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Abstract

modelling of PET data.

Background: In positron emission tomography (PET) imaging, binding is typically estimated by fitting
pharmacokinetic models to the series of measurements of radioactivity in the target tissue following intravenous
injection of a radioligand. However, there are multiple different models to choose from and numerous analytical
decisions that must be made when modelling PET data. Therefore, it is important that analysis tools be adapted to
the specific circumstances, and that analyses be documented in a transparent manner. Kinfitr, written in the open-
source programming language R, is a tool developed for flexible and reproducible kinetic modelling of PET data, i.e.
performing all steps using code which can be publicly shared in analysis notebooks. In this study, we compared
outcomes obtained using kinfitr with those obtained using PMOD: a widely used commercial tool.

Results: Using previously collected test-retest data obtained with four different radioligands, a total of six different
kinetic models were fitted to time-activity curves derived from different brain regions. We observed good
correspondence between the two kinetic modelling tools both for binding estimates and for microparameters.
Likewise, no substantial differences were observed in the test-retest reliability estimates between the two tools.

Conclusions: In summary, we showed excellent agreement between the open-source R package kinfitr, and the
widely used commercial application PMOD. We, therefore, conclude that kinfitr is a valid and reliable tool for kinetic
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Background

Positron emission tomography (PET) is an imaging mo-
dality with high sensitivity and specificity for biochem-
ical markers and metabolic processes in vivo [1]. It is an
important tool in the study of psychiatric and neuro-
logical diseases, as well as for evaluating novel and estab-
lished pharmacological treatments [2-4]. In PET
imaging, study participants receive an intravenous injec-
tion of a radioligand, which binds specifically to a target
molecule [5]. The concentration of radioligand in a re-
gion of interest (ROI) is measured over time to produce
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a time-activity curve (TAC) [6]. Radioligand binding,
and thereby the concentration of the target molecule,
can then be estimated using quantitative kinetic models
[7, 8], of which there are many.

Importantly, the choice of a certain kinetic modelling
approach should be based on several considerations, in-
cluding the pharmacokinetic properties of the radioligand,
the signal-to-noise ratio of the TAC, the availability of ar-
terial blood sampling and the biological research question.
Furthermore, there are various other analytical decisions
that must be made in conjunction with modelling, such as
the selection of statistical weighting schemes, t* values
and reasonable parameter bounds for iterative fitting
methods. The sheer number of options available for kin-
etic modelling, in addition to those in prior pre-processing
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of image data [9] and blood data [10, 11], makes it import-
ant that analyses can not only be flexibly adjusted to the
circumstances, but also that all steps are carefully docu-
mented. In this context, full communication of all analyt-
ical steps and decisions, as well as their motivations, may
not be practically feasible within the confines of a scien-
tific publication. This issue is common to all fields making
extensive use of scientific computing, impeding replication
efforts and obscuring potential errors [12]. A recent con-
sensus paper [13] presented guidelines for the content and
format of PET study reporting, and which information is
considered mandatory, recommended or optional, which
aims to standardize the communication of PET analyses.
An additional, and more comprehensive approach to this
problem, is the adoption of reproducible research practices:
this means increasing transparency by exposing the re-
search workflow to the scientific community, through shar-
ing of analysis code and (when possible) data [12, 14, 15].
This allows an independent observer to easily inspect and
reproduce ones work, and, if necessary, interrogate the sen-
sitivity of the outcomes to the chosen strategy. Reprodu-
cible analysis also has the advantage of automatically
documenting the steps taken in the research code itself, ra-
ther than in complicated log files. This further benefits the
analyst, as modifications can be made to the analysis, or
data updated, and the code can simply be rerun, rather than
requiring that all steps be taken anew.

Several tools, both commercial and open-source, have been
developed to facilitate the analysis of PET data [16—19]. These
tools differ in their focus on various levels of analysis such as
image reconstruction, image processing or high-throughput
quantification. Kinfitr is an open-source software package spe-
cifically developed for the purpose of performing PET kinetic
modelling. It is written in the R programming language [20],
which provides access to a rich ecosystem of tools for repro-
ducible research. The overall aims of kinfitr are to provide re-
searchers with a high degree of flexibility during modelling as
well as to provide the user with the ability to report all the
steps taken during this process in a transparent manner [21].
This software package has been used in several scientific pub-
lications (e.g. [22—25]); however, it has not yet been formally
evaluated against other software. This is an important safe-
guard for open-source software, as bugs could otherwise go
unnoticed (for example, one such study identified a 15-year-
old bug in a commonly used neuroimaging tool [26]).

