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Abstract: Erythropoietin (EPO) plays an important role in erythropoiesis by its action in blocking
apoptosis of progenitor cells and protects both photoreceptors and retinal ganglion cells from induced
or inherited degeneration. A modified form of EPO, EPO-R76E has attenuated erythropoietic activity
but is effective in inhibiting apoptosis, oxidative stress, and inflammation in several models of retinal
degeneration. In this study, we used recombinant Adeno Associated Virus (AAV) to provide long-
term sustained delivery of EPO-R76E and demonstrated its effects in a mouse model of dry-AMD in
which retinal degeneration is induced by oxidative stress in the retinal pigment epithelial (RPE) cells.
Experimental vector AAV-EPO-R76E and control vector AAV-GFP were packaged into serotype-1
(AAV1) to enable RPE selective expression. RPE oxidative stress-mediated retinal degeneration
was induced by exon specific deletion of the protective enzyme MnSOD (encoded by Sod2) by
cre/lox mechanism. Experimental mice received subretinal injection of AAV-EPO-R76E in the right
eye and AAV-GFP in the left eye. Western blotting of RPE/choroid protein samples from AAV-
EPO-R76E injected eyes showed RPE specific EPO expression. Retinal function was monitored by
electroretinography (ERG). EPO-R76E over-expression in RPE delayed the retinal degeneration as
measured by light microscopy in RPE specific Sod2 knockout mice. Delivery of EPO-R76E vector can
be used as a tool to prevent retinal degeneration induced by RPE oxidative stress, which is implicated
as a potential cause of Age-Related Macular Degeneration.

Keywords: age related macular degeneration; oxidative stress; MnSOD; RPE; retinal degeneration;
erythropoietin; gene therapy; animal model; AAV; ERG

1. Introduction

Age related Macular Degeneration (AMD) is one of the leading causes of permanent
vision loss in people over the age of 60 [1,2]. The Retinal Pigment Epithelium (RPE)
provides nutritional and metabolic support that is essential for the function of photoreceptor
cells and serves as a component of the blood-retinal barrier. In the dry form of AMD,
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macular RPE atrophy leads to photoreceptors loss, thus affecting vision. Dysfunction
and loss of RPE in AMD are associated with several genetic and environmental factors.
These factors can induce oxidative stress and inflammation that play pathological roles in
RPE degeneration [3]. Oxidative stress, accumulation of oxidized lipids and cholesterol,
ion channel impairment, and mitochondrial dysfunction have been shown to alter RPE
physiology [4–7]. Many endogenous and exogenous factors can damage mitochondrial
DNA (mtDNA) in the neural retina and RPE cells resulting in reactive oxygen species
(ROS) overproduction [8]. High mitochondrial ROS production imbalances antioxidant
and cytoprotective systems in the RPE and play a pivotal role in AMD pathogenesis [8].
Antioxidants, growth factors, and neurotrophic factors are widely proposed to protect RPE
cells from oxidative damage-associated changes [9].

Erythropoietin (EPO), a secreted cytokine, is FDA-approved for the treatment of
anemia. EPO has been shown to act as a novel agent in vascular protection against acute
lung injury by promoting angiogenesis [10]. EPO provides neuroprotective effects in
several animal models, as it blocks apoptotic pathways and indirectly induces endogenous
antioxidants in neurons [11,12]. Intravenous EPO delivery improved visual acuity and
color vision in patients following indirect traumatic neuropathy [13]. Systemic or retinal
delivery of EPO or EPO-R76E, a modified form of EPO with reduced erythropoietic activity,
can improve the function of retinal ganglion cells and photoreceptors cells [14–24].

We reported Sod2flox/flox-VMD2cre mice as an animal model of dry AMD by condi-
tional genetic deletion of manganese superoxide dismutase (MnSOD, encoded by Sod2),
a mitochondrial antioxidant enzyme in the RPE [25]. Loss of MnSOD in the RPE leads
to the induction of oxidative stress, further promoting progressive retinal degeneration
seen as early as 4–6 months [26]. We have used this animal model to test various drugs,
antioxidant genes, and nutritional supplements to improve the function of RPE and neural
retina [27–31].

