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Abstract
Myocardial infarction (MI) is a severe coronary artery disease and a leading cause of mortal-

ity and morbidity worldwide. However, the molecular mechanisms of MI have yet to be fully

elucidated. In this study, we compiled MI-related genes, MI-related microRNAs (miRNAs)

and known human transcription factors (TFs), and we then identified 1,232 feed-forward

loops (FFLs) among these miRNAs, TFs and their co-regulated target genes through inte-

grating target prediction. By merging these FFLs, the first miRNA and TF mediated regula-

tory network for MI was constructed, from which four regulators (SP1, ESR1, miR-21-5p

and miR-155-5p) and three regulatory modules that might play crucial roles in MI were then

identified. Furthermore, based on the miRNA and TF mediated regulatory network and liter-

ature survey, we proposed a pathway model for miR-21-5p, the miR-29 family and SP1 to

demonstrate their potential co-regulatory mechanisms in cardiac fibrosis, apoptosis and

angiogenesis. The majority of the regulatory relations in the model were confirmed by previ-

ous studies, which demonstrated the reliability and validity of this miRNA and TF mediated

regulatory network. Our study will aid in deciphering the complex regulatory mechanisms

involved in MI and provide putative therapeutic targets for MI.

Introduction
Myocardial infarction (MI), defined as myocardial cell death due to prolonged myocardial
ischemia, is a leading cause of mortality and morbidity worldwide [1]. Notably, acute MI
accounts for most of the mortality associated with coronary artery disease. Indeed, according
to a report from the American Heart Association, approximately every 34 seconds, one Ameri-
can has a coronary event, and approximately every 1 minute 24 seconds, an American will die
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from this event [1]. To date, however, the molecular mechanisms underlying MI are still not
fully understood.

Gene regulatory networks modulate the entire process of gene expression and protein for-
mation in living cells, and therefore determine the fate of cells. MicroRNAs (miRNAs) and
transcription factors (TFs) are the main regulators of these networks and thus participate in
the regulation of many important biological processes, including cell proliferation, differentia-
tion and apoptosis. Naturally, the dysregulation of miRNAs and TFs is associated with a broad
range of diseases, including MI. Therefore, understanding the miRNA and TF mediated regula-
tory network of MI will shed light on the mechanisms of it pathogenesis.

MiRNAs are endogenous, small non-coding RNAs (~22nt) that inhibit gene expression by
binding to the 3’ untranslated regions (3’UTRs) of target mRNAs [2]. They regulate gene
expression at the posttranscriptional level. A growing body of evidence has demonstrated the
crucial roles of miRNA in MI and many other human diseases [3, 4]. Indeed, elevated levels of
miR-1 and miR-133a in the serum of patients with cardiovascular disease was a reported indi-
cation of myocardial damage [5]. In murine cardiomyocytes, miR-150 was found to protect
the mouse heart from ischemic injury by regulating cell death [6]. Additionally, miR-34a was
reported to regulate cardiac fibrosis after myocardial infarction through the targeting of Smad4
expression [7].

TFs are regulators of gene transcription at the transcriptional level, albeit as modular pro-
teins that bind to DNA-binding domains in the promoter region of target genes [8]. Regulation
of both miRNAs and TFs is tightly linked, and they share similar regulatory logics [9–11].
Moreover, they act in a largely combinatorial manner, cooperatively regulating the same target
genes. As miRNAs and TFs may also mutually regulate one another, feed-forward loops (FFLs)
comprising miRNAs, TFs and genes thus exist [11]. Gene regulatory network analysis has dem-
onstrated that FFLs comprise recurrent network motifs in the mammalian regulatory network
[12, 13]. Therefore, deciphering the involvement of FFLs in the pathogenesis of complex
human diseases will provide new clues for understanding specific biological events. Currently,
revealing molecular mechanisms underlying complex diseases based on FFLs has already pro-
duced valuable results [14–17]. For example, Ye et al. found that miR-19 inhibited CYLD in T-
cell acute lymphoblastic leukemia using identified FFLs [14]. Sun et al. extended 3-node FFLs
to 4-node FFLs and constructed the first miRNA-TF regulatory network for glioblastoma [15].
In addition, Yan et al. and Peng et al. proposed different computational methods for identifying
FFLs in human cancers using parallel mRNA and miRNA expression profiles [18, 19].