The purpose of this study was to validate kinfitr for
use in applied studies, by comparing its estimates
using real data to those obtained with the widely used
commercially available software PMOD [18], which
we will use as a reference point for the purposes of
this analysis. Making use of previously collected test-
retest data for four different radioligands, we evalu-
ated the agreement between these tools, using three
different kinetic models each.
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Methods

Data and study participants

This study was performed using data from four previous
studies carried out at the Centre for Psychiatry Research,
Department of Clinical Neuroscience, Karolinska Institu-
tet, Stockholm, Sweden. In all studies, the data collection
was approved by the Regional Ethics and Radiation
Safety Committee of the Karolinska Hospital, and all
subjects had provided written informed consent prior to
their participation. All participants were young (aged
20-35 years), healthy individuals who underwent two
PET measurements each with the same radioligand. The
radioligands ~ used  were [ lC]SCH23390  [27],
[''C]AZ10419369 [28], [''CIPBR28 [29] and (R)-
[M'C]PK11195 [30]. Data from two target ROIs were se-
lected as representative for each dataset. The two ROIs
correspond to a region with higher and a region with
lower specific binding for the radioligand used.

The ["'C]SCH23390 cohort consisted of 15 male sub-
jects [31]. [*'C]SCH23390 binds to the dopamine D1 re-
ceptor, which is highly concentrated in the striatum,
with a lower concentration in cortical regions and negli-
gible expression in the cerebellum [32]. In this study, the
target ROIs were the striatum and the frontal cortex.

The [''C]AZ10419369 cohort consisted of eight male
subjects [33]. [11C]AZ10419369 binds to the serotonin
5-HTp receptor, which is highly concentrated in the oc-
cipital cortex, with a moderate concentration in the
frontal cortex and negligible expression in the cerebel-
lum. The occipital and frontal cortices were selected as
the target ROIs for [''C]AZ10419369 [33].

The [*'C]PBR28 cohort consisted of 6 males and 6 fe-
males [34] and the (R)-["'C]PK11195 cohort was com-
prised of 6 male individuals [35]. Both [Y'C]PBR28 and
(R)-[**C]PK11195 bind to the 18 kDa translocator pro-
tein (TSPO), a proposed marker of glial cell activation
[36-38]. TSPO has a widespread distribution across the
whole brain, predominantly in grey matter [39]. In this
study, the ROIs used for both TSPO ligands were the
thalamus and the frontal cortex. Furthermore, arterial
blood sampling, plasma measurements, and plasma me-
tabolite analysis were performed and used in the analysis
for the [''C]JPBR28 and (R)- [''C]PK11195 cohorts as
described previously [34, 35], as no true reference region
is available for these radioligands.

Kinetic modelling

A total of six commonly used kinetic models were used
to quantify radioligand binding in the different datasets.
For each analysis, both kinfitr (version 0.4.3) and PMOD
(version 3.704, PMOD Technologies LLC., Zirich,
Switzerland) were used. These estimates were subse-
quently compared to assess the correspondence between
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the two kinetic modelling tools. The same investigator
(JT) performed the analysis with both tools.

For the quantification of [M'C]SCH23390 and
["'C]AZ10419369, the Simplified Reference Tissue Model
(SRTM) [40], Ichise’s Multilinear Reference Tissue Model
2 (MRTM2) [41] and the non-invasive Logan plot [42]
were used, with the cerebellum as a reference region for
both radioligands. These models will be referred to as the
“reference tissue models”, whose main outcome was bind-
ing potential (BPyp). Prior to performing MRTM2 and
the non-invasive Logan plot, k,” was estimated by fitting
Ichise’s Multilinear Reference Tissue Model 1 (MRTM1)
[41] for the TAC of the higher-binding region for each
subject, the result of which was used as an input when fit-
ting the models for all regions of that particular subject.
The starting points, upper and lower bounds that were
used for the nonlinear least squares models (2TCM and
SRTM) are described in Supplementary Materials S1.

For the quantification of (R)-[*'C]PK11195 and
[*'C]PBR28, the two-tissue compartment model (2TCM)
[43-45], the Logan plot [46] and Ichise’s Multilinear Ana-
lysis 1 (MA1) [47] were used to estimate the volume of
distribution (Vr) using the metabolite-corrected arterial
plasma (AIF) as an input function. These will henceforth
be referred to as the “invasive models”. The delay between
the TACs and arterial input function was fitted by the
2TCM using the TAC for the whole brain ROIL The de-
fault values in PMOD for the blood volume fraction (vg)
were maintained throughout all analyses, which amounted
to a vg = 0 for MA1 and the invasive Logan plot and vg =
0.05 for 2TCM. Default (constant) weighting was used in
the analysis with PMOD, while the default weighting func-
tion options were used for kinfitr (described in Supple-
mentary Materials S2).

The manner by which the analysis was performed was
based on the explicit instructions provided along with
each tool. However, when no explicit instructions were
available, we inferred based on the instructions for previ-
ous analytical steps and the design of the user interface
of each kinetic modelling tool to emulate best how users
might actually use each tool. For instance, one difference
between how both tools are used relates to the selection
of ¢*, which is required when fitting the linearized
models (MA1, MRTM2 and both invasive and non-
invasive Logan plots). These linearized models rely on
asymptotic approximations, and ¢* is the time point after
which these approximations apply, and the curve can be
described by the linear model. In kinfitr, a single ¢* value
is selected by inspection of several plots as visual aids to
maximise the number of frames (thereby limiting vari-
ance) without choosing too many, beyond the point of
linearity (thereby resulting in bias) (detailed in Supple-
mentary Materials S2) and used across individuals; while
in PMOD, a unique #* value was selected for each
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individual PET measurement. In both cases, the design of
the software makes it more difficult and time-consuming
to do this the other way (more details provided in Supple-
mentary Materials S2), and in the former case, this was a
deliberate design decision to prevent over-fitting [21]. Im-
portantly, the decision to focus on how the tools might be
used in practice, rather than simply optimising the similar-
ity of processing, provides more information about the ex-
tent to which outcomes might differ between tools, rather
than the extent to which they might be made to be the
same. We believe that this is of greater relevance to the re-
search community. A separate analysis was performed for
which the #* values fitted by PMOD and the weighting
scheme used by PMOD were used in an analysis that was
carried out using kinfitr, in order to investigate the effect
which the differences in these parameters have on the dif-
ferences between the tools. The ¢* values selected for the
kinfitr analysis, and the median ¢* values fitted by PMOD,
are provided in Supplementary Materials S3.