Erythropoietin and the erythropoietin receptor (EPOR) are widely expressed within
retinal cells, and several groups have tested the ability of exogenous EPO to ameliorate
retinal degeneration associated in animal models of diabetic retinopathy, retinitis pigmen-
tosa, and other forms of retinal degeneration [22,32]. However, the potential of EPO to
limit retinal degeneration associated with age-related macular degeneration (AMD) has
not been explored. Chronic oxidative stress in the RPE plays an important role in RPE
loss in dry-AMD [3,8,33,34]. In response to sustained oxidative stress, RPE cells die by
necroptosis [35,36]. We hypothesize that sustained expression of EPO-R76E in the RPE
using an AAV vector will improve the health and survival of RPE and retinal photore-
ceptors. Thus, we evaluated the efficacy of the modified form of EPO in protecting RPE
from oxidative stress-induced changes in our mouse model of dry-AMD. We show that the
presence of EPO-R76E slowed down the rate of functional decline and preserved retinal
thickness caused by oxidative stress in the RPE.

2. Materials and Methods
2.1. Study Design

EPO-R76E expression was tested in cell culture by Western blotting, and all the
experiments in cell culture were performed in triplicate. A total of 10 to 12-week-old mice
of both sexes (n = 20) were used to test the vector in vivo. The experimental vectors were
delivered to the mouse eyes by subretinal injection. Three mice (n = 3) were analyzed
for transgene expression by Western blotting 6 weeks following injection. Five mice
(n = 4) were discarded from the study due to retinal detachment or abnormality following
subretinal injection. The retinal function was recorded by scotopic ERG at 6 and 9 months
of age (3 and 6 months after injection). At the end of the experiments (9 months of age),
the retinal tissues were analyzed by histology. A schematic diagram of the experimental
design is shown in Figure 1.
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Figure 1. Experimental design.

2.2. Plasmids and Cell Culture

The AAV plasmid having a modified form of EPO (EPO-R76E) cDNA was provided
by Dr. Tonia S. Rex (Vanderbilt University) [23]. The Arginine residue at the 76th posi-
tion of the human EPO gene (GenBank: M11319.1) coding sequence (CDS) was replaced
with glutamate via site-directed mutagenesis to obtain the EPO-R76E transgene, and the
transgene was cloned into an AAV plasmid. For complete gene expression, this plasmid
consisted of DNA sequences of inverted tandem repeats (ITR) the human cytomegalovirus
(CMV) promoter, short intron sequence, human EPO-R76E cDNA, Woodchuck Hepatitis
Virus (WHV) Posttranscriptional Regulatory Element (WPRE), bovine growth hormone
polyadenylation (bgh-PolyA) signal and Ampicillin resistance (Ampr) genes. This plasmid
was used for testing EPO expression in vitro and for generating the AAV used in vivo.

Control AAV-GFP and experimental AAV-EPO-R76E plasmids were transfected to
one Shot Stbl3 chemically competent E. coli (Thermo Scientific, Waltham, MA, USA) cells.
The transfected plasmids were harvested by maxiprep and purified using cesium chloride
gradient centrifugation method. HEK293T cells grown on 6 well plates were used in
triplicates to transfect 4 micrograms of each plasmids using polyethylenimine (PEI) cellular
transfection reagent (Polysciences, Warrington, PA, USA, catalog no: 23966-100) with a
ratio of 1:2, DNA to PEI. Transfection medium with DNA and PEI was replaced with
complete growth media after 24 h and further incubated for another 24 h to allow transgene
expression. The next day, cells were checked for GFP fluorescence. After that, cells were
dislodged using cold phosphate-buffered saline (PBS). The cells were pelleted at 14,000× g
for 30 min at 4 ◦C, supernatants were collected to quantify protein concentration and kept
at −80 ◦C for Western blotting analysis.

