2, 52.8,
36.3, 29.6, 26.7, 21.7; HRMS (ESI-TOF) m/z: [M + H]+ calcd
for C24H24 BrN2O3S, 499.0692; found, 499.0679.

Methyl-(E)-(4-oxo-3-(p-tolylthio)pent-2-en-2-yl)-
tryptophanate (5t). The product was purified by column
chromatography on silica gel (eluted with hexane/EtOAc, 9/
1). Brown gum (312 mg, 74%); IR (neat) νm̅ax: 3417, 2952,
2923, 1745, 1579 cm−1; 1H NMR (300 MHz, CDCl3): δH
12.68−12.65 (m, 1H), 8.31 (br s, 1H), 7.50 (d, J = 7.8 Hz,
1H), 7.27 (d, J = 8.1 Hz, 1H), 7.14−7.02 (m, 3H), 6.95−6.93
(m, 2H), 6.79−6.75 (m, 2H), 4.53−4.46 (m, 1H), 3.65 (s,
3H), 3.40−3.34 (m, 1H), 3.26−3.18 (m, 1H), 2.23 (s, 3H),
2.20 (s, 3H), 1.90 (s, 3H); 13C{1H} NMR (75 MHz, CDCl3):
δC 200.5, 171.4, 169.9, 136.6, 136.2, 134.1, 129.7, 126.9, 124.1,
124.0, 122.2, 119.7, 118.2, 111.5, 109.3, 94.9, 58.3, 52.8, 29.5,
29.1, 20.8, 17.3; Anal. Calcd for C24H26N2O3S: C, 68.22; H,
6.20; N, 6.63. Found: C, 68.10; H, 6.33; N, 6.49.
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Methyl-(2-(butylthio)-3-oxocyclohex-1-en-1-yl)leucinate
(5u). The product was purified by column chromatography on
silica gel (eluted with hexane/EtOAc, 3/2). Yellow gum (265
mg, 81%); IR (neat) νm̅ax: 3330, 1738, 1642, 1550 cm−1; 1H
NMR (300 MHz, CDCl3): δH 6.97−6.94 (m, 1H), 4.19−4.12
(m, 1H), 3.73 (s, 3H), 2.55−2.50 (m, 2H), 2.46−2.31 (m,
4H), 1.98−1.89 (m, 2H), 1.75−1.62 (m, 3H), 1.50−1.29 (m,
4H), 0.99−0.91 (m, 6H), 0.86−0.82 (m, 3H); 13C{1H} NMR
(75 MHz, CDCl3): δC 192.6, 172.4, 166.8, 102.1, 54.4, 52.6,
42.1, 36.9, 33.6, 31.8, 26.2, 24.7, 22.7, 22.0, 21.9, 20.8, 13.7;
Anal. Calcd for C17H29NO3S: C, 62.35; H, 8.93; N, 4.28.
Found: C, 62.26; H, 9.05; N, 4.19.
Methyl-(2-(cyclohexylthio)-3-oxocyclohex-1-en-1-yl)-

leucinate (5v). The product was purified by column
chromatography on silica gel (eluted with hexane/EtOAc, 3/
2). Yellow liquid (280 mg, 79%); IR (neat) νm̅ax: 3345, 1747,
1638, 1538 cm−1; 1H NMR (300 MHz, CDCl3): δH 7.00−6.97
(m, 1H), 4.17−4.10 (m, 1H), 3.71 (s, 3H), 2.88−2.79 (m,
1H), 2.45−2.36 (m, 4H), 1.99−1.86 (m, 2H), 1.83−1.82 (m,
2H), 1.73−1.60 (m, 5H), 1.53−1.49 (m, 1H), 1.28−1.14 (m,
5H), 0.94−0.89 (m, 6H); 13C{1H} NMR (75 MHz, CDCl3):
δC 192.8, 172.3, 167.2, 101.1, 54.4, 52.5, 45.4, 42.1, 36.9, 33.3,
26.2, 26.1, 25.8, 24.7, 22.6, 21.9, 20.8; Anal. Calcd for
C19H31NO3S: C, 64.55; H, 8.84; N, 3.96. Found: C, 64.43; H,
8.97; N, 3.88.
Methyl-(E)-(3-(benzo[d]thiazol-2-ylthio)-4-oxopent-2-en-