In this study, we constructed the first miRNA and TF mediated regulatory network for MI
based on three specific types of FFLs. We then systematically analyzed the global properties of
this network and identified several important regulators and regulatory modules within the
network. Additionally, based on network analysis and a comprehensive literature review, we
proposed a pathway model demonstrating the potential co-regulation of miR-21-5p, the miR-
29 family and SP1 during MI.

Materials and Methods

Collection of genes and miRNAs related to MI
DisGeNET [20] is a new human gene-disease database integrating several widely used human
gene-disease databases, such as the Online Mendelian Inheritance in Man (OMIM) database
[21], the Genetic Association Database (GAD) [22], the Mouse Genome Database (MGD)
[23], the Comparative Toxicogenomics Database (CTD) [24], PubMed and Uniprot [25]. In
this study, 854 unique MI-related genes (MIgenes) were selected from the DisGeNET (May
2014) database.
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MI-related miRNAs (MImiRNAs) were selected by performing a comprehensive literature
review. First, a group of relevant articles were compiled from three manually curated and
experimentally verified human disease-miRNA association databases: miR2Disease [26],
HMDD (version 2.0) [27] and PhenomiR (Feb 2011) [27] using the search phrase “myocardial
infarction” and from PubMed using the search phrase “myocardial infarction AND micro-
RNA”. Each article was then manually searched for miRNAs with dysregulated expression in
MI. These miRNAs were then mapped to mature miRNAs based on the database of human
miRNAs from miRBase (release 21) [28], and 78 unique mature MImiRNAs were ultimately
selected.

Identification of miRNA-gene/TF regulatory relationships
MiRNA-gene regulatory relationships were assessed using both experimentally verified and
predicted targets of the 78 selected MImiRNAs. Experimentally verified targets were obtained
from TarBase (version 6.0) [29], miRTarBase (version 4.5) [30] and miRecords (version 4) [30]
databases, and predicted targets were obtained from TargetScan (version 6.2) [31], miRDB
(version 5.0) [31] and TargetMiner (May 2012) [32] databases. To increase the reliability of the
results, only the targets appearing in at least two databases were retained in this study.

To acquire regulatory relationships of miRNA-TF, a gene list of 1698 unique human TFs
from Transfac (April 2012) [33], TRED [34], TransmiR (version 1.2) [35] and a previously
defined TFs in a previous report [36] were extracted. These genes were regarded as TFs. We
implemented the above procedure and obtained the relationships between miRNAs and TFs.

Identification of TF-gene/miRNA regulatory relationships
TF-gene regulatory relationships were integrated using experimentally verified and predicted
TF targets obtained from UCSC, TRED [34] and Transfac (April 2012) [33] databases. Experi-
mentally verified TF target genes were retrieved from TRED [34] and Transfac [33] databases.
Predicted targets were obtained from two files (TFbsConFactors.txt and TFbsConsSites.txt)
containing the predicted transcription factor binding site (TFBS) information downloaded
from UCSC hg19, and TFBSs were made to be conserved among humans, mouse and rats. To
further reduce false positive predictions of TFBSs, a Z score of 2.33 was selected as a cut-off. A
TFBS was considered to be associated with a target gene when it was in the promoter region of
the gene and its Z score was larger than 2.33. The promoter region of a gene was defined as a
1-kb region up- and down-stream of the transcription start site, according to the ENCODE
project [37].