2.3. AAV Vector Production

HEK-293T Cell culture and virus processing was performed exclusively in BSL II
certified biosafety cabinets at the Retinal Gene Therapy Vector Core within the University of
Florida as per established protocols [37]. Briefly, one milligram of plasmids was transfected
to HEK-293T cells along with helper and AAV1 serotype plasmids to produce AAV1
virus. Transfected cells were lysed by 3 freeze/thaw cycles between dry ice–ethanol
and 37 ◦C water baths to release the AAVs. The crude lysate was clarified by iodixanol
gradient centrifugation and anion exchange chromatography. Endotoxin was removed
using published protocols [38]. The purified and endotoxin-free virus was diluted in Hanks’
Balanced Salt solution (HBSS) buffer, and a stock concentration of 1 × 1013 viral genome
copies per milliliter (VG/mL) was achieved. For animal injection, the virus was diluted in
HBSS buffer.

2.4. Animals

All the procedures involving animals in this study followed the ARVO Statement for
the Use of Animals in Ophthalmic and Vision Research, and the protocols were approved
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by the Institutional Animal Care and Use Committee (IACUC) at the University of South
Florida and the University of Florida (Approval number: IS00005958). Breeding pairs of
RPE specific Sod2 deleted mice (Sod2flox/flox-VMD2-cre) on the C57BL/6J background were
set up to generate the mice for this project. These transgenic mice have the VMD2 promoter
driving inducible cre transgene [39] and loxP sites surrounding exon 3 of Sod2 [40]. The cre
transgene was induced by providing doxycycline chow (Bio-Serv) to the nursing dams of
pups from P0-P14, leading to deletion of Sod2 as described by Mao et al. [25]. The pups were
screened by genotyping using the primers for flox, cre, rd1, rd8, and rd10 (Supplementary
Table S1). Since rd1, rd8, and rd10 mutations are associated with retinal degeneration, the
pups showing the mutations were removed from the study. Only the pups homozygous
for the floxed allele of Sod2 and transgenic for cre were used for this study. Intraperitoneal
injection of a mixture of ketamine (95 mg/kg) and xylazine (8 mg/kg) was used to anes-
thetize the mice for in vivo procedures such as fundus imaging, electroretinography (ERG),
and retinal injections. The procedures from one of our previous publications were followed
for eye dilation and local anesthesia [28].

2.5. Subretinal Injections

For subretinal injection, the eyes were dilated by 1% atropine and 2.5% phenylephrine
18 h before injection. The next day, the eyes were further dilated 3 times (10 min intervals),
and 1 drop of artificial tears (GenTeal, Alcon, Geneva, Switzerland) were applied to
moisten the eye. Under the surgical microscope, 1 µL of 1012 VG/mL of AAV1-EPO-R76E
(i.e., 1 × 109 total viral particles) in one eye and an equal dose of AAV1-GFP in the other
eye [28,41] were delivered into the subretinal space using a 33 gauge microneedle connected
to 2.5 uL microsyringe. Following injection, the eyes were treated topically with antibiotics
to avoid infection complications following injection and allowed mice to recover on a warm
circulating water pad. The success of the subretinal injections was determined by analyzing
the high-resolution imaged recorded by spectral domain coherence tomography (SD-OCT)
(Supplementary Documents) 14 days after injection. Animals showing retinal detachment
or any structural defect due to injection were excluded from further analysis.

