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Abstract

Post-ictal emergence of slow wave EEG (electroencephalogram) activity and burst-sup-

pression has been associated with the therapeutic effects of the electroconvulsive therapy

(ECT), indicating that mere “cerebral silence” may elicit antidepressant actions. Indeed,

brief exposures to burst-suppressing anesthesia has been reported to elicit antidepressant

effects in a subset of patients, and produce behavioral and molecular alterations, such as

increased expression of brain-derived neurotrophic factor (BDNF), connected with antide-

pressant responses in rodents. Here, we have further tested the cerebral silence hypothesis

by determining whether repeated exposures to isoflurane anesthesia reduce depressive-

like symptoms or influence BDNF expression in male Wistar outbred rats (Crl:WI(Han)) sub-

jected to chronic mild stress (CMS), a model which is responsive to repeated electroconvul-

sive shocks (ECS, a model of ECT). Stress-susceptible, stress-resilient, and unstressed

rats were exposed to 5 doses of isoflurane over a 15-day time period, with administrations

occurring every third day. Isoflurane dosing is known to reliably produce rapid EEG burst-

suppression (4% induction, 2% maintenance; 15 min). Antidepressant and anxiolytic effects

of isoflurane were assessed after the first, third, and fifth drug exposure by measuring

sucrose consumption, as well as performance on the open field and the elevated plus maze

tasks. Tissue samples from the medial prefrontal cortex and hippocampus were collected,

and levels of BDNF (brain-derived neurotrophic factor) protein were assessed. We find that

isoflurane anesthesia had no impact on the behavior of stress-resilient or anhedonic rats

in selected tests; findings which were consistent—perhaps inherently related—with

unchanged levels of BDNF.
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Introduction

Major depression is a highly disabling medical condition that largely contributes to the global

disease burden [1]. Presently, it is the most significant risk factor for suicides. Roughly one

third of patients with major depression do not respond to prescription antidepressants, but for

those who do, the therapeutic effects are evident with a delay of weeks or months of medica-

tion. Electroconvulsive therapy (ECT) remains among the most potent treatments for pharma-

coresistant depression. Reported response rates to ECT are high, especially for melancholic

depression [2–4]. Although relatively safe, ECT may produce adverse effects, such as retro-

grade amnesia, headache, and nausea [2].

The neurobiological basis of the antidepressant effects of ECT is poorly understood. How-

ever, the induction of intrinsic neurotrophic mechanisms, such as activation of BDNF (brain-

derived neurotrophic factor) signaling, has been proposed to play a significant role [5–7]. Increase

in cortical and hippocampal BDNF mRNA [8–10] and protein [11–13] have been consistently

reported after electroconvulsive shock (ECS, an animal model of ECT) treatments. BDNF modu-

lates formation and plasticity of neuronal networks [14–16], and infusions of BDNF into the

prefrontal cortex and hippocampus have been shown to mimic the behavioral effects of antide-

pressants in rodents [17,18]. BDNF has also been implicated in other antidepressant treatments,

since the BDNF receptor TrkB (tropomyosin related kinase B) is activated by a variety of pharma-

cologically diverse antidepressant drugs [19–21], with animals having decreased BDNF-TrkB sig-

naling showing reduced responses to antidepressant treatments [19,22–25].

Rather than mere seizure manifestation or its desired duration, certain post-ictal (i.e. after

seizure) events, such as slow wave EEG activity and EEG burst-suppression, have been sug-

gested to predict the efficacy and onset-of-action of ECT [26–30]. General anesthetics, such as

isoflurane, dose-dependently produce slowing of EEG activity. When anesthesia deepens, a

burst-suppressing EEG pattern is achieved, characterized by bursts of neural activity inter-

rupted by transient periods of electrocerebral silence [31–35]. This similarity to the post-ictal

effects of ECT and deep anesthesia prompted research on the exciting possibility that burst-

suppressing anesthesia (referred to as “narcotherapy”) would be sufficient to recapitulate the

therapeutic effects of ECT in depressed patients. In preliminary clinical studies, isoflurane

showed an antidepressant effect comparable to ECT, even after a single dose [31,32,36]. How-

ever, subsequent findings remained however inconsistent and did not unequivocally support

therapeutic effects of anesthesia in depressed patients [37–40].

