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Abstract: Pigments are an essential part of life on earth, ranging from microbes to plants and humans. The physiological and envi-
ronmental cues induce microbes to produce a broad spectrum of pigments, giving them adaptation and survival advantages. Microbial
pigments are of great interest due to their natural origin, diverse biological activities, and wide applications in the foods, Pharma-
ceuticals, cosmetics, and textile industries. Despite noticeable research on pigment-producing microbes, commercial successes are
scarce, primarily from higher, remote, and inaccessible Himalayan niches. Therefore, substantial bioprospection integrated with ad-
vanced biotechnological strategies is required to commercialize microbial pigments successfully. The current review elaborates on
pigment-producing microbes from a Himalayan perspective, offering tremendous opportunities for industrial applications. Addition-
ally, it illustrates the ecological significance of microbial pigments and emphasizes the current status and prospects of microbial

pigment production above the test tube scale.
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Introduction

The solar photon owns the diversity of colors/pigments on earth
in the visible spectrum. Pigment production results from a com-
plex interaction of a cell/organism with its environment (Cuthill
et al., 2017). Microbes, including bacteria, produce various pig-
ments with diverse physicochemical and ecological functions
(Narsing Rao et al., 2017; Chatragadda & Dufossé, 2021). The pri-
mary function of pigments in plants is to harvest solar energy.
Similarly, microbial pigments help cells in photoprotection, de-
fense, community-level interactions, and competition, with many
aspects yet to be discovered (Silva et al., 2021). The diversity in
structure and functions of microbial carotenoids (utilizing light
energy, neutralizing oxidants, and role as virulence factors) is an-
other prominent example (Supplementary Fig. S1) (Nupur et al.,
2016).

Eukaryotes and prokaryotes produce pigments for numerous
purposes in different capacities. Plants produce a variety of
pigments (Carvalho et al., 2011), but they have several drawbacks,
including non-availability, scalability, stability, content, and im-
purities (Usman et al., 2017). In contrast, microbial pigments are
devoid of such limitations and serve as a readily available source
of important natural biomolecules (Narsing Rao et al., 2017). Other
benefits of microbial production include renewable sources and
superior quality product formation compared to chemical synthe-
sis (Thakur et al., 2016). Synthetic dyes and pigments have various
health and environmental concerns. Few FDA-approved synthetic
dyes used in food, pharmaceuticals, and cosmetic preparation
resulted in health-related and environmental issues. For example,
sunset yellow and tartrazine result in allergic effects, benzidine
dyes result in bowel cancer, and carbon black, widely used as
printing ink, is also a potential carcinogen (Narsing Rao et al,,

2017).In addition, unethical and untreated discharge of industrial
dye effluents produces toxic compounds and persists longer in the
environment (Babitha, 2009). Therefore, microbial pigments are
preferred over their chemical counterparts. Added advantages are
microbial pigment’s ease of production and processing supple-
mented with diversified biological activities, such as antimicro-
bial, anticancer, antioxidant, and antituberculosis (Chatragadda &
Dufossé, 2021; Chen et al., 2021; Silva et al., 2021). Different bacte-
rial pigments with potential bioactivities have been summarized
elsewhere (Venil et al., 2020; Celedén and Diaz, 2021). Therefore,
it is not discussed in detail in the current review article. However,
a brief comparative account of microbial pigment production
over chemical synthesis of pigments is illustrated in Fig. 1.
Microbial pigments and colors are important for various
applications such as food, clothing, housing, and other com-
modities (Narsing Rao et al., 2017; Finger et al., 2019; Ramesh
et al, 2019; Sen et al, 2019; Chatragadda & Dufossé, 2021).
The demand for natural colors is exponentially increasing due
to the harmful effects of synthetic dyes. The worldwide pig-
ment market is valued at over USD 32.9 billion in 2020 and
is further projected to grow at a CAGR of over 5.1% during
the forecast period (2021-2028) (https://www.grandviewresearch.
com/industry-analysis/dyes-and-pigments-market). The global
pandemic of COVID-19 has significantly affected the dyes
and pigments market in the past 2 years. During the pe-
riod, the prohibition of construction works negatively impacted
the global paint industry. Nevertheless, the global pigment
market is expected to witness a healthy rise in the coming
years (https://www.databridgemarketresearch.com/). The mar-
ket value of natural pigments used as food colorants is pre-
dicted to reach USD 3.5 billion at 12.4 CAGR by 2027 (https://
www.alliedmarketresearch.com/food-color-market). The market
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Fig. 1. Advantage of microbial production of pigments over chemical
synthesis.

value of carotenoids alone is expected to reach USD 2.0 billion
by 2026 (https://www.marketsandmarkets.com/Market-Reports/
carotenoid-market-158421566.html).