2.6. Western Blot Analysis

Proteins from cells and retinal tissues were analyzed by Western blotting to determine
the expression of modified EPO. For cell culture analysis, the cell pellet was dissolved
in 100 uL of RIPA lysis buffer with protease inhibitors (Sigma, St. Louis, MO, USA, Cat
no: P8340). The cells in lysis buffer were vortexed for 3 to 4 times with 10-min intervals
on ice to release the protein and then centrifuged at 14,000× g for 30 min at 4 ◦C. The
supernatant was collected to quantify the protein concentration. For in vivo expression
studies, 1 month following subretinal delivery of vectors, the eyes were collected after
euthanasia. The retina and RPE/choroid were dissected out under a surgical microscope
and collected separately in 100 uL of RIPA lysis buffer with protease inhibitors. The tissues
were sonicated for 30–45 s in lysis buffer while on ice, and cell debris was pelleted at
14,000× g for 30 min at 4 ◦C. Pierce™ 660 nm Protein Assay Reagent (Thermo Fisher
Scientific, Cat no: 22660) was used to quantify protein concentration using the supernatant
collected from cell pellets and retinal tissues. A total of 20 µg of protein were separated
on SDS-PAGE gels, and proteins were transferred to PVDF membrane. The membranes
were blocked with Odyssey Blocking Buffer (a phosphate-buffered saline (PBS) based
formulation, Li-COR) for an hour and incubated overnight with rabbit polyclonal Epo
primary antibody (Santa Cruz Biotechnology, Dallas, TX, USA, Cat no: sc-7956) and mouse
monoclonal alpha tubulin (Abcam, Cambridge, UK, Cat no: ab7291) primary antibody
used as a loading control. After washing in PBS-Tween 20 (0.05%) buffer, the membranes
were incubated with species-specific secondary antibody (LiCor, Lincoln, NE, USA; Cat
no: 92532213 and Cat no: 92668170) diluted in PBS for 1 h and washed 3 times in wash
buffer (PBS-Tween 20 (0.05%)) before imaging. Labeled proteins were detected using the
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LiCor Clx Odyssey instrument that showed 2 different colors for 2 different protein bands
depending upon size.

2.7. In Vivo Fundus Imaging

GFP fluorescence fundus imaging was performed to check the spread and expression
of the control vector (Figure 2C) using Phoenix Micron 3 fundus camera. For this, the pupils
of the mice were dilated once with 1% atropine and twice with 2.5 phenylephrine, then
mice were anesthetized, the cornea was lubricated by 1 drop of artificial tears (GenTeal,
Alcon). The eyes of the mice were positioned to face the fundus camera, and images were
recorded keeping the optic nerve at the center using GFP filter and normal bright field filter.
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driven by cytomegalovirus immediate early (CMV) promoter [24] and contains the Woodchuck Hepaititis Postransciptional
Regulatory Element (WPRE). The vector was packaged as serotype 1 (AAV1) to promote RPE-specific transduction. The
AAV-EPO-R76E experimental vector was injected in one eye of 2–3-month-old mice (B), and the contralateral eye was
injected with control vector, AAV-GFP. One month following subretinal gene delivery GFP fluorescence (C) was noticed
around the optic nerve by fundus imaging. Exogenous EPO-R76E was significantly increased (D) in the RPE/choroid
of Sod2flox/flox/VMD2-cre mice (red arrow) injected with the AAV-EPO-R76E vector (lanes 4, 6 and 8) compared to eyes
injected with the control AAV-GFP vector (lanes 5, 7, and 9), using an EPO specific antibody and β-actin used as a loading
control (green arrow). (E) EPO levels were minimal (Lane 4, 6, 8) in the retinas of the same eyes. Proteins from GFP
transfected HEK cells (lane 1) and EPO plasmid transfected HEK cells (Lane 2 and 3) were used in both the gels to have
negative and positive control for retinal tissues.

2.8. Scotopoic Electroretinography (ERG)

To monitor retinal function, the scotopic (dark-adapted) ERG response was measured
using the Espion full-field ERG system Espion ColorDome Ganzfeld ERG system (Diag-
nosys, Inc., Lowell, MA, USA) according to an established protocol [28,29]. For this, mice
were dark-adapted overnight, and pupils were dilated with 3 times (with 10 min interval)
application of 1 drop each of 1% atropine and 2.5% phenylephrine. After the final step,
1 drop of a local anesthetic (proparacaine) was applied. After that, mice were anesthetized
with ketamine/xyalzine as described above. A ground electrode was connected to the tail
and a reference electrode was placed in the mouth. The eyes were lubricated using one drop
of artificial tears (GenTeal, Alcon). Loop electrodes were placed on the eye, making sure
complete connection to the surface of the eye. Once the connection was established with
minimal impedance, the ERG protocol was initiated. Flashes of 20 dB (20 cds/m2) were ap-
plied and acquisition was performed with 1000 Hz frequency. Four sweeps were recorded
with 2000 ms delay interval and average of 4 sweeps were used for ERG data analysis. The
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ERG a-wave, b-wave, and c-wave responses from both the eyes were recorded. The results
were compared between control and experimental vector injected eyes at 3 months and
6 months following subretinal injection.