Recent clinical and preclinical observations have renewed the interest to investigate the

antidepressant effects of deep anesthesia [41]. Weeks et al. demonstrated that a series of ten

burst-suppressing isoflurane anesthesia sessions for 15 minutes was comparable to ECT in

antidepressant efficacy in patients with medication-refractory depression, and more tolerable

than ECT regarding neurocognitive side effects [42]. The same group subsequently reported

similar findings with repeated propofol anesthesia [43]. Moreover, we and others have shown

that a single isoflurane anesthesia exposure produces antidepressant-like effects in the learned

helplessness depression model and in the forced swim test [44,45], while halothane, another

anesthetic agent that produces negligible burst-suppression, lacks such effects [45]. Further-

more, isoflurane activates TrkB receptors in a dose-dependent manner, with the most promi-

nent effects observed when burst-suppression is achieved [35,44]. However, activation of TrkB

becomes evident even during slight sedation with agents not shown to possess antidepressant

effects, indicating that TrkB activation is not per se sufficient for antidepressant effects [46],

and other mechanisms are likely involved.

To further test “the cerebral silence hypothesis” of ECT and the antidepressant effects of

isoflurane anesthesia in particular, we investigated whether repeated isoflurane exposures
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increase BDNF protein, while ameliorating depressive-like symptoms in Wistar outbred rats

(Crl:WI(Han)) subjected to chronic mild stress (CMS). We have recently shown that the

depressive-like phenotype in these rats is restored by repeated ECS treatments, which also

readily increases BDNF synthesis, while the selective serotonin reuptake inhibitor (SSRI) cita-

lopram was ineffective [47].

Material and methods

Animals

A total of 44 adult male Wistar outbred rats (Crl:WI(Han)) were used for the studies (Charles

River, Sulzfeld, Germany). Age upon arrival was 9 weeks. Rats were single-housed in Makrolon

type III cages on Altromin soft wood granulate. Standard laboratory chow (Altromin 1324

standard diet; Altromin, Lage, Germany) and tap water were provided ad libitum, except when

CMS procedure required food and/or water deprivation. The controlled 12 h light/12 h dark

schedule was only disturbed during stress procedure. All rats were adapted to the laboratory

and habituated to handling for at least one week before starting the experiments. Experiments

were done in compliance with the European Communities Council Directive of 24 November

1986 (86/609/EEC), and were approved by the animal subjects review board of University of

Veterinary Medicine Hannover (LAVES–Lower Saxony State Office for Consumer Protection

and Food safety, approval number 12/0871). All efforts were made to minimize pain or dis-

comfort of the animals used. Animals were handled daily, and their general well-being, indi-

cated by grooming behavior and body posture was monitored. Body weight of the animals was

measured at least every other day. Two animals that showed more than 20% weight loss over a

period of 3 days (humane end point) were excluded from the experiments.

Chronic mild stress (CMS)

Rats were exposed to mild stressors at varying time points during light and dark period as

described [47,48]. The stressors were delivered daily except when isoflurane/sham treatments

were given, and the behavioral performances of the animals were assessed as shown in Fig 1.

Stressors included periods of (1) continuous light (24 h/d), (2) food deprivation (24 h), (3)

water deprivation (14 h), (5) swim sessions in 40˚C water (10 minutes in a transparent plexi-

glas cylinder (50 cm deep, 25 cm diameter) containing 20 cm of water), (6) swim sessions in

15˚C water (5 minutes in similar conditions to swim sessions in 40˚C water), (7) wet bedding

(16 h, 300 ml of tap water on Altromin soft wood granulate), (8) restraint stress (30 min) and

(9) social crowding (four rats in one Makrolon type III cage). No stress was applied on the

days of behavioral testing or isoflurane/sham administrations. Control rats were left undis-

turbed and handled regularly.

Fig 1. Study timeline showing stress induction, isoflurane anesthesia administration and behavioral testing. CMS = chronic mild stress, EPM = elevated plus maze,

ISO = isoflurane anesthesia, OFT = Open field test, SCT = sucrose consumption test.

https://doi.org/10.1371/journal.pone.0235046.g001
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Weight measurement

Body weight was monitored during the course of experiments as a measure for general health.

A reduction in body weight or a diminished weight gain reflects a reduced well-being of the

rats [49].