Although pigment-producing microbes are ubiquitous, stressed
(physical, chemical, and biological) environmental niches have
more prevalence. For instance, microbial communities in cryo-
environments produce myriads of pigments (Rehakova et al.,
2019; Dhakar & Pandey, 2020; Sajjad et al., 2020). Microbial pig-
ments such as carotenoid, melanin, violacein, and flexirubin have
been isolated and identified from diverse cold niches (Vaz et al.,
2011; Liu et al., 2019; Kumar et al., 2021). The bacterial carotenoids
are one of the most reported pigments from variable cold habi-
tats like a glacial fjord, Caspian sea, Antarctica, Italian alpine
glaciers, and Himalayan niches (Reddy et al., 2003; Amarettietal,,
2014; Afra et al., 2017; Singh et al,, 2017; Pandey et al., 2018).
High-altitude Himalayas hosts various extreme niches harboring
a range of stress conditions, including permafrost, freeze-thaw,
oxidative stress, limited nutrients, and high UV (Stres et al., 2013;
Kumar et al., 2021). Different microbial communities inhabit
the hostile environmental conditions of such niches (Kumar
et al.,, 2018a, 2022; Thakur et al., 2018), providing tremendous
opportunities for bioprospecting pigment-producing microbes.

This review is focused on microbial pigment production, its
ecological importance, and also presents a Himalayan perspec-
tive. Further, we discuss the importance of microbial pigments for
studying microbial responses to changing environments, rapidly
rising industrial interests, and potential applications. Finally, the
biotechnological strategies for large-scale production are also
discussed.

Physiological and Ecological Significance of
Pigments in Cold Adaptive Microbes

Microbes from the cold regions produce a variety of pigments
as secondary metabolites in response to changing physiological
and environmental signals and survival strategies (Quesada
et al., 1999; Mueller et al., 2005; Dieser et al., 2010; Sajjad et al,,
2020; Silva et al., 2021). The pigments are synthesized in harsh
conditions to protect the microbial cells from excessive UV, photo-
damage, fluctuating salinity, freeze-thaw cycles, and low temper-
atures (Mueller et al., 2005; Kumar et al., 2021). In addition, pig-
ments also provide competitive advantages to the microbial com-
munity while thriving under various types of biotic and abiotic
stress environments (Morgenstern et al., 2015; Lozano et al., 2020).

The microbial pigments from the Himalayan bacteria demon-
strated a wide range of biological applications, including UV
tolerance, cytotoxicity, antibacterial, and antioxidant potential

(Correa-Llanten et al.,, 2012; Lapenda et al.,, 2015; Kumar et al,,
2021). Some recent studies have shown the UV-protective char-
acteristics of microbial pigments, such as carotenoid, violacein,
and melanin (Reis-Mansur et al., 2019; Solano, 2020; Kumar et al.,
2021). Additionally, carotenoid production from Antarctic bacte-
ria played an important role in modulating membrane fluidity
to cope with low-temperature conditions. It also protects cell
damage against freeze-thaw (Jagannadham et al., 2000; Dieser
et al., 2010). Carotenoids also help the fungus to tolerate harsh
conditions of strong sunlight and UV radiation (Sajjad et al.,
2020). Likewise, melanin and secondary metabolites accumulate
in cells under environmental stress conditions (Bhosale, 2004).
However, the psychrotolerant strain Sphingobacterium antarcticus
produces a high amount of carotenoid pigment when compared
to the mesophile Sphingobacterium multivorum (Jagannadhametal.,
2000). Similarly, natural food colorants such as phycobiliproteins
from mesophiles were found to be heat sensitive, resulting in re-
duced stability at high temperatures (Dufossé, 2018). Thus, pig-
ment production from psychrophilic microbes confers substantial
ecological and physiological benefits at cellular and community
levels.

Pigment Producing Microorganisms: The

Himalayan Perspective
A Colorful World of Microbial Diversity in the
Himalayan Niches

The high-altitude Himalayan region looks barren and devoid
of life to the naked eye. However, it hosts an unprecedented,
colorful world of microbes underneath it. The Himalayan region
throws harsh, challenging, and diverse microclimatic conditions,
ranging from arid lands to permafrost glaciers and glacial lakes.
These niches in the trans-Himalayan region host multiple en-
vironmental stresses, that is, fluctuating temperature, extreme
cold, frequent freeze-thaw, oxidative stress, high UV intensity,
low oxygen, and scarce nutrient availability. On the contrary,
pigment production is one of the strategies that provides survival
and adaptational advantages to many microbes in stressed
environments (Mueller et al., 2005; Dieser et al., 2010; Silva et al,,
2021). Therefore, high-altitude Himalayan niches are a hotspot
for exploring pigment-producing microbes. The above hypoth-
esis is supported by the bioprospection and diversity studies
on pigment-producing microbes from high-altitude Himalayan
niches summarized in Table 1.