2.9. Light Microscopy

We used intraperitoneal injection of EUTHASOL® euthanasia solution (pentobarbital
sodium and phenytoin sodium) to euthanize the experimental mice. We followed the
procedures for perfusions and tissue processing, embedding, and sectioning as previously
described [25]. Semithin cross-sections of 0.5 µm from resin embedded retinal tissue were
cut through the optic nerves and mounted on glass slides. These sections were stained with
1% toluidine blue and 2% borate in distilled water. Stained sections were examined at 4×,
20×, and 100× by light microscopy using Keyence All-in-One Fluorescence Microscope
BZ-X800 (Itasca, IL, USA)

2.10. Statistical Analysis

GraphPad Prism 5.0 (GraphPad, San Diego, CA, USA) was used to produce the graphs.
Two-tailed Student’s t-tests were used to test the statistical significance of differences in
results. Bonferroni post hoc analysis was used to determine the true differences within
the groups. All the data are represented as mean ± Standard Error of Mean (SEM) unless
otherwise indicated. Significance was reported whenever the calculated p-value was ≤0.05.
* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.

3. Results
3.1. EPO Expression in RPE-Specific Sod2 Deleted Mice

Even though AAV1 transduces both Müller glia and RPE following intravitreal injec-
tion, Müller glia expression is much less than the RPE [41]. In order to restrict transgene
expression to RPE cells, we injected an AAV1 vector containing human-modified EPO
(EPO-R76E) into the subretinal space of 3-month-old RPE-specific Sod2 deleted mice [42].
The contralateral eyes from the same animals were injected with AAV1 expressing human-
ized GFP as a control to evaluate the impact of subretinal injection or virus-induced effects.
By using fluorescence fundus imaging, we observed GFP expression over 50–70% of the
retina (Figure 2C) that suggested the efficiency of subretinal viral delivery. To detect and
quantify exogenous transgene expression, the level of AAV-delivered EPO protein expres-
sion was examined 1 month following subretinal injection using an EPO antibody. The
control and experimental vector injected eyes were harvested from a cohort of mice 1 month
following injection. The retina and RPE/choroid from each eye were collected separately
for protein analysis. EPO antibody detected exogenous expression in RPE/choroid samples
injected with AAV-EPO (Figure 2D) as we see a 37KD protein band. As expected, we found
negligible expression of EPO in the retina (Figure 2E), confirming the RPE-specific tropism
of AAV1 [43].

3.2. Improved Retinal and RPE Function

Under dark-adapted conditions, the ERG amplitudes of Sod2 deleted mice were
lower than control mice [26]. Three months following EPO treatment, a-wave and b-wave
ERG amplitudes were significantly different between eyes treated with the experimental
and the control vectors (Figure 3). At 6 months of age (3 months following injection),
the eyes treated with AAV-EPO vector showed 31% improvement in a-wave response
(−132.313 ± 4.337 µ volts vs. −100.654 ± 3.830 µ volts) and 38% increase in b-wave
response (237.154 ± 11.829 µ volts vs. 171.692 ± 7.664 µ volts) compared to contralateral
eyes injected with AAV-GFP vector (Figure 3A,B). At 9 months of age (6 months following
injection), the loss in a- and b-wave response were prevented (Figure 3A,B). We found
60% more of a-wave response (114.129 ± 3.859 µ volts vs. 71.003 ± 6.398 µ volts) and
54% more of b-wave response (225.709 ± 12.856 µ volts vs. 145.791 ± 11.427 µ volts). The
c-wave ERG response reflects the health of RPE. We recorded a 37% (398.692 ± 26.394 µ
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volts vs. 289.438 ± 18.685 µ volts) and 63% (369.282 ± 21.930 µ volts vs. 226.245 ± 12.752 µ