Experimentally verified TF-miRNA regulatory relations were obtained from TransmiR (ver-
sion 1.2) [35], and predicted TF miRNA targets using UCSC. MiRNA precursor sequences
were obtained from the miRBase (release 21) [28] database, and 2-kb upstream of pre-miRNAs
were selected as their putative promoter regions. Similar to the process of predicting TF-gene
regulatory relationships, the predicted TF-miRNA relations were obtained.

Randomization test of FFLs
Randomization test was performed to evaluate the significance of the FFLs observed in the set
of TFs, MImiRNAs and MIgenes (Fig 1) according to a previous study [13]. In each run of the
randomization, the same number of miRNA-gene pairs from all MImiRNA target genes was
randomly selected, and the number of FFLs was then calculated. This procedure was imple-
mented 10,000 times, and a p-value was calculated as the proportion of randomly achieved
FFLs greater than or equal to the number of true FFLs.
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Identification of network modules
The clique percolation clustering method was used to identify network modules [38]. A clique
in the miRNA and TF mediated regulatory network was a complete subgraph with every two
nodes linked by an edge. A module, otherwise known as a k-clique community, was obtained
by merging all k-cliques (a clique wherein the number of nodes in a complete subgraph was k),
and these k-cliques could be connected to each other through adjacent k-cliques with k-1 com-
mon nodes. CFinder software [39] was used to identify tightly connected network modules.

Computation of Gene Ontology semantic similarity
Gene Ontology (GO) semantic similarity scores based on GO terms for each pair of genes were
computed using the R GOSemSim package [40]. For each of the three GO sub-ontologies (bio-
logical process, molecular function and cellular component), the semantic similarity scores
were calculated for all gene pairs in a module. To examine the significance of the functional
similarity of genes in a module, a randomization test was performed. For a given module, the
same number of genes in the module were selected from the 854 MIgenes, and their GO
semantic similarities were analyzed. This procedure was performed 1,000 times, and a

Fig 1. Workflow to construct the MI-specific miRNA and TFmediated regulatory network. Step 1: Collecting MIgenes, MImiRNAs and known human
TFs from publicly available databases and literature. Step 2: Retrieving regulatory relationships among MIgenes, MImiRNAs and known human TFs using an
integrated strategy. Step 3: Identifying three types of FFLs based on the relationships among MIgenes, MImiRNAs and known human TFs. Step 4:
Constructing the MI-specific miRNA and TF mediated regulatory network by merging the FFLs obtained in step 3.

doi:10.1371/journal.pone.0135339.g001

Critical Regulators and Regulatory Modules in Myocardial Infarction

PLOS ONE | DOI:10.1371/journal.pone.0135339 August 10, 2015 4 / 16



Kolmogorov-Smirnov test (KS-test) was used to assess whether the GO semantic similarity
scores of all gene pairs from the module were significantly higher than that of randomly
selected pairs.

Results

Regulatory relationships among genes, miRNAs and TFs
The regulatory relationships among genes, miRNAs and TFs (Fig 1) were limited to 854
MIgenes, 78 MImiRNAs and 1,698 known human TFs. The results are shown in Table 1.

miRNA-gene. In total, 1,444 miRNA-gene pairs, including 74MImiRNAs and 447MIgenes,
were obtained from experimentally verified and predicted miRNA target databases. The miRNA
let-7b-5p had the largest number of target genes (84 genes).

To assess whether MImiRNAs have more targets in 854 MIgenes than in randomly selected
854 genes, a permutation was performed. For each MImiRNA, we randomly selected 854 genes
from human protein-coding genes and counted the number of target genes. This randomness
analysis was implemented 10,000 times and one sample t-test was used to examine the signifi-
cance. Ultimately, all MImiRNAs targeted a significantly larger number of genes in MIgenes
than randomly selected genes (p-value< 2.20×10−16).

miRNA-TF. Using the same miRNA target prediction method, among 1,698 human TFs,
76 MImiRNAs were verified or predicted to be targets of 862 TFs, forming 3,322 miRNA-TF
pairs. Among the 76 MImiRNAs and 862 TFs, the miRNA miR-93-5p targeted the largest
number of TFs (172 TFs), and the TF NFAT5 (nuclear factor of activated T-cells 5, tonicity-
responsive) was targeted by the largest number of miRNAs (27 miRNAs). Notably, NFAT was
recently found to be associated with myocardial damage and remodelling [41].