A relatively high percentage of pigmented bacteria was found
in the high-altitude glacial niches (Zhang et al., 2008; Shen et al,,
2012; Shen et al., 2018; Panwar et al., 2019). For example, pigment-
producing bacteria were isolated from different depths of ice
core from the Puruogangri glacier in the Tibetan Plateau (Zhang
et al., 2008). A total of 1385 bacterial isolates were obtained from
east Rongbuk glacier, Mount Everest in the Himalayas and out
of which 84.9% were found pigmented (Shen et al., 2012). Fur-
ther, the studies showed that culturable and pigment-producing
bacteria’s abundance were higher in the middle and sequentially
lower in the upper and below the ice core. The high percentage
of pigmented bacteria in the high-altitude glacial samples vali-
dated the adaptive role of pigments for the bacteria (Shen et al.,
2012). Another study unveiled the culturable bacteria belonging
to four phyla from the ice core samples of the Yuzhufeng glacier
situated at 3800 masl in the Tibetan Plateau (Shen et al., 2018).
The study revealed 89% pigmented bacteria from entire colonies,
and the proportion increased from 79 to 95% with the depth of the
ice core. Different colored bacterial colonies such as yellow (47%),
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Table 1. Pigment-producing microbes from cold niches of high-altitude Himalayas
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Pigment(s)

Microbes/phylum

Isolation source

Biological applications

References

Violacein, deoxyviolacein
(violet color)

Red pigment

Yellow color

Various pigments (pink,
yellow, and orange)

Yellow, orange, brown,
violet, and pinkish-red

Carotenoid (orange)
Carotenoids (various colors)

Prodgiosin (red pigment)

Carotenoids (yellow-orange)

Various pigments

Yellow pigment

Iodobacter sp. PCH194

Rhodonellum psychrophilium

Flavobacterium spp.

Proteobacteria, Firmicutes,
Actinobacteria,
Bacteroidetes

Penicillium sp.

Proteobacteria,
Actinobacteria,
Bacteroidetes, and
Firmicutes

Serratia nematodiphila RL2

Sanguibacter suarezii KK6,
Kocuria turfanensis KK7,
Kocuria rosea KK12,
Planococcus maritimus
KK21

Firmicutes, alpha- and
gamma-Proteobacteria,
Actinobacteria

Leifsonia pindariensis

Bhoot ground kettle lake,
Sach Pass, Himalaya,
India

Pangong Tso Lake located in
Leh Ladakh, India

Laigu, Zepu, Renlongba, and
Gawalong glaciers,
Tibetan Plateau

Tirich Mir glacier, Hindu
kush Himalaya

Himalayan glaciers,
Uttarakhand, India

Indian Himalayan region
Yuzhufeng glacier, Tibetan
Plateau

Lahul and Spiti, Himalaya,
India
Leh and Ladakh, India

East Rongbuk glacier, Mount
Everest

Pindari glacier, Indian

Antimicrobial, anticancer, and

UV protecting properties

Antibacterial, antioxidant,
growth stimulating
properties

Adaptation under

low-temperature conditions

Adaptation against cold
temperature

Antimicrobial potential

Antibacterial activity

Survival strategies in cold
conditions

Adaptation against stress

Kumar et al., (2021)

Bisht et al., (2020)

Liu et al., (2019)

Rafig et al,, (2019)

Panwar et al., (2019)

Pandey et al., (2018)
Shen et al., (2018)

Gondil et al., (2017)

Kushwaha et al.,
(2014)

Shen et al., (2012)

Reddy et al., (2008)

Himalayas
Yellow, pink, orange Bacillus odyssey, Puruogangri glacier, Tibetan - Zhang et al., (2008)
Flavobacterium sp. Plateau

Cryobacterium
psychrophilum, Kocuria
carniphila, Frigoribacterium
sp.