volts) (Figure 3C) improvement in c-wave ERG responses at 6 months of age (3 months
following injection) and at 9 months of age (6 months following injection), respectively, in
eyes injected with AAV-EPO vector compared to untreated eyes injected with AAV-GFP
vector. It should be noted that the long-term expression of GFP in the RPE of rodents
does not affect the ERG response [44,45]. The representative scotopic ERG waveforms at
9 months of age is displayed in Figure 3D.
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Figure 3. Improvement of Photoreceptor and RPE function. Dark-adapted full field electroretinogram (ERG) amplitudes
measured at a light intensity of 20 cds/m2 at 6 months (6mo) and 9 months (9mo) of age after subretinal delivery of
EPO-R76E. In the EPO treated group, significant increases in (A) a-wave, (B) b-wave and (C) c-wave amplitudes were
recorded both at 6 months (n = 13) of age and 9 months of age (n = 11) compared to untreated group injected with GFP
vector. (p < 0.01). Please refer to Supplementary Figure S1 for the ERG data shown as a box-and-whisker plot. (D) indicates
the representative scotopic ERG waveforms at 9 months. ** p ≤ 0.01, *** p ≤ 0.001.

3.3. Improvement in Retinal Structure after Treatment with AAV-EPO-R76E Is Revealed by
Light Microscopy

Previously, we have reported a decrease in retinal thickness in RPE-specific Sod2
knockout mice as the age progresses [25]. The effects of Sod2 deleted changes in the
retina were visible by light microscopy as progressive RPE and photoreceptor cell de-
generation in all AAV-GFP injected eyes (Figure 4A,B). The retinas of AAV-EPO treated
eyes (206.195 ± 5.974 µm) were 48% thicker than the retinas of AAV-GFP treated eyes.
(139.634 ± 8.630 µm) (Figure 4C). Upon quantifying the retinal thickness from the equal
distance from optic nerve head ONH, we noticed the thicker retina in experimental eyes
compared to control eyes (Figure 4D). In control eyes injected with AAV-GFP vector, the
RPE monolayer thinning along with irregular melanin pigment distribution was noticed
(Figure 5B). Thinning of the RPE monolayer is indicative of RPE loss and impaired RPE
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integrity. The changes in response to AAV-EPO-R76E were indicated by thicker RPE im-
plying better structural Integrity (Figure 5A). Melanin pigment distribution was quite
uniform. Rounded RPE cell nuclei were visible in AAV-EPO treated eyes, whereas RPE
cell nuclei were pyknotic in untreated eyes, indicating the better health of RPE in treated
eyes. The basal laminar layer in treated eyes exhibited well-preserved structure compared
to GFP injected eyes. Progressive disorganization of the photoreceptor outer and inner
segments and collapsed photoreceptor nuclei were indicated by the loss of outer and inner
segments. More rows of photoceptor nuclei (ONL) were observed in AAV-EPO injected
eyes compared to AAV-GFP injected eyes. Longer photoreceptor outer segments were seen
in AAV-EPO injected eyes compared to AAV-GFP injected eyes. These results suggested
that the prevention of retinal thinning predominantly occurs in the photoreceptor layer
and retinal pigment epithelium (RPE).
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Figure 4. Preservation of retinal thickness: Representative low magnification and merged images of retina sections
from treated (A) and untreated (B) eyes of one mouse through optic nerve and approximate areas (boxed and zoomed).
(C) represents the measurement of the average of retinal thickness of eyes treated with AAV-EPO compared to AAV-GFP
injected eyes. Spider graphs (D) of average retinal thickness at different distances from the optic nerve head (n = 7)
demonstrated that AAV-EPO treatment reduced degeneration of the retina. Scale bar 500 µm. *** p ≤ 0.001.
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4. Discussion

Clinical and experimental evidence for both dry and wet forms of age-related macular
degeneration (AMD) demonstrates disruption of the structural and functional integrity of
the RPE in addition to the loss of photoreceptors [3,46–48]. We have shown that the deletion
of mitochondrial form of superoxide dismutase (MnSOD or Sod2), an antioxidant gene, in
the RPE of mice impairs retinal structure and function. Oxidative stress is one of the key
contributors to age-related retinal degeneration, particularly in dry-AMD [3,48]. Therefore,
efforts are in progress to develop a therapeutic approach that can prevent further loss of
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structural and functional integrity of the RPE induced by oxidative damage. Growth factors
offer the potential to prevent cell loss and degeneration of retinal cells from oxidative stress
if they can be delivered to the specific cells. Therefore, using a cell-specific gene therapeutic
approach, we have shown that subretinal delivery of serotype 1 AAV (AAV1) driving
recombinant erythropoietin (EPO-R76E) can restrict EPO transgene expression in the RPE.
This protects both the structural and functional integrity of RPE and retina impaired by
RPE-specific oxidative stress.