TF-gene. Among 854 MIgenes and 1,698 human TFs, 651 genes were verified or predicted
to be targets of 462 TFs, forming 4,369 unique TF-gene pairs. Among the 462 TFs, the TF SP1
(Sp1 transcription factor; also an MIgene) targeted the largest number of genes (174 genes).

TF-miRNA. Among 78 MImiRNAs and 1,698 human TFs, 48 MImiRNAs were verified
or predicted to be targets of 116 TFs, forming 214 unique TF-miRNA pairs. Among the 48
MImiRNAs and 116 TFs, the miRNA miR-21-5p was targeted by the largest number of TFs
(18 TFs), and the TFs EGR1 (early growth response 1; also an MIgene) and MYC (v-myc avian
myelocytomatosis viral oncogene homolog) both targeted the largest number of miRNAs (9
miRNAs). MYC played important roles in enhancing cardiovascular repair capacity after acute
MI by interacting with other molecules [42].

Presence and significance of feed-forward loops in MI
FFLs are motifs known to play important roles in gene regulation [12, 43]. Typically, FFLs can
be classified into three types according to the main regulator [11, 44]: TF-FFL, miRNA-FFL
and composite FFL (S1 Fig). In a TF-FFL, TF is the main regulator, which regulates a miRNA
and their common target gene while in a miRNA-FFL, miRNA is the main regulator. In a com-
posite-FFL, TF regulates a miRNA and a target gene, while the miRNA regulates the TF and
the target gene. By combining the relationships among MImiRNAs, MIgenes and known
human TFs (Table 1), we identified 1,232 FFLs, which included 236 TF-FFLs (19.16%), 902
miRNA-FFLs (73.21%) and 94 composite FFLs (7.63%). Merging the FFLs reduced the totals
to 60 miRNAs, 256 genes and 141 TFs. The number of nodes and links in the FFLs is shown in
Table 2 and S1 Table.

To examine whether the identified FFLs were enriched in MIgenes, 10,000 random simula-
tions were run for each FFL type. As 1,444 MImiRNA-MIgene target pairs were originally iden-
tified, for each run of the simulation, 1,444 miRNA-gene pairs were randomly selected from all
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the targets of the 78 MImiRNAs, and the number of corresponding FFLs was computed. As a
result, p-value = 0 were obtained for TF-FFL, miRNA-FFL and composite FFL separately (see
Materials and Methods), which demonstrated that these FFLs were not randomly generated
and indicated specific biological significance.

Construction and analysis of the miRNA and TF mediated regulatory
network in MI
We constructed a miRNA and TF mediated regulatory network specific for MI by merging the
three types of FFLs identified in the above subsection (Fig 2A). The network included 438
unique nodes (60 MImiRNAs, 256 MIgenes and 141 TFs). Among 256 MIgenes and 141 TFs,
19 common genes (APEX1, BRCA1, CREB1, CREM, ESR1, ESR2, FOS, FOXO3,HIF1A,
MEF2A, NFκB1, NFYC, NR3C1, PPARA, PPARG, SP1, SREBF2, STAT3 and TP53) were
observed. To more clearly analyse the features of the regulators separated from the other genes,
we considered these genes only in the TF set and referred to them as MITFs. Thus, there were
438 unique nodes (60 MImiRNAs, 237 MIgenes and 141 MITFs) and 1,780 interactions in the
network (S2 Table). Among the 1,780 interactions, 529 belonged to miRNA-gene pairs, 382
belonged to miRNA-TF pairs, 680 belonged to TF-gene pairs, 83 belonged to TF-miRNA pairs
and 106 belonged to TF-TF pairs.