Sucrose consumption test (SCT)

Hedonic deficits induced by CMS can be measured as a decrease in consumption or preference

for sweet solution [50]. During test sessions rats had free access to a bottle of 1% sucrose solu-

tion and a bottle of tap water for 14 h. No food or water deprivation was performed before test-

ing. Animals were habituated to the testing in three habituation trials. The position of the

bottles was switched after every test session to avoid possible effects of side preference in drink-

ing behavior. The individualized acquisition of sucrose intake provides the opportunity to

select between anhedonic-like rats (stress responders) and hedonic-like rats (stress non-

responders). Anhedonic- or hedonic-like behavior is based on the individual amount of

sucrose solution intake. Rats showing >25% within-subject decrease in sucrose consumption

were considered anhedonic while rats showing <10% within-subject decrease in sucrose con-

sumption were considered hedonic [1]. Animals not belonging to either criterion were consid-

ered as unclassifiable. Sucrose consumption was measured 3 to 5 times before CMS. After

isoflurane anesthesia, alterations in anhedonic-like behavior were assessed by estimating

within subject changes in sucrose consumption. According to Christensen et al., positive treat-

ment responders were anhedonic-like animals showing >20% within-subject increase in

sucrose consumption, whereas non-responders show<20% within-subject increase in sucrose

consumption. The mean of the sucrose consumption determined in these trials was set as

100% and considered baseline level.

Open field test

The open field test is a routine method to measure locomotor activity and anxiety-like behav-

ior in rodents [51]. The test was performed in a round arena made of black PVC (diameter 80

cm) which was divided into three zones (center, inner, outer). The animals were placed indi-

vidually in the center of the open field. Distance moved and time spent in the center of the

open field was recorded for 5 min and analyzed with EthoVision1XT7 software (Noldus

Information Technology, Wagening, Netherlands).

Elevated plus maze test

The elevated-plus maze measures the level of anxiety in rodents [52]. The apparatus was con-

structed with black plastic. It comprises two open arms (50x10 cm), two enclosed arms

(50x10x30 cm), and a central platform (10x10 cm). The configuration has the shape of a plus

sign, and the apparatus is elevated 80 cm above the floor level. At the beginning of the test, rats

were placed on the central platform always facing the same closed arm. The behavior of rats in

the test was analyzed for 5 min using the EthoVision1XT7 software (Noldus Information

Technology, Wagening, Netherlands). Time spent in different sections of the maze (open and

closed arms) and the frequency of entries into open and closed arms were assessed.

Isoflurane exposure

Rats were randomly allocated to the treatment groups: control + sham (N = 8), control + iso-

flurane (N = 8), CMS + sham (N = 14), CMS + isoflurane (N = 14). Rats were placed into an

anesthesia box and exposed to isoflurane (induction: 4% for 2 min; maintenance: 2% for 13
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min; airflow of 1.0 l/min). This isoflurane dosing regimen produces a rapid burst-suppression

EEG state highly reliably in both rodents and humans [31,34,35,45,53]. Sham animals were

kept in the anesthesia boxes for 2 min without isoflurane. To measure the behavioral outcomes

in SCT and open field tests in between administrations, and to model the preliminary clinical

studies demonstrating isoflurane’s antidepressant effect [32,42], a single treatment was given

once every third day over 15 days (= 5 total treatments).

BDNF ELISA

After the behavioral experiments, the animals were euthanized by decapitation after a brief

exposure to carbon dioxide. Tissue samples from the medial prefrontal cortex and hippocam-

pus were rapidly dissected and snap-freezed. BDNF protein levels were analyzed using a com-

mercial BDNF ELISA kit (Quantikine1 ELISA Kit, catalog #DBD00, R&D Systems Europe

Ltd., Abingdon, UK). The samples were homogenized in NP++ lysis buffer (137 mM NaCl, 20

mM Tris, 1% NP-40, 10% glycerol, Pierce™ Protease and Phosphatase Inhibitor tablets

(Thermo Fisher Scientific, Waltham, MA), 48 mM NaF), incubated on ice for 15 minutes, cen-

trifuged (16,000 g, 15 min, 4˚C), and the supernatants were collected for further processing.

The samples were acidified to pH 3 with 1 M HCl, followed by neutralization with 1 M NaOH.

The samples were loaded on a pre-coated (with monoclonal BDNF antibody) and pre-blocked

96-well plate containing serial diluted BDNF standards and hippocampal samples from adult

male conditional Bdnf-/- knockout [54,55] and wild-type mice (kindly provided by Dr. Maribel

Rios), and incubated for 2 hours at RT. The plate was then incubated with HRP-conjugated

secondary monoclonal BDNF antibody for 1 hour at RT, followed by three washes with pro-

vided wash buffer, and then incubated with color reagents (hydrogen peroxide and chromo-

gen). The reaction was stopped with 2 M H2SO4 after a 30-minute incubation, and the plate

was read for absorbance in 450 nm. The obtained results were normalized to total protein con-

centrations of each sample.