Erythropoietin (EPO) is a hormone produced primarily by the kidneys, with small
amounts made by the liver. EPO plays a key role in the production of red blood cells (RBCs),
which carry oxygen from the lungs to the rest of the body. EPO is also expressed locally
in the retina under the control of hypoxia-inducible factor (HIF-1) [49]. EPO is present
in considerably higher concentrations in eyes with diabetic macular edema than in eyes
with exudative AMD or normal eyes [50]. The results from several studies indicate that
erythropoietic EPO is therapeutic for a broad range of neurodegenerative diseases such as
axonal degeneration, peripheral nerve injury, experimental brain injury, and Alzheimer’s
disease [51–55]. The safe use of EPO is demonstrated in the clinic with other diseases as
it can traverse the intact blood–brain and blood–retina barriers in therapeutic concentra-
tions [49,55]. It was previously reported that the systemic delivery of EPO-R76E was able
to provide successful preservation of retinal ganglion cells and visual function without
significantly increasing hematocrit, unlike regular EPO [16]. Tao and colleagues recently
demonstrated that pre-treatment of mice by subretinal injection of AAV2-EPO, protected
the retina from acute N-Methyl-N-Nitrosourea (MNU) toxicity [56]. There is a need, how-
ever, to demonstrate the best strategies for developing and delivering EPO or erythropoietic
stimulating agents for the treatment of patients with atrophic or dry- AMD [57]. Adeno-
associated virus (AAV) vectors can transduce a wide range of dividing and non-dividing
cell types, which has made these vectors an important tool for ophthalmic gene therapy.
A major advantage of AAV vectors is the long-term expression of the therapeutic gene as
episomes within cells that can be obtained after in vivo gene delivery [58]. AAV-EPO gene
therapy vector offers the advantages of delivering and stably expressing EPO gene (or its
protein product) to the physiologically relevant target tissues such as RPE using specific
AAV serotypes (AAV1) or promoters (e.g., VMD2).

Our results indicate that stable expression of EPO-R76E in RPE cells protected the RPE
and its nearby photoreceptors under the conditions of oxidative stress. EPO can protect the
retina by acting directly on the RPE or by acting in a paracrine fashion on photoreceptors
and Müller glial. EPO has been shown to help maintain the barrier properties of the RPE,
and this may contribute to its protective role [32,59]. EPO protected RPE cells barrier
integrity disrupted by oxidative stress by reducing intracellular ROS and restoring cellular
antioxidant potential [60]. These authors also reported that there was a reduction in the
secretion of inflammatory cytokines (TNFα, and IL-1β) and a decrease in caspase-3 activity
under oxidative stress in response to EPO treatment. Since EPO is secreted, it may also
protect retinal structure and function by acting directly on photoreceptors. Exogenous EPO
could directly interact with the photoreceptors allowing them to maintain the metabolic
activity despite increased oxidative stress-related effects. This may also activate a signal
transduction cascade in the photoreceptors [61–64]. The eyes from Sod2flox/flox-VMD2cre

mice evidenced an increase in oxidative stress as early as 2 months of age. Protection from
oxidative stress could be one of the reasons that EPO is permitting increased survival and
prolonged function of photoreceptors. Another mechanism could be interactions with
surrounding cells such as Müller glia, which, in turn, can release proteins that support the
survival of photoreceptors [65–67].