2-yl)phenylalaninate (5w). The product was purified by
column chromatography on silica gel (eluted with hexane/
EtOAc, 9/1). White amorphous solid (375 mg, 88%); mp
126−128 °C; IR (KBr) νm̅ax: 3385, 2924, 1745, 1628, 1556
cm−1; 1H NMR (300 MHz, CDCl3): δH 13.01−12.92 (m, 1H),
7.83 (d, J = 8.1 Hz, 1H), 7.75−7.69 (m, 1H), 7.43−7.23 (m,
7H), 4.58−4.48 (m, 1H), 3.81 (br s, 3H), 3.38−3.29 (m, 1H),
3.14−3.06 (m, 1H), 2.41 (br s, 3H), 2.06 (s, 3H); 13C{1H}
NMR (75 MHz, CDCl3): δC 199.5, 170.4, 170.1, 155.4, 135.7,
135.2, 129.5, 129.3, 128.9, 127.3, 126.1, 123.8, 121.5, 120.8,
95.4, 59.6, 52.9, 39.8, 29.0, 17.1; Anal. Calcd for
C22H22N2O3S2: C, 61.95; H, 5.20; N, 6.57. Found: C, 61.87;
H, 5.31; N, 6.46.
Methyl-(2-(benzo[d]thiazol-2-ylthio)-5,5-dimethyl-3-oxo-

cyclohex-1-en-1-yl)valinate (5x). The product was purified by
column chromatography on silica gel (eluted with hexane/
EtOAc, 3/2). Yellow semisolid (350 mg, 84%); IR (neat) νm̅ax:
3344, 2973, 1745, 1644, 1547 cm−1; 1H NMR (300 MHz,
CDCl3): δH 7.82 (dd, J1 = 8.4 Hz, J2 = 1.2 Hz, 1H), 7.67 (dd,
J1 = 8.1 Hz, J2 = 1.5 Hz, 1H), 7.39−7.34 (m, 1H), 7.28−7.21
(m, 1H), 7.05−6.99 (m, 1H), 4.06−4.01 (m, 1H), 3.64 (s,
3H), 2.46−2.45 (m, 4H), 2.20−2.09 (m, 1H), 1.20 (s, 3H),
1.17 (s, 3H), 0.96−0.85 (m, 6H); 13C{1H} NMR (75 MHz,
CDCl3): δC 191.1, 170.6, 169.8, 167.3, 154.3, 135.4, 125.9,
124.1, 121.6, 120.8, 97.7, 61.6, 52.6, 50.4, 40.3, 32.0, 31.9, 28.8,
28.5, 18.8, 17.7. HRMS (ESI-TOF) m/z: [M + H]+ calcd for
C21H27N2O3S2, 419.1464; found, 419.1473.
Methyl-(2-(benzo[d]thiazol-2-ylthio)-3-oxocyclohex-1-en-

1-yl)leucinate (5y). The product was purified by column
chromatography on silica gel (eluted with hexane/EtOAc, 1/
1). Yellow gum (290 mg, 72%); IR (neat) ν ̅max: 3322, 2985,
1736, 1631, 1542 cm−1; 1H NMR (300 MHz, CDCl3): δH 7.86
(d, J = 8.1 Hz, 1H), 7.70−7.67 (m, 1H), 7.42−7.37 (m, 1H),
7.29−7.24 (m, 1H), 6.81−6.78 (m, 1H), 4.26−4.19 (m, 1H),
3.68 (s, 3H), 2.67−2.59 (m, 4H), 2.19−2.10 (m, 2H), 1.74−
1.61 (m, 2H), 1.54−1.42 (m, 1H), 0.86−0.82 (m, 6H);
13C{1H} NMR (75 MHz, CDCl3): δC 191.4, 171.5, 170.2,

168.7, 154.2, 135.3, 126.0, 124.1, 121.6, 120.7, 99.3, 54.8, 52.8,
41.6, 36.9, 26.9, 24.6, 22.5, 21.5, 20.5; HRMS (ESI-TOF) m/z:
[M-CH3 + H]+ calcd for C19H23N2O3S2, 391.1151; found,
391.1145.