Statistics

Data are shown as mean ± SEM (standard error of mean). Two-way analysis of variance

(ANOVA) (two categorical independent variables), repeated measures ANOVA followed by

Sidak’s multiple comparisons test, or Student’s unpaired t-test were used for statistical evalua-

tion (Prism 7 software, GraphPad (La Jolla, CA, USA). A P<0.05 was considered statistically

significant. Details of statistical tests are shown in S1 Table.

Results

Chronic mild stress induced alterations in sucrose consumption and body

weight in rats

Chronic mild stress (CMS) is considered one of the most valid animal models of depression

[56]. In this model, as the name implies, the animals are repeatedly subjected to various stress-

ors during a course of several weeks, which may induce depression-like phenotypes, most

notably anhedonia (e.g. reduced consumption of sweetened solution). The strength of this

model is that animals respond to chronic, but not acute, administration of antidepressant

drugs (and to ECS), as compared to drugs without clinical antidepressant properties that show

no effects [56]. We recently employed this model using a stress-sensitive substrain of male out-

bred Wistar rats (Crl:WI(Han)) [47]. Repeated ECS ameliorated depression-like phenotypes

induced by CMS and significantly increased BDNF levels. Additionally, the SSRI citalopram

had negligible effects on both phenotype and BDNF levels [47].
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As shown recently in this rat strain (Neyazi et al. 2018), during three weeks of CMS rats

begin to segregate based on behavioral change to anhedonic-like or hedonic-like behavioral

groups. According to Christensen et al. (2011), anhedonic-like animals are expected to show a

> 25% within-subject decrease in sucrose intake, whereas hedonic-like rats are expected to

show a < 10% within-subject reduction in sucrose intake. Animals not responding to either

criterion are considered unclassifiable. In the present experiments, anhedonic-like behavior

was present in 53.8% (14/26) of the animals, whereas hedonic-like behavior was detected in

the remaining animals (12/26) (Fig 2A). None of the unstressed control animals showed anhe-

donic-like behavior. The average weight gain of the rats during three weeks of CMS was signif-

icantly lower compared to weight gain of unstressed controls (Repeated measures ANOVA:

F2,39 = 26.44, P<0.0001) (Fig 2B).

Lack of effects of repeated isoflurane anesthesia on behavioral changes

induced by CMS

The animals were next subjected to 15-minute burst-suppressing isoflurane anesthesia (induc-

tion: 4%; maintenance: 2%) [34,35] or sham anesthesia every third day over a 15-day period

for a total of 5 consecutive treatments (Fig 1). Antidepressant and anxiolytic effects of isoflur-

ane were assessed after the first (rapid), third, and fifth drug exposure using the sucrose con-

sumption, the open field, and the elevated plus maze tests. Based on the criteria by Christensen

et al., positive treatment responders were considered as anhedonic-like animals showing

>20% within-subject increase in sucrose intake, whereas non-responders were considered to

show<20% within-subject increase in sucrose intake [1]. Exposure to isoflurane exerted no

significant effects on sucrose consumption in anhedonic-like (Repeated measures ANOVA:

F1,12 = 0.06915, P = 0.80), stress-resilient (F1,10 = 0.04871, P = 0.83) or sham rats (F1,14 = 4.117,

P = 0.06) (Fig 3A). If anything, the sucrose consumption observed in non-stressed rats was

reduced by isoflurane treatment, although this effect was not significant. Sucrose consumption

in anhedonic-like groups remained low throughout the experiments, indicating that a depres-

sive-like phenotype induced by the CMS protocol was sustained throughout the experiments

Fig 2. Effects of chronic mild stress on sucrose consumption and body weight. A). Sucrose consumption survey over 3 weeks of CMS demonstrates that

53.8% (14/26) of the animals responded to stress with anhedonic behavior characterized by a>25% within-subject decrease in sucrose consumption (small

dashed lines). 46.2% (12/26) of the CMS exposed animals were classified stress-resilient, showing a within-subject decrease in sucrose intake of<10% (wide

dashed lines). Hedonic-like behavior was present in all unstressed control rats. B) Stressed rats gained significantly less body weight during three weeks of CMS

compared to controls (Repeated measures ANOVA: F2,39 = 26.44, P<0.0001). CMS = chronic mild stress. Data is shown as mean ± SEM. ��<0.01, ���<0.001