RPE generates a series of slow potentials that can be recorded as the c-wave [68]. As
these potentials can be related to specific cellular events, they provide information about
RPE function and how that may be altered by disease or experimental manipulation [68].
In our study, we found significant preservation of c-wave ERG, and that could be corre-
lated with strong RPE junctional integrity and healthy RPE [69,70]. Previously, using this
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model, we have seen that supplementation of daily zeaxanthin improved c-wave response
compared to untreated mice [29].

In AMD patients, the RPE and photoreceptors are compromised in the macular re-
gion, causing loss of central vision. For the treatment of macular degeneration, therefore,
protection of cone photoreceptors is essential because they are enriched in the macula and
are critical for visual acuity. Treatment with RPE-specific EPO-R76E using gene therapy
may allow patients to have a useful vision for a longer period due to extended-expression
of EPO in the RPE, thus further preventing loss of vision. We observed protection of sco-
topic a, b, and c wave full-field ERG response signifying the protection of photoreceptors
and RPE. Histological analysis at 9 months of age clearly demonstrated preservation of
the photoreceptor and RPE layers (Figures 4A and 5A) compared to control-treated eyes
(Figures 4B and 5B). In the future, we aim to perform molecular analysis of RPE/choroid
and photoreceptors to evaluate changes in protective and inflammatory gene and protein
expression, as shown in other studies [71]. As Sod2 deletion is related to mitochondrial
dysfunction in RPE, it will be interesting to see whether supplementation of EPO-R76E
can rescue mitochondrial dysfunction and improve bioenergetics, as noticed in RPE cells
derived from AMD patients [72].

EPO signaling increases choroidal macrophages and cytokine expression and exac-
erbates choroidal neovascularization, conditions associated with the advanced wet-form
of AMD [73]. EPO receptor signaling supports retinal function after vascular injury [74],
but its pro-angiogenic properties may limit the usefulness of unregulated EPO expres-
sion as a therapy for dry AMD. We plan to determine if EPO-R76E stimulated choroidal
neovascularization (CNV) using the laser-induced CNV model.

This pilot study showed the protective effect of EPO in preserving retinal structure
and function while maintaining stable expression in the RPE. Even though we did not see
any harmful effect of EPO-R76E in our animal model of dry-AMD, we plan to study the
impact of prolonged EPO expression in normal (wild type) mice. In our study, we did not
measure the level of EPO expression in retinal tissue by AAV-EPO. We aim to compare
the expression levels using an intravitreal or systemic injection of other EPO activating
compounds or clinically approved EPO protein in further studies. One of the limitations
of this study is that Sod2 mutation is not directly implicated in the etiology of dry-AMD.
However, oxidative stress is a recognized risk factor, and damage to the RPE is believed to
initiate the disease process. Thus, the animal model with RPE-specific Sod2 deletion has
great potential to study therapeutic interventions.

Given that cone photoreceptor loss is responsible for central vision loss in AMD, it will
be necessary to perform photopic ERG, focal ERG, and/or optokinetic responses to measure
cone function and also include spectral domain optical coherence tomography (SD-OCT)
to monitor progressive preservation of retinal layers in vivo [28]. Other than that, we also
aim to check the contribution of different cell types (Müller glia, photoreceptors, astrocytes,
microglia, endothelial cells, ganglion cells, etc.) in protecting the retina by analyzing
transcriptional landscape by single-cell RNA-Seq experiments. We predict that local stable
EPO expression can impact the proteome changes in RPE under conditions of oxidative
stress. To enforce results obtained in this work, proteomics studies could supplement
learning the proteome changes by EPO while protecting the cellular microenvironment.

5. Conclusions

Our study highlights for the first time the impact of EPO gene therapy in an animal
model of dry AMD resulting due to oxidative stress in RPE. Additionally, this study offers
the potential therapeutic options to treat RPE dysfunction resulting from chronic oxidative
stress with one-time delivery. There is an opportunity to regulate the EPO expression in
specific cells to eliminate the cytotoxic effects that oxidative stress causes to the retinal cells.
A better understanding of the oxidative stress-related effects in the RPE and how EPO can
modulate to improve the clinical outcomes needs further investigation. In the future, this
will provide a great avenue to develop EPO therapy to treat dry-AMD.
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