Methyl-(5,5-dimethyl-3-oxo-2-(thiophen-2-ylthio)-
cyclohex-1-en-1-yl)phenylalaninate (5z). The product was
purified by column chromatography on silica gel (eluted with
hexane/EtOAc, 3/2). Light yellow gum (374 mg, 90%); IR
(neat) ν ̅max: 3324, 2981, 1745, 1638, 1549 cm−1; 1H NMR
(300 MHz, CDCl3): δH 7.24−7.16 (m, 3H), 7.14−7.07 (m,
2H), 7.05−6.92 (m, 3H), 6.82−6.79 (m, 1H), 4.37−4.30 (m,
1H), 3.73 and 3.71 (2 s, 3H, rotamers), 3.16−3.09 (m, 1H),
3.00−2.88 (m, 1H), 2.21−2.11 (m, 2H), 2.07−2.01 (m, 1H),
1.70−1.62 (m, 1H), 0.91 and 0.85 (2 s, 3H, rotamers), 0.78
and 0.71 (2 s, 3H, rotamers); 13C{1H} NMR (75 MHz,
CDCl3): δC 191.7, 170.9, 164.6, 155.9, 135.9, 135.1, 130.3,
129.5, 129.0, 127.71 and 127.60 (rotamers), 127.0, 102.6,
57.34 and 57.04 (rotamers), 52.9, 50.2, 40.36 and 40.24
(rotamers), 39.73 and 39.64 (rotamers), 31.92 and 31.56
(rotamers), 28.51 and 28.37 (rotamers), 28.12 and 28.02
(rotamers); Anal. Calcd for C22H25NO3S2: C, 63.59; H, 6.06;
N, 3.37. Found: C, 63.47; H, 6.14; N, 3.29.

Methyl-(3-oxo-2-(thiophen-2-ylthio)cyclohex-1-en-1-yl)-
leucinate (5a′). The product was purified by column
chromatography on silica gel (eluted with hexane/EtOAc, 1/
1). Brownish yellow semisolid (250 mg, 71%); IR (neat) νm̅ax:
3373, 2946, 1748, 1663, 1529 cm−1; 1H NMR (300 MHz,
CDCl3): δH 7.14−7.12 (m, 1H), 7.09−7.07 (m, 1H), 6.97−
6.94 (m, 1H), 6.85−6.82 (m, 1H), 4.22−4.14 (m, 1H), 3.75
and 3.73 (2 s, 3H, rotamers), 2.51−2.40 (m, 4H), 2.01−1.90
(m, 2H), 1.78−1.65 (m, 2H), 1.62−1.53 (m, 1H), 0.95−0.84
(m, 6H); 13C{1H} NMR (75 MHz, CDCl3): δC 192.1, 178.1,
172.0, 166.5, 135.7, 130.3, 127.09 and 126.90 (rotamers),
103.7, 54.52 and 54.35 (rotamers), 52.7, 42.1, 36.74 and 36.51
(rotamers), 29.6, 24.69 and 24.59 (rotamers), 22.7, 21.9, 20.5;
HRMS (ESI-TOF) m/z: [M + H]+ calcd for C17H24NO3S2,
354.1198; found, 354.1168.

Methyl-2-((2-(butylthio)-3-oxocyclohex-1-en-1-yl)amino)-
3-methylpentanoate (5b′). The product was purified by
column chromatography on silica gel (eluted with hexane/
EtOAc, 3/2). Light yellow gum (262 mg, 80%); IR (neat)
νm̅ax: 3332, 1737, 1642, 1552 cm−1; 1H NMR (300 MHz,
CDCl3): δH 7.23−7.20 (m, 1H), 4.08−4.03 (m, 1H), 3.78 (s,
3H), 2.77 (s, 2H), 2.61−2.56 (m, 2H), 2.47−2.43 (m, 3H),
2.02−1.93 (m, 3H), 1.53−1.29 (m, 5H), 1.00−0.95 (m, 6H),
0.91−0.86 (m, 3H); 13C{1H} NMR (75 MHz, CDCl3): δC
192.7, 171.4, 166.9, 102.2, 60.5, 52.4, 38.7, 36.9, 33.7, 32.0,
29.6, 25.1, 22.1, 20.9, 15.6, 13.7, 11.5; HRMS (ESI-TOF) m/z:
[M + H]+ calcd for C17H30NO3S, 328.1947; found, 328.1925.