(control vs. anhedonic-like), ##<0.01, ###<0.001 (control vs. stress-resilient), repeated measures ANOVA followed by Sidak’s multiple comparisons test.

https://doi.org/10.1371/journal.pone.0235046.g002
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(S1 Fig). In addition, isoflurane produced only minor behavioral effects in the open field or

the elevated plus maze tests (Fig 3B and 3C, S2 Fig). Isoflurane exerted contrasting effects in

control and anhedonic-like groups on number of entries (Two-way ANOVA, treatment x phe-

notype: F2,35 = 3.579, P = 0.0385) and time spent in open arm (F2,35 = 5.845, P = 0.0065) of the

elevated plus-maze (Fig 3C), and decreased overall locomotor activity in the open field task

after the first (Two-way ANOVA, treatment effect: F1,36 = 5.693, P = 0.0224) and third (F1,36 =

4.212, P = 0.0475) isoflurane administrations (S2 Fig).

Brain BDNF levels remain unaltered after CMS and isoflurane

administrations

After the behavioral experiments the animals were euthanized and samples collected from the

medial prefrontal cortex and hippocampus to determine BDNF protein levels. To test the spec-

ificity of the ELISA assay, we also determined BDNF expression in hippocampal homogenates

obtained from adult male conditional Bdnf-/- mice and their wild-type littermates. Results

from BDNF protein analysis show negligible effects of the animals’ response to CMS (Two-

way ANOVA, phenotype effect, PFC: F1,15 = 0.3992, P = 0.54; HC: F1,28 = 0.7168, P = 0.40),

and isoflurane anesthesia (Two-way ANOVA, treatment effect, PFC: F1,15 = 0.05878,

P = 0.81; HC: F1,28 = 0.4036, P = 0.53 (Fig 4A).

Fig 3. Lack of antidepressant effects of isoflurane anesthesia in a chronic mild stress model of depression. A) Changes in sucrose consumption of control,

stress-resilient, and anhedonic animals 2 days after isoflurane administrations following CMS exposure. B) Distance traveled and time spent at arena center in

open field test 24 hours after 5th isoflurane administration. C) Results in elevated plus maze test 3 days after 5th isoflurane exposure. ISO = isoflurane

anesthesia. Data is shown as mean ± SEM. �<0.05, two-way ANOVA.

https://doi.org/10.1371/journal.pone.0235046.g003
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Discussion

Post-ictal EEG suppression has been proposed to predict the antidepressant effects of ECT

[26–30]. Like ECT, the volatile anesthetic isoflurane causes EEG burst-suppression in humans

and rodents when adequate dosing is applied [32,35]. Clinical and preclinical evidence indi-

cates that such burst-suppressing isoflurane anesthesia ameliorates depressive symptoms in

patients, and elicits antidepressant-like effects in rodents [31,32,36,42,44,45,57]. Already a sin-

gle brief isoflurane anesthesia has demonstrated antidepressant-like effects in the forced swim

test and learned helplessness model in rodents [44,45]. Amelioration of anhedonic behavior

was also observed after a single isoflurane anesthesia exposure in a mouse model of CMS [57].

Here, we utilized a CMS model in a stress-sensitive substrain of rats that respond to ECS, but

not citalopram [47] in order to further test the antidepressant-like effects of repeated burst-

suppressing isoflurane anesthesia. The dosing of isoflurane was selected based on our earlier

data to achieve reliable burst-suppression pattern and TrkB signaling [35], which is one of the

main pathways targeted by antidepressants [58]. A subset of rats responded to stress by show-

ing reduced sucrose consumption (a marker of anhedonia), while some of the animals

remained stress-resilient, a finding previously observed [1,47]. Unexpectedly, we found no sig-

nificant behavioral changes in any of the treatment groups after isoflurane administrations at

any point during the course of the experiments.