Janthinobacterium lividum
XT1

Violacein (violet)

Xinjiang glacier, China

Survival strategies in cold
conditions

Lu et al., (2009)

reddish-orange (24%), orange (16%), white (11%), pink (2%), and
brown (<1%) were obtained from the ice core (Shen et al., 2018).
HPLC analysis showed that 40% of the pigments were a-carotene,
followed by 28% diatoxanthin. Other pigments identified were
B-carotene, fucoxanthin, peridinin, and zea/lutein. Pigmented
bacteria were also isolated from soil, water, and ice samples from
the western Himalayas in Uttrakhand, India, with varying alti-
tudes from 2300 to 4500 masl (Panwar et al., 2019). Amongst,
some of the bacterial pigments showed intense antioxidant ac-
tivity. These extensive diversity studies showed the abundance of
pigment-producing bacteria in the high-altitude glaciers.

Characterization of Pigments from the
Bacteria/Fungi

Apart from the extensive diversity studies, only a few were
reported to isolate and characterize pigments from bacteria. For
instance, a red pigment-producing Serratia nematodiphila RL2 was
isolated from the cold desert of Lahaul valley (Gondil et al., 2017).

The pigment identified as prodigiosin showed an antibacterial
effect against various pathogenic bacteria. Another red pigment-
producing bacterium Rhodonellum psychrophilium GL8 was isolated
from a high-altitude lake, Pangong Tso, Leh, India (Bisht et al,,
2020). The pigments were a mixture of prodigiosin and other
related compounds and showed antimicrobial, antioxidant, and
bioenhancer properties. Blue-violet color-producing bacteria were
also discovered in the high-altitude Himalayas. For example, the
violacein-producing psychrotrophic bacterium Janthinobacterium
lividum XT1 was isolated from a glacier in Xinjiang, China (Lu
et al., 2009). A unique eurypsychrophilic bacterium, Iodobacter sp.
PCH194, capable of violacein pigment production, was isolated
from the sediments of Bhootground kettle lake situated at 4200
masl in Sach Pass, western Himalaya, India (Kumar et al., 2021).
The violacein pigment was a mixture of violacein and deoxyvi-
olacein and had promising antimicrobial and anticancerous
properties. The yellow-colored Flavobacterium spp. were isolated
from Tibetian glaciers, and their genome possesses genes en-
coding for carotenoid biosyntheses, such as phytoene synthase,
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Fig. 2. Pigment producing bacteria isolated from high-altitude trans-Himalayan region: (a) lodobacter sp. PCH194, (b) Streptomyces sp. PCH436, (c)
Streptomyces sp. PCH436, (d) Janthinobacterium sp. PCH410 (e) Kocuria sp. PCH206, (f) Pedobacter sp. PCH18 (g) Pseudomonas sp. PCH 413, (h) Arthrobacter sp.,
(i) Bacillus sp. PCH164, (j) Flavobacterium sp. PCH19, (k) Arthrobacter sp. PCH30, and (1) Leifsonia sp. PCH178.

lycopene-B-cyclase, and B-carotene hydroxylase (Liu et al., 2019).
Similarly, the abundance of genes/proteins involved in carotenoid
biosynthesis was found in the whole-genome metagenomes of
high-altitude Himalayan lake sediments (Kumar et al., 2022).

Carotenoids and their derivatives produced by high-altitude
Himalayan fungi Penicillium sp. GBPI_P155 possesses antibacterial
potential. It may be a defense strategy against other microorgan-
isms (Pandey et al., 2018). Similarly, many fungi produce pigments
as an adaptive measure to cope with stress conditions of low tem-
perature, UV radiations, and oxidative stress (Pandey et al., 2018;
Sajjad et al., 2020). It suggested that microbial pigments such as
carotenoids play an essential role in adaptation to the stress en-
vironment of high-altitude Himalayas.

Co-Production of Biomolecules with Pigments as
Sustainable Bioprocess

Besides the fundamental research, the pigment-producing mi-
crobes from the Himalayas are goldmines for industrially relevant
bioproducts vis-a-vis microbial pigments. Since the Himalayan
regions are less explored, they could be a rich source for new
and unique pigment-producing microorganisms. Thus, efforts
are required to explore its hidden treasures. Our lab focuses on
bioprospecting high-altitude Himalayan microbiomes for basic
and applied research (Kumar et al., 2018a, 2019, 2020, 2021, 2022;
Thakur et al.,, 2018; Ambika et al., 2022). The isolation and iden-
tification of various pigment-producing bacteria from the high-
altitude Himalayan region were accomplished during the course.
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A few prominent pigment-producing bacteria viz., Iodobacter
sp. PCH194 (CP025781), Kocuria sp. PCH206 (MHO096001), Bacillus
sp. PCH164 (MF774150), Pedobacter sp. PCH18 (KY628836), Flavobac-
terium sp. PCH19 (KY628837), Arthrobacter sp. PCH30 (KY628848),
Leifsonia sp. PCH178 (MF774164) (Kumar et al., 2018a, 2021; Thakur
et al., 2018), Pseudomonas sp. PCH413 (MF774129), Streptomyces
sp. PCH436 (ON080900), Streptomyces sp. PCH437 (ON080901),
and Janthinobacterium sp. PCH410 (MZ396632). (Unpublished
data) are shown in Fig. 2. Amongst, Iodobacter sp. PCH194
was successfully demonstrated for the pilot-scale produc-
tion of violacein pigment and polyhydroxybutyrate as a co-
product (Kumar et al., 2021). The patent for the Himalayan
Iodobacter sp. PCH194 bioprocess for co-production of polyhy-
droxybutyrate and violacein pigment has been filed (Kumar
et al, 2021). A few others are also being investigated in
our lab.