First, the global properties of this network were assessed based on network topological anal-
yses. As shown in Fig 2B, the degree of most nodes was low, and only a few nodes interacted
with a relatively large number of other nodes. The degree distribution indicated a power law
with a slope of -1.50 and an R2 of 0.97, meaning that the network was scale-free. Notably, the
individual degree distribution of genes, miRNAs and TFs was also scale-free (Fig 2B). The aver-
age node degree of genes, miRNAs and TFs was 5.10 (range 2–31), 16.57 (range 1–88) and 9.62
(range 2–102), respectively.

Table 1. Summary of regulation relationships amongMIgenes, MImiRNAs and TFs.

Relationship No. of pairs No. of miRNAs No. of genes No. of TFs

miRNA-genea 1444 74 447 -

miRNA-TFb 3322 76 - 862

TF-genec 4369 - 651 462

TF-miRNAd 214 48 - 116

amiRNA repression of gene expression.
bmiRNA repression of TF expression.
cTF regulation of gene expression.
dTF regulation of miRNA expression

doi:10.1371/journal.pone.0135339.t001

Table 2. Summary of three types of feed-forward loops based on MI-related data.

Number of nodes Number of links

Motif Number of FFLs Genes miRNAs TFs Total miRNA-gene miRNA-TF TF-gene TF-miRNA Total

TF-FFL 236 109 29 33 171 191 - 184 65 440

miRNA-FFL 902 227 55 129 411 530 358 594 - 1482

Composite-FFL 94 50 9 13 72 62 18 85 18 183

Total 1232 256 60 141 457 621 376 786 83 1866

doi:10.1371/journal.pone.0135339.t002
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Next, nodes with high betweenness centrality and highly connected features (hubs), which
together demonstrate that the nodes play key roles in maintaining the overall connectivity of
the network, were analyzed. MiRNAs and TFs with the highest (top 5%) betweenness centrality
were as follows: 3 miRNAs (miR-21-5p, miR-155-5p and miR-92a-3p) and 7 TFs (ESR1, SP1,
NFκB1, TP53, MYC, STAT3 and FOXO3) (S3 Table). Betweenness centrality of all the genes
in the network was zero, suggesting that these genes might displayed less powerful ability
for transferring biological information compared with miRNAs and TFs. Using a method

Fig 2. MI-specific miRNA and TFmediated regulatory network and its structure and functional features. (A). The MI-specific miRNA and TF mediated
regulatory network was composed of MIgenes (circles), MImiRNAs (triangles) and TFs (diamonds). This network consists of 438 nodes and 1,780 links. (B).
Degree distribution of all the nodes in the network, and degree distribution of genes, miRNAs and TFs in the network. (C). Significantly-enriched KEGG
pathways for MIgenes in the network (cancer pathways removed). p-value was adjusted using the Benjamini-Hochberg multiple testing correction and a p-
value of <0.05 was used as a threshold to select significant KEGG pathways. ‘*’ indicated the pathways belonged to cardiovascular disease pathways in
KEGG.

doi:10.1371/journal.pone.0135339.g002
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previously proposed by Yu et al. [45], 5 hub genes (CDKN1A, VEGFA, IGF1, PSG1 and TNF), 7
hub miRNAs (miR-155-5p, let-7b-5p, miR-92a-3p, miR-93-5p, miR-21-5p, miR-29b-3p and
miR-29a-3p) and 9 hub TFs (SP1, JUN, MYC, NFκB1, ESR1, NR3C1, CREB1, CEBPA and
ETS1) were identified (S4 Table). Among the 9 hub TFs, JUN, MYC, CEBPA and ETS1 were
newly-identified MI-related TFs; the remaining hub TFs were already classified as MIgenes.