Methyl-(2-(cyclohexylthio)-5,5-dimethyl-3-oxocyclohex-1-
en-1-yl)phenylalaninate (5c′). The product was purified by
column chromatography on silica gel (eluted with hexane/
EtOAc, 3/1). Yellow gum (324 mg, 78%); IR (neat) νm̅ax:
3326, 1745, 1634, 1551 cm−1; 1H NMR (300 MHz, CDCl3):
δH 7.37−7.29 (m, 3H), 7.22−7.18 (m, 3H), 4.46−4.39 (m,
1H), 3.79 (s, 3H), 3.24 (dd, J1 = 13.8 Hz, J2 = 4.8 Hz, 1H),
3.11−3.04 (m, 1H), 2.83−2.78 (m, 1H), 2.25−2.10 (m, 4H),
1.83−1.80 (m, 2H), 1.69−1.67 (m, 2H), 1.57 (br s, 1H),
1.25−1.13 (m, 5H), 0.99 (s, 3H), 0.88 (s, 3H); 13C{1H} NMR
(75 MHz, CDCl3): δC 192.5, 171.4, 165.3, 135.3, 129.4, 128.9,
127.6, 100.2, 57.1, 52.7, 50.4, 47.4, 45.5, 39.7, 33.4, 31.6, 28.6,
28.2, 26.0, 25.8; HRMS (ESI-TOF) m/z: [M + H]+ calcd for
C24H34NO3S, 416.2260; found, 416.2271.
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General Procedure for Synthesis of α-Amino Ester-
Embedded Selenyl Enaminones (7). At first, a mixture of
1,3-dicarbonyls 1 (1.0 mmol) and methyl L-amino esters 2 (1.0
mmol) in 2.0 mL of DCM was taken in a 50 mL round-bottom
flask and the mixture was stirred at rt (25−30 °C) for 30 min
in open air. Next, benzeneselenol 6 (1.5 mmol, 235 mg) and
NCS (1.0 mmol, 133.5 mg) were added to the same reaction
pot and the resulting mixture was further stirred for 5 min at rt.
After completion of the reaction (observed by TLC
monitoring), the reaction mixture was diluted with water and
the organic layer was extracted with ethyl acetate (3 × 20 mL).
The extracted organic part was dried over anhydrous sodium
sulphate and concentrated in vacuo. The crude mass was
purified by silica gel column chromatography using 40−50%
ethyl acetate in hexane as an eluent to afford pure selenyl
enaminones 7.
Spectral Data. Characterization data of compounds 7a−d.
Methyl-(5,5-dimethyl-3-oxo-2-(phenylselanyl)cyclohex-1-

en-1-yl)valinate (7a). The product was purified by column
chromatography on silica gel (eluted with hexane/EtOAc, 3/
2). Light yellow gum (338 mg, 83%); IR (neat) νm̅ax: 3299,
2960, 1741, 1632, 1557 cm−1; 1H NMR (300 MHz, CDCl3):
δH 7.35−7.31 (m, 2H), 7.19−7.09 (m, 3H), 6.98−6.95 (m,
1H), 4.00−3.94 (m, 1H), 3.69 (s, 3H), 2.43 (br s, 2H), 2.37−
2.36 (m, 2H), 2.16−2.05 (m, 1H), 1.12 (s, 3H), 1.10 (s, 3H),
0.86−0.80 (m, 6H); 13C{1H} NMR (75 MHz, CDCl3): δC
191.9, 171.2, 165.0, 131.6, 129.8, 128.9, 126.1, 100.1, 61.5,
52.4, 50.4, 40.1, 32.1, 31.9, 28.6, 28.4, 18.8, 17.5; HRMS (ESI-
TOF) m/z: [M + H]+ calcd for C20H28NO3Se, 410.1235;
found, 410.1244.
Methyl-3-methyl-2-((3-oxo-2-(phenylselanyl)cyclohex-1-

en-1-yl)amino)pentanoate (7b). The product was purified by
column chromatography on silica gel (eluted with hexane/
EtOAc, 3/2). Brown gum (315 mg, 80%); IR (neat) νm̅ax:
3320, 2982, 1739, 1643, 1567 cm−1; 1H NMR (300 MHz,
CDCl3): δH 7.25−7.21 (m, 2H), 7.12−7.02 (m, 3H), 6.91−
6.88 (m, 1H), 3.99−3.92 (m, 1H), 3.62 (s, 3H), 2.50−2.43
(m, 4H), 1.99−1.95 (m, 2H), 1.78−1.69 (m, 1H), 1.22−1.16
(m, 1H), 0.92−0.86 (m, 1H), 0.77−0.70 (m, 6H); 13C{1H}
NMR (75 MHz, CDCl3): δC 192.4, 171.1, 166.6, 131.3, 129.5,
129.0, 126.1, 101.1, 60.7, 52.4, 38.6, 36.6, 26.5, 24.7, 21.1, 15.3,
11.4; HRMS (ESI-TOF) m/z: [M + H]+ calcd for
C19H26NO3Se, 396.1079; found, 396.1068.
Methyl-(3-oxo-2-(phenylselanyl)cyclohex-1-en-1-yl)-