Biotechnological Strategies for Microbial
Pigments Production

Bioprocess development is the key to the large-scale production of
microbial pigments. It includes the up-scale production of micro-
bial pigment followed by downstream processing. Several stud-
ies have developed bioprocesses for pigment production, such
as carotenoids, flexirubin, violacein, and prodigiosin at >1.0 L
level (Table 2). Most studies employed wild microorganisms in
batch or fed-batch processes for pigment production. For exam-
ple, carotenoid production was reported from Rhodotorula gluti-
nis TISTR 5159, Sporobolomyces roseus, and Sporidiobolus pararoseus
using cheaper carbon sources (Saenge et al., 2011, Petrik et al,,
2014, Borba et al,, 2018). Zeaxanthin, a type of carotenoid, was
produced by the Flavobacterium sp. P8 strain in a 5 L batch biore-
actor using yeast extract and peptone rich medium (Vila et al.,
2020). However, the main problem associated with carotenoid pro-
duction was the low yield. Flexirubin pigment was produced from
Chryseobacterium spp. in a batch bioreactor with a yield of 0.2 and
0.52 g/L (Venil et al., 2015; Aruldass et al., 2016). Prodigiosin pig-
ment production was attempted by employing Serratia spp. in a
batch bioreactor. For instance, 18.2 and 8.0 g/L of prodigiosin were
produced by Serratia marcescens strain CF-53 and UTMI in a 5L
stirred tank bioreactor using low-cost substrates like peanut oil
cake (Naik et al,, 2012) and brown sugar (Aruldass et al., 2014),
respectively. Violacein pigment was produced using various wild
types (Kanelli et al., 2018) and recombinant bacteria (Yang et al,,
2011, Fang et al.,, 2015). Among the wild types, Chromobacterium
violaceum was employed for large-scale violacein production us-
ing low-cost substrates (Aruldass et al., 2015). Engineered bacteria
with violacein-producing genetic machinery further improve vol-
umetric productivity over time (Yang et al., 2011; Fang et al., 2015;
Niu et al., 2019).

Metabolic pathways for the biosynthesis of most of the pig-
ments are complex. Therefore, metabolic engineering is usually
tricky. Hence, alternative strategies such as cheaper substrates
and co-production of multiple bioproducts must be explored. For
instance, a simultaneous co-production strategy was developed in
our lab using a Himalayan bacterium, Iodobacter sp. PCH194, which
produced 1.5 g/L of violacein pigment and 10.0 g/L of polyhydroxy-
butyrate (Kumar et al., 2021). Similarly, astaxanthin-rich pigment
and polyhydroxyalkanotes are simultaneously produced by Para-
coccus sp. LL1 (Kumar et al., 2018b). Thus, the design of an appro-
priate cultivation system with a suitable bioreactor for industrial
fermentation is required to achieve high production of pigments.

Conclusion and Future Perspective

Microbes require specific features to produce biologically active
pigmented compounds on an industrial scale. These include fast
growth rates, scalability, high productivity, and preferably non-
pathogenic. Additionally, the strains should include the utilization
of low-cost substrates, ease for scale-up and downstream process-
ing, high productivity, and overall low production cost. The micro-
bial pigment should be non-toxic, stable, and tolerant to pH, tem-
perature, and light. Bioprospecting pigment-producing microbes
can obtain strains with desired features from extreme niches, in-
cluding the high-altitude Himalayas, and further apply genetic en-
gineering or strain improvement approaches to known potential
microbes. The cryospheric microbes can synthesize natural colors
as a protective shield against life-threatening ecological stresses.
Therefore, new possible sources for pigment-producing bacteria
must be investigated. Exploring microbial pigments from newer
and extreme niches could provide novel and well-known pigment
molecules for diverse industrial applications.
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oup.com/jimb).
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