Significantly-enriched biological pathways for 237 MIgenes in the network were also exam-
ined. Using KEGG pathway enrichment analysis of 237 MIgenes, and by applying the Benja-
mini-Hochberg multiple testing correction, 30 significantly-enriched pathways were identified
with an adjusted p-value of<0.05 (S5 Table). To more clearly demonstrate these results, cancer
pathways were removed (Fig 2C). Of the remaining significantly-enriched pathways, four path-
ways in cardiovascular diseases pathways were all significantly enriched: hypertrophic cardiomy-
opathy (adjusted p-value = 4.57×10−4), dilated cardiomyopathy (adjusted p-value = 8.81×10−4),
arrhythmogenic right ventricular cardiomyopathy (adjusted p-value = 0.0247), and viral myocar-
ditis (adjusted p-value = 0.0452). Several other pathways were well-known and important in MI,
such as the TGF-β signalling pathway, the toll-like receptor signalling pathway, the MAPK sig-
nalling pathway and apoptosis.

Network modules in MI
To identify network modules that may play important roles in the molecular pathology of
MI, CFinder software [39] was used. Modules could only be obtained when k = 3, 4 or 5. As
described in the Materials and Methods, a module is composed of adjacent k-cliques, so a large
number of less tightly connected modules will be obtained at a small k-value, while increasing
the k-value will generate fewer and more tightly connected modules. Thus, a k-value of 5 was
chosen, and three modules were identified.

As shown in Fig 3A, the first module contained 15 nodes (3 MIgenes, 5 MImiRNAs and 7
MITFs). Among the 15 nodes, 9 (60.00%) were hub nodes, and 3 (20.00%) were ranked in the
top 5% of 433 nodes in the network for betweenness centrality. Three (miR-29a-3p, miR-29b-
3p and miR-29c-3p) of the 5 MImiRNAs belonged to the miR-29 family, members of which
are known to target a cadre of protein-coding mRNAs involved in fibrosis and play crucial
roles in cardiac fibrosis [46]. Further examination was performed to determine whether the
genes in this module have more similar function than randomly selected MIgenes. GO seman-
tic similarity scores based on the three sub-ontologies (biological process, molecular function
and cellular component) were calculated among genes using the R GOSemSim package [40]
(see Materials and Methods). The results indicated that the gene pairs in this module tended to
have significantly higher semantic similarity scores than those of randomly selected MIgene
pairs (S2 Fig). In addition, we investigated the important role of this module in MI-specific
miRNA and TF mediated network. The module was removed and the connectivity of the net-
work was tested. As a result, closeness centrality was significantly lower than that of original
network (p-value = 8.32×10−7, t-test), which demonstrated the importance of the community
in communicating information with other molecules in the network.

As shown in Fig 3B and 3C, the second module contained 5 nodes (1 MIgenes, 1 MImiR-
NAs and 3 MITFs). Among the 5 nodes, NFκB1 and miR-21-5p, which were hub nodes, were
also ranked in the top 5% of 433 nodes in the network for betweenness centrality. The third
module contained 6 nodes (2 MIgenes, 1 MImiRNAs and 3 MITFs). Among the 6 nodes, 1
(16.67%) were hub node and 3 (50.00%) were ranked in the top 5% of 433 nodes in the network
for betweenness centrality. By searching genes in pathways, we found that these two modules
participated in several important biological pathways involved in MI, including the toll-like
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receptor signalling pathway, the MAPK signalling pathway, the PI3K-Akt signalling pathway
and apoptosis.

A potential pathway model of miR-21-5p, the miR-29 family and SP1 in
cardiac fibrosis, apoptosis and angiogenesis
To explore the potential co-regulatory mechanisms between miRNAs and TFs in MI, a path-
way model demonstrating the co-regulation of miR-21-5p, the miR-29 family (miR-29a-3p,
miR-29b-3p and miR-29c-3p) and SP1 in cardiac fibrosis, apoptosis and angiogenesis was pro-
posed (Fig 4). This pathway model was constructed based on the constructed MI-specific
miRNA and TF mediated regulatory network and a comprehensive literature review (S3 Fig
and S6 Table).