tryptophanate (7c). The product was purified by column
chromatography on silica gel (eluted with hexane/EtOAc, 1/
1). Light yellow amorphous solid (340 mg, 73%); mp 80−82
°C; IR (KBr) νm̅ax: 3316, 2974, 1745, 1622, 1563 cm−1; 1H
NMR (300 MHz, DMSO-d6): δH 11.65−11.63 (m, 1H),
7.60−7.45 (m, 1H), 7.35−7.32 (m, 1H), 7.24−7.19 (m, 3H),
7.17−7.11 (m, 4H), 7.09−6.97 (m, 2H), 4.68−4.52 (m, 1H),
3.68 and 3.61 (2 s, 3H, rotamers), 2.43−2.32 (m, 1H), 2.24−
2.06 (m, 3H), 1.73−1.64 (m, 1H), 1.63−1.48 (m, 1H), 1.40−
1.24 (m, 1H), 0.96−0.82 (m, 1H); 13C{1H} NMR (75 MHz,
DMSO-d6): δC 190.7, 171.7, 168.3, 138.2, 132.5, 130.0, 129.8,
129.6, 129.3, 129.1, 127.2, 120.8, 119.7, 116.9, 116.2, 98.9,
56.4, 53.0, 37.1, 32.8, 29.7, 20.9; Anal. Calcd for
C24H24N2O3Se: C, 61.67; H, 5.18; N, 5.99. Found: C, 61.58;
H, 5.29; N, 5.88.
Methyl-(3-oxo-2-(phenylselanyl)cyclohex-1-en-1-yl)-

leucinate (7d). The product was purified by column
chromatography on silica gel (eluted with hexane/EtOAc, 1/
1). Light yellow gum (295 mg, 75%); IR (neat) νm̅ax: 3290,

2968, 1744, 1647, 1560 cm−1; 1H NMR (300 MHz, CDCl3):
δH 7.29−7.25 (m, 2H), 7.18−7.08 (m, 3H), 6.74−6.71 (m,
1H), 4.18−4.10 (m, 1H), 3.68 (s, 3H), 2.56−2.51 (m, 4H),
2.08−1.99 (m, 2H), 1.67−1.48 (m, 2H), 1.43−1.30 (m, 1H),
0.83−0.78 (m, 6H); 13C{1H} NMR (75 MHz, CDCl3): δC
192.4, 172.1, 166.7, 131.4, 129.3, 129.0, 126.0, 101.0, 54.6,
52.7, 41.8, 36.8, 26.5, 24.4, 22.7, 21.7, 21.0; HRMS (ESI-TOF)
m/z: [M + H]+ calcd for C19H26NO3Se, 396.1079; found,
396.1063.

General Procedure for Synthesis of Enaminones of
Aryl and Alkyl Amines (8).41 In a 50 mL round-bottom
flask, aryl/alkyl amines (2.0 mmol) were mixed with 1,3-
diketone compounds (2.0 mmol) in 10 mL of benzene. The
resulting reaction mixture was refluxed using Dean−Stark trap
for 1.5 h. After completion of the reaction (checked by TLC
monitoring), benzene was removed from the reaction mixture
under reduced pressure. The crude mass containing
enaminones 8 was washed with hexane (3 × 15 mL) and
used for sulfenylation/selenylation reaction without further
purification.

General Procedure for Synthesis of β-Amino Sulfide/
Selenide Derivatives (9). Enaminones 8 (1.0 mmol) and
NCS (1.0 mmol, 133.5 mg) were added to a stirred solution of
thiols 4 (1.5 mmol) or benzeneselenol 6 (1.5 mmol, 235 mg)
in 2.0 mL of DCM taken in a 50 mL round-bottom flask. The
resulting mixture was stirred for 5 min at rt in open air. After
completion of the reaction (observed by TLC monitoring), the
reaction mixture was diluted with water and the organic layer
was extracted with ethyl acetate (3 × 20 mL). The extracted
organic part was dried over anhydrous sodium sulphate and
concentrated in vacuo. The crude mass was purified by silica
gel column chromatography using 10−50% ethyl acetate in
hexane as an eluent to afford pure sulfide/selenide derivatives
9.