Repeated exposures to anesthesia had no impact on BDNF levels, a finding that contrasts

numerous studies showing that all other antidepressants increase BDNF synthesis [58]. During

ECT practice, an electric current is delivered onto the scalp of the patient under anesthesia,

which leads to transient epileptiform EEG activity. This robust increase in neuronal activity

likely underlies the stimulatory effects of ECT on BDNF levels, since various types of neuronal

Fig 4. CMS and isoflurane anesthesia have no significant effect on BDNF protein levels in the rat medial prefrontal cortex (PFC) and hippocampus

(HC). (B) Assay specificity was determined with cortical samples of conditional BDNF-/- mice that showed negligible signal in comparison to wild-type

littermates. CMS = chronic mild stress, ISO = isoflurane anesthesia. Data is shown as mean ± SEM. ���<0.001, Student’s unpaired t-test.

https://doi.org/10.1371/journal.pone.0235046.g004
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stimuli–especially generalized convulsions–have been shown to increase BDNF synthesis

[14,59–61]. Isoflurane shares the capability to induce electrocerebral silence with ECT, but it

often brings no preceding convulsions or seizure activity. Indeed, the effects of anesthetics,

such as isoflurane, on brain and blood BDNF levels generally remain negligible or even

decrease [44,62–70]. Anesthesia also blocks rTMS (repetitive transcranial magnetic stimula-

tion) induced BDNF synthesis [71].

Despite anesthesia producing a state of widespread depression in the CNS, paradoxical neu-

ronal excitation has been reported with diverse anesthetics, especially when the concentration

of anesthetic is low [72,73]. This is particularly well exemplified by ketamine, a rapid-acting

antidepressant that is used in subanesthetic dosing to treat depression. Ketamine provokes cor-

tical excitability by increasing glutamatergic neurotransmission [74,75]. This excitatory

response has been shown to be required for its antidepressant-like effect in rodents [76,77].

Furthermore, an increase in cortical excitability after ketamine administration has been associ-

ated with a positive antidepressant treatment response in patients [78]. More recently, we have

shown that subanesthetic doses of nitrous oxide, a putative rapid-acting antidepressant [79],

readily up-regulates BDNF synthesis and several other markers of neuronal excitation [46].

Notably, both subanesthetic ketamine and nitrous oxide evoke slow wave activity, as measured

by EEG, after the peak of their pharmacological effects, resembling the post-ictal state follow-

ing ECT. Rapid-acting antidepressants may therefore require both a phase of neuronal excita-

tion, and emergence of slow wave activity to elicit their therapeutic effects [80]. It’s tempting

to speculate that isoflurane’s antidepressant effects may be dependent on the treatment proto-

col´s (unpredictable) capability to induce sufficient neuronal excitation, BDNF synthesis, and

EEG silencing. Indeed, isoflurane has been shown to elicit antidepressant-like effects in a

mouse model of CMS using an administration protocol that also increased BDNF expression

[57]. Additionally, isoflurane is known to produce occasional excitatory responses and behav-

ioral hyperactivity/agitation particularly during anesthesia induction and emergence [81–83].

Excitation may also occur during deep burst-suppressing anesthesia, where isoflurane

increases cortical excitability in response to various stimuli [84–86]. Validation of anesthesia

treatment regimens capable of producing these effects should therefore be considered in future

studies [41].

Supporting information

S1 Fig. Sucrose consumption of the anhedonic rats remain significantly lower than in con-
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mean ± SEM. ���<0.001, �<0.05, Repeated measures ANOVA followed by Sidak’s multiple

comparisons test.

(PDF)
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tration. ISO = isoflurane anesthesia. Data is shown as mean ± SEM.
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54. Rantamäki T, Kemppainen S, Autio H, Stavén S, Koivisto H, Kojima M, et al. The Impact of Bdnf Gene

Deficiency to the Memory Impairment and Brain Pathology of APPswe/PS1dE9 Mouse Model of Alzhei-

mer’s Disease. PLoS One. 2013; 8. https://doi.org/10.1371/journal.pone.0068722 PMID: 23844236

55. Rios M, Guoping FAN, Fekete C, Kelly J, Bates B, Kuehn R, et al. Conditional deletion of brain-derived

neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol Endocrinol. 2001; 15:

1748–1757. https://doi.org/10.1210/mend.15.10.0706 PMID: 11579207

56. Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review

and evaluation. Psychopharmacology (Berl). 1997; 134: 319–329.

57. Zhang SS, Tian YH, Jin SJ, Wang WC, Zhao JX, Si XM, et al. Isoflurane produces antidepressant

effects inducing BDNF-TrkB signaling in CUMS mice. Psychopharmacology (Berl). 2019; 236: 3301–

3315. https://doi.org/10.1007/s00213-019-05287-z PMID: 31197433
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