The expression of TNF-α and IL-6 was shown to increase following MI [47–49]. By interact-
ing with their respective receptors, TNF-α triggered IκB (inhibitor of κB) ubiquitination and
activated NFκB complex [50], while IL-6 activated STAT3 [51] and IKK (IκB kinase), leading
to the up-regulation of miR-21-5p [52]. In the miRNA and TF mediated regulatory network,
STAT3, TIMP3, FASLG, SP1 and VEGFA, all targets of miR-21-5p, formed FFLs, and most of
the regulatory relationships in these FFLs were validated in previous studies (S3 Fig and S6
Table). STAT3 and miR-21-5p formed a feedback loop that could induce the expression of
TIMP3 and VEGFA [49, 51]. Additionally, the up-regulation of miR-21-5p indirectly increased
the expression of MMP2 through modulating PTEN [53, 54] and TIMP3 [55], promoting
cardiac fibrosis, and decreased the expression of FASLG [56] and VEGFA [55], inhibiting

Fig 3. Threemodules in the MI-specific miRNA and TFmediated network. The nodes in the orange box denote hub nodes, and the nodes in the purple
box denote having a top 5% betweenness centrality in the network.

doi:10.1371/journal.pone.0135339.g003
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apoptosis and angiogenesis. On the other hand, FASLG and VEGFA were targets of SP1 [57,
58], and miR-21-5p inhibited the expression of SP1 [59] to reduce FASLG and VEGFA activa-
tion, thus inhibiting apoptosis and angiogenesis.

The expression of TGF-β was also shown to increase following MI [48], inhibiting the
expression of the miR-29 family, which are known to target multiple collagens involved in
fibrosis [46]. Indeed, miR-29b-3p has been shown to regulate cardiac fibrosis by modulating
COL1A1 either directly or indirectly through SP1 [60], thus creating a miRNA-FFL composed
of miR-29b-3p, SP1 and COL1A1. In the miRNA and TF mediated regulatory network, each of
the three miR-29 family members formed miRNA-FFLs with COL4A1 and SP1 (S3 Fig), and
previous studies have confirmed that COL4A1 is a target of the miR-29 family and that SP1
could regulate the expression of COL4A1 [61–64]. Thus, miR-29 family members, SP1 and

Fig 4. Model of co-regulation of miR-21-5p, the miR-29 family and SP1 involving a biological pathway and the regulatory network. After MI, the
expression of TNF-α, IL-6 and TGF-β increased and activated several biological pathways, including JAK and PI3K/AKT pathways. These signal
transductions activated several TFs, such as NFκB, STAT3 and SP1, to promote the transcription of miRNAs (e.g. mir-21) and genes (e.g. TIMP3, VEGFA,
FASLG andCOL4A1). miR-21-5p, the miR-29 family and SP1 co-regulated the process of cardiac fibrosis, apoptosis and angiogenesis through several
cascades.

doi:10.1371/journal.pone.0135339.g004
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multiple collagens were assumed to form FFLs to regulate fibrosis. In addition, according to
this pathway module, the miR-29 family might participate in the process of apoptosis and
angiogenesis through indirectly modulating the expression of FASLG and VEGFA.

Discussion
In this study, the first miRNA and TF mediated regulatory network specifically for MI was con-
structed by merging three types of FFLs: TF-FFL, miRNA-FFL and composite FFL. The results
of the randomization test demonstrated that this network was significantly enriched in MI, and
several published studies supported the reliability of the network. Additionally, critical regula-
tors and regulatory modules of the network were identified, and a potential pathway model
highlighting the co-regulation of miR-21-5p, the miR-29 family and SP1 was proposed, which
may provide new clues for deciphering the regulatory mechanisms of MI.