Spectral Data. Characterization data of compounds 9a−k.
3-((4-Methylbenzyl)amino)-2-(p-tolylthio)cyclohex-2-en-

1-one (9a). The product was purified by column chromatog-
raphy on silica gel (eluted with hexane/EtOAc, 1/1). White
amorphous solid (286 mg, 85%); mp 132−134 °C; IR (KBr)
νm̅ax: 3433, 2928, 1630, 1558 cm−1; 1H NMR (300 MHz,
CDCl3): δH 7.14−7.01 (m, 7H), 6.98−6.96 (m, 2H), 4.45 (br
s, 1H), 4.43 (br s, 1H), 2.64−2.60 (m, 2H), 2.57−2.53 (m,
2H), 2.35 (s, 3H), 2.30 (s, 3H), 2.08−2.00 (m, 2H); 13C{1H}
NMR (75 MHz, CDCl3): δC 192.4, 168.6, 137.6, 135.0, 133.9,
132.9, 129.7, 129.6, 126.6, 126.5, 99.4, 47.0, 37.0, 26.5, 21.1,
20.9, 20.8; HRMS (ESI-TOF) m/z: [M + H]+ calcd for
C21H24NOS 338.1579; found, 338.1585.

3-((3-Chloro-4-fluorophenyl)amino)-2-(p-tolylthio)-
cyclohex-2-en-1-one (9b). The product was purified by
column chromatography on silica gel (eluted with hexane/
EtOAc, 3/2). White amorphous solid (325 mg, 90%); mp
144−146 °C; IR (KBr) ν ̅max: 3420, 2945, 1637, 1547 cm

−1; 1H
NMR (300 MHz, CDCl3): δH 8.25 (br s, 1H), 7.19−7.15 (m,
2H), 7.13−7.12 (m, 1H), 7.10−7.05 (m, 3H), 7.00−6.95 (m,
1H), 2.63−2.59 (m, 4H), 2.30 (s, 3H), 2.08−2.03 (m, 2H);
13C{1H} NMR (75 MHz, CDCl3): δC 192.4, 166.5, 156.7 (d,
1JC‑F = 249.0 Hz), 135.4, 134.1, 132.2, 129.8, 128.2, 126.6,
125.8 (d, 3JC‑F = 6.75 Hz), 121.8 (d, 2JC‑F = 18.75 Hz), 117.2
(d, 2JC‑F = 21.75 Hz), 102.2, 37.3, 27.8, 21.3, 20.9; Anal. Calcd
for C19H17ClFNOS: C, 63.07; H, 4.74; N, 3.87. Found: C,
63.01; H, 4.83; N, 3.76.

2-((4-Chlorophenyl)thio)-3-(p-tolylamino)cyclohex-2-en-
1-one (9c). The product was purified by column chromatog-
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raphy on silica gel (eluted with hexane/EtOAc, 3/2). White
amorphous solid (300 mg, 87%); mp 176−178 °C; IR (KBr)
ν ̅max: 3410, 2952, 1638, 1562 cm−1; 1H NMR (300 MHz,
CDCl3): δH 8.26 (br s, 1H), 7.25−7.18 (m, 4H), 7.15−7.11
(m, 2H), 6.98−6.96 (m, 1H), 2.66−2.59 (m, 4H), 2.37 (s,
3H), 2.07−2.01 (m, 2H); 13C{1H} NMR (75 MHz, CDCl3):
δC 192.8, 168.0, 137.2, 135.0, 134.5, 131.0, 130.1, 129.0, 127.3,
125.8, 99.5, 37.4, 27.9, 26.9, 21.3; Anal. Calcd for
C19H18ClNOS: C, 66.37; H, 5.28; N, 4.07. Found: C, 66.28;
H, 5.36; N, 3.98.
3-((4-Methoxyphenyl)amino)-2-(phenylthio)cyclohex-2-

en-1-one (9d). The product was purified by column
chromatography on silica gel (eluted with hexane/EtOAc, 3/
2). Light gray amorphous solid (292 mg, 90%); mp 126−128
°C; IR (KBr) ν ̅max: 3431, 2919, 1635, 1560 cm−1; 1H NMR
(300 MHz, CDCl3): δH 8.21 (br s, 1H), 7.28−7.15 (m, 4H),
7.13−7.07 (m, 1H), 7.01−6.97 (m, 2H), 3.81 (s, 3H), 2.62−
2.56 (m, 4H), 2.06−1.98 (m, 2H); 13C{1H} NMR (75 MHz,
CDCl3): δC 192.9, 168.2, 158.6, 136.3, 130.0, 128.9, 127.6,
125.9, 125.2, 114.6, 99.4, 55.5, 37.4, 27.8, 21.2; HRMS (ESI-
TOF) m/z: [M + H]+ calcd for C19H20NO2S, 326.1215;
found, 326.1232.
2-((2-Bromophenyl)thio)-3-((3-chloro-4-fluorophenyl)-

amino)cyclohex-2-en-1-one (9e). The product was purified
by column chromatography on silica gel (eluted with hexane/
EtOAc, 3/2). Light gray amorphous solid (345 mg, 81%); mp
152−154 °C; IR (KBr) νm̅ax: 3445, 2940, 1640, 1537 cm

−1; 1H
NMR (300 MHz, CDCl3): δH 8.14 (br s, 1H), 7.38 (d, J = 7.8
Hz, 1H), 7.12−7.02 (m, 3H), 6.95−6.81 (m, 3H), 2.56−2.49
(m, 4H), 2.02−1.94 (m, 2H); 13C{1H} NMR (75 MHz,
CDCl3): δC 192.8, 167.6, 156.8 (d, 1JC‑F = 244.5 Hz), 136.8,
133.9, 132.9, 128.4, 127.9, 126.5, 126.2, 126.1 (d, 3JC‑F = 2.25
Hz), 121.8, 121.6 (d, 3JC‑F = 5.25 Hz), 117.2 (d, 2JC‑F = 22.5
Hz) , 100 .3 , 37 .4 , 28 .0 , 21 .3 ; Ana l . Ca lcd for
C18H14BrClFNOS: C, 50.66; H, 3.31; N, 3.28. Found: C,
50.57; H, 3.43; N, 3.20.
(E)-4-((4-Methoxyphenyl)amino)-3-((4-nitrophenyl)thio)-

pent-3-en-2-one (9f). The product was purified by column
chromatography on silica gel (eluted with hexane/EtOAc, 9/
1). Yellow amorphous solid (286 mg, 80%); mp 120−122 °C;
IR (KBr) νm̅ax: 3450, 2954, 1582 cm−1; 1H NMR (300 MHz,
CDCl3): δH 13.89 (s, 1H), 8.14 (d, J = 9.0 Hz, 2H), 7.29−7.26
(m, 2H), 7.09 (d, J = 9.0 Hz, 2H), 6.93 (d, J = 8.7 Hz, 2H),
3.84 (s, 3H), 2.35 (s, 3H), 2.18 (s, 3H); 13C{1H} NMR (75
MHz, CDCl3): δC 199.7, 169.8, 158.6, 150.6, 145.0, 130.7,
127.0, 124.3, 123.9, 114.5, 93.1, 55.5, 28.7, 18.6; Anal. Calcd
for C18H18N2O4S: C, 60.32; H, 5.06; N, 7.82. Found: C, 60.38;
H, 5.14; N, 7.71.
(E)-3-(Cyclohexylthio)-4-((4-methoxyphenyl)amino)pent-

3-en-2-one (9g). The product was purified by column
chromatography on silica gel (eluted with hexane/EtOAc, 9/
1). Brown semisolid (246 mg, 77%); IR (neat) νm̅ax: 3443,
2950, 1577 cm−1; 1H NMR (300 MHz, CDCl3): δH 13.74 (s,
1H), 7.07−7.02 (m, 2H), 6.92−6.88 (m, 2H), 3.83 (s, 3H),
2.53 (s, 3H), 2.32 (s, 3H), 1.97−1.94 (m, 2H), 1.79 (br s,
2H), 1.65 (br s, 1H), 1.35−1.23 (m, 6H); 13C{1H} NMR (75
MHz, CDCl3): δC 200.6, 168.5, 158.1, 131.7, 127.0, 114.3,
98.1, 55.5, 48.9, 33.1, 29.3, 26.3, 25.9, 19.5; HRMS (ESI-TOF)
m/z: [M + H]+ calcd for C18H26NO2S, 320.1685; found,
320.1662.
2-(Benzo[d]thiazol-2-ylthio)-3-(benzylamino)cyclohex-2-

en-1-one (9h). The product was purified by column
chromatography on silica gel (eluted with hexane/EtOAc, 3/

2). White amorphous solid (285 mg, 78%); mp 140−142 °C;
IR (KBr) νm̅ax: 3433, 2924, 1628, 1555 cm−1; 1H NMR (300
MHz, CDCl3): δH 7.85 (d, J = 8.1 Hz, 1H), 7.72−7.69 (m,
1H), 7.44−7.38 (m, 1H), 7.32−7.27 (m, 4H), 7.23−7.14 (m,
3H), 4.56−4.54 (m, 2H), 2.72−2.68 (m, 2H), 2.63−2.58 (m,
2H), 2.12−2.08 (m, 2H); 13C{1H} NMR (75 MHz, CDCl3):
δC 191.4, 170.0, 154.1, 136.4, 135.3, 129.1, 128.1, 126.6, 126.1,
126.1, 124.2, 121.6, 120.8, 98.1, 47.4, 36.9, 26.9, 20.5; Anal.
Calcd for C20H18N2OS2: C, 65.54; H, 4.95; N, 7.64. Found: C,
65.47; H, 5.03; N, 7.53.