By analyzing the topological properties and modules of the miRNA and TF mediated regu-
latory network, 6 TFs (JUN, MYC, CEBPA, ETS1, AHR and RELA) were identified as novel
and important MI-related TFs, and the cardiac involvement of each was confirmed by recently
published studies. Specifically, JUN was reportedly involved in miR-21-mediated injury on car-
diac myocytes [65], and was upregulated by reactive oxygen species during MI [66]. MYC
interacted with other molecules to enhance cardiovascular cell lineage differentiation and
improve functional recovery following acute MI [42]. CEBPA was reported to mediate epicar-
dial activation during heart development and injury [67], while ETS1 was found to interact
with SP1 to regulate Fas ligand transcription, an event that could lead to plaque rupture, pre-
cipitating MI and sudden death [57]. In patients with acute coronary syndromes (including
acute MI and unstable angina pectoris), AHR expression levels were significantly increased
compared with those in the stable angina pectoris and control groups [68], and activity of the
AHR signal transduction pathway was strongly linked with a reduction of infarct size [69].
Recent studies also reported that MI rats had higher levels of NFκB p65 (RELA, also known as
p65) activity in the paraventricular nucleus when compared to sham surgery rats [70]. Collec-
tively, these results suggested the reliability and effectiveness of the constructed network.

Enrichment analysis of biological pathways using 237 MIgenes in the network revealed all
the four pathways in cardiovascular diseases pathways: hypertrophic cardiomyopathy
(adjusted p-value = 4.57×10−4), dilated cardiomyopathy (adjusted p-value = 8.81×10−4),
arrhythmogenic right ventricular cardiomyopathy (adjusted p-value = 0.0247), and viral myo-
carditis (adjusted p-value = 0.0452). Notably, some pathways related to cancer were also signifi-
cantly enriched, demonstrating that the dysregulation of these cancer pathways might also lead
to MI. These results have therefore also revealed potentially novel relationships between cancer
and MI. As is already understood, tumor metastasis to the heart with tumor embolization or
direct tumor compression on the coronary arteries may lead to MI [71]. Additionally, signifi-
cantly-enriched biological pathways for 854 MIgenes we initially selected were examined by
implementing the same procedure. As a result, 43 significantly-enriched pathways were
identified (S7 Table). However, only 3 pathways in cardiovascular diseases pathways were sig-
nificantly enriched: hypertrophic cardiomyopathy (adjusted p-value = 0.0028), dilated cardio-
myopathy (adjusted p-value = 0.0060) and viral myocarditis (adjusted p-value = 0.0393).

The miRNA and TF mediated regulatory network was constructed based on both experi-
mentally verified and computationally predicted data. To reduce the effect of false positives,
data was selected by integrating multiple data sources. Genes and miRNAs related to MI were
collected from multiple commonly used data sources, and human TFs were collected from sev-
eral experimentally verified databases. The regulatory relationships among genes, miRNAs and
TFs were extracted from both experimentally verified and computationally predicted sources
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under stringent analysis standards and parameters. However, we noted that most MI-related
genes and miRNAs used in this work have not been confirmed to be causal; the regulatory rela-
tionships among genes, miRNAs and TFs were neither complete nor unbiased. Particularly in
the pathway model we proposed, although single aspects of the network were supported by pri-
mary literatures (S6 Table), these single findings did not necessarily provide evidence to sup-
port the entire networks presented as a whole, and further experimental confirmation was
warranted. With an improvement of the quantity and quality of these data, the MI-specific
miRNA and TF mediated regulatory network will be more accurate and comprehensive. For
future studies, the inclusion of more MI-related biological data, such as expression profiles and
functional information including GO and/or pathway data, should be considered to improve
the informational content of the network.

In summary, the analysis of this miRNA and TF mediated regulatory network identified
some critical regulators and regulatory modules for MI. This network could potentially serve as
an effective tool for further deciphering the pathogenesis of MI at the transcriptional and post-
transcriptional levels.
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