2-((4-Chlorophenyl)thio)-3-(propylamino)cyclohex-2-en-
1-one (9i). The product was purified by column chromatog-
raphy on silica gel (eluted with hexane/EtOAc, 3/2). Light
yellow gum (242 mg, 82%); IR (KBr) νm̅ax: 3438, 2923, 1630,
1555 cm−1; 1H NMR (300 MHz, CDCl3): δH 7.11−7.07 (m,
2H), 6.99−6.94 (m, 2H), 6.71−6.67 (m, 1H), 3.20−3.14 (m,
2H), 2.62−2.58 (m, 2H), 2.50−2.45 (m, 2H), 2.04−1.98 (m,
2H), 1.55−1.43 (m, 2H), 0.83−0.78 (m, 3H); 13C{1H} NMR
(75 MHz, CDCl3): δC 192.6, 169.4, 135.4, 130.6, 128.8, 127.1,
97.0, 45.2, 36.8, 26.4, 23.2, 20.7, 11.0; HRMS (ESI-TOF) m/z:
[M + H]+ calcd for C15H19ClNOS, 296.0877; found, 296.0860.

3-(Cyclohexylamino)-2-(p-tolylthio)cyclohex-2-en-1-one
(9j). The product was purified by column chromatography on
silica gel (eluted with hexane/EtOAc, 1/1). Yellow gum (265
mg, 84%); IR (KBr) νm̅ax: 3435, 2930, 1628, 1572 cm−1; 1H
NMR (300 MHz, CDCl3): δH 6.88−6.81 (m, 4H), 6.61−6.58
(m, 1H), 3.32−3.22 (m, 1H), 2.53−2.49 (m, 2H), 2.37−2.33
(m, 2H), 2.08 (s, 3H), 1.90−1.84 (m, 2H), 1.66−1.59 (m,
2H), 1.52−1.36 (m, 3H), 1.18−0.94 (m, 5H); 13C{1H} NMR
(75 MHz, CDCl3): δC 192.5, 167.9, 134.6, 132.9, 129.4, 126.2,
97.8, 51.8, 36.8, 33.5, 29.5, 26.3, 24.9, 24.1, 20.8; HRMS (ESI-
TOF) m/z: [M + H]+ calcd for C19H26NOS, 316.1736; found,
316.1716.

5,5-Dimethyl-2-(phenylselanyl)-3-(p-tolylamino)cyclohex-
2-en-1-one (9k). The product was purified by column
chromatography on silica gel (eluted with hexane/EtOAc, 3/
2). Yellow gum (280 mg, 73%); IR (KBr) νm̅ax: 3450, 2942,
1635, 1550 cm−1; 1H NMR (300 MHz, CDCl3): δH 8.22 (br s,
1H), 7.38−7.35 (m, 2H), 7.24−7.17 (m, 5H), 6.93−6.91 (m,
2H), 2.48−2.46 (m, 4H), 2.37 (s, 3H), 1.08 (br s, 6H);
13C{1H} NMR (75 MHz, CDCl3): δC 192.4, 165.1, 136.9,
134.9, 131.6, 130.0, 129.4, 129.1, 126.1, 125.9, 99.9, 50.8, 41.1,
40.8, 32.4, 28.3, 21.0; Anal. Calcd for C21H23NOSe: C, 65.62;
H, 6.03; N, 3.64. Found: C, 65.55; H, 6.12; N, 3.57.

Single-Crystal X-ray Structure Analysis of 5w (CCDC
2104278). C22H22N2O3S2, M = 426.54, monoclinic, a =
10.618(2) Å, b = 8.0686(16) Å, c = 12.470(3) Å, α = 90.00°, β
= 101.467(3)°, γ = 90.00°, V = 1047.0(4) Å3, T = 296(2) K,
space group P 21, Z = 2, μ(MoKα) = 0.280 mm−1, 22071
reflections measured, 4876 independent reflections (Rint =
0.0454). The final R1 values were 0.0818 (I > 2σ(I)). The final
wR(F2) values were 0.2307 (I > 2σ(I)). The final R1 values
were 0.1003 (all data). The final wR(F2) values were 0.2603
(all data). The goodness of fit on F2 was 1.071.
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