Statistics

The primary aim of this study was to assess the corres-
pondence between estimates of BPyp (for reference tissue
models) or Vr (for invasive models) obtained using kinfitr
or PMOD, using a total of 6 different kinetic models in
real data collected using four different radioligands. By
using test-retest data, we were also able to evaluate the
secondary aim of comparing the test-retest reliability
within individuals for each tool. Test-retest data is subject
to differences from one PET measurement to the next due
to subtle biological changes or measurement error, so this
is not a direct measure of accuracy. However, such a com-
parison allows for an indirect approximation of perform-
ance in cases where outcomes differ to a large extent.

The similarity between outcomes obtained using kin-
fitr and PMOD was evaluated using the Pearson correl-
ation coefficient, the intraclass correlation coefficient
(ICC), and bias.

The ICC represents the proportion of the total vari-
ance which is not attributable to measurement error or
noise. Therefore, an ICC of 1 represents perfect agree-
ment, while an ICC of 0 represents no signal and only
noise. It is a measure of absolute agreement, i.e. even
with a perfect correlation between outcomes, the ICC
value will be penalised if there is a mean shift or if the
gradient is not equal to 1. We used the ICC(A,1) [48],
which is computed using the following equation:

MSr-MSg

ICC = T
MSr + (k—l)MSE + Z (MSC—MSE)

where MSy is the mean sum of squares of the rows,
MSE is the mean sum of squares of the error and MSc is
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the mean sum of squares of the columns; and where k
refers to the number of raters or observations per sub-
ject (in this case 2), and # refers to the number of sub-
jects [49].

Bias was defined as the percentage change in the
means of the values of the binding estimates. This meas-
ure was calculated as follows:

Xkinfir—XPMOD

Bias = x 100%

XpMmop

where X represents estimates of radioligand binding.

To compare the performance of each tool for assessing
within- and between-subject variability, we calculated
the mean, coefficient of variation (CV), ICC, within-
subject coefficient of variation (WSCV) and absolute
variability (AV).

The CV is calculated as a measure of dispersion. It is
defined as follows:

CV =2 % 100%
U

Where ¢ represents the sample standard deviation and
@ the sample mean of the binding estimate value.

The ICC was calculated as above, since inter-rater
agreement and test-retest reliability are both most ap-
propriately estimated using the two-way mixed effects,
absolute agreement, single rater/measurement ICC, the
ICC(A,1) [50].

The within-subject coefficient of variation was calcu-
lated as a measure of repeatability and expresses the
error as a percentage of the mean. It is calculated as
follows:

wscv = 28 x 100%
i

where 0, represents the standard error of the binding
estimate value, which is analogous to the square root of
the within subject mean sum of squares (MSyy), which is
also used in the calculation of the ICC above. j is the
sample mean of the binding estimate value.

Finally, we also calculated the absolute variability (AV).
This metric can be considered as an approximation of the
WSCV above. While not as useful as the WSCV [51], AV
has traditionally been applied within the PET field and is
included for historical comparability.

2 | Xper 1-XpET 2 |

AV =
| Xper 1+ XpeT 2 |

x 100

Where “X” refers to the value of the binding estimate
and “PET 1”7 and “PET 2” refer to the first and second
PET measurements in a test-retest experiment (in
chronological order).
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Exclusions and deviations

All subjects in the [''C]SCH23390, [''C]AZ10419369
and (R)-[*'C]PK11195 cohorts were included in the final
analysis. However, one study participant belonging to
the [*'C]PBR28 cohort, was excluded due to exhibiting a
poor fit in the PMOD analysis which resulted in an ab-
normally high Vi estimate (> 5 standard deviations from
the mean of the rest of the sample, and a > 500% in-
crease from the other measurement of the same individ-
ual) (Supplementary Materials S4). We were unable to
resolve this problem using different starting, upper and
lower limits.

Moreover, in the analysis of the ['C]PBR28 cohort,
kinfitr returned warnings about high values of k3 and k4
for 2TCM in a total of 9 out of 48 TACs, of which 3
corresponded to the frontal cortex ROI and the
remaining 6 were for the thalamus ROI. This is not en-
tirely unexpected, as [''C]JPBR28 is known to be slightly
underfitted by this model [52], which increases the likeli-
hood of local minima within the fitted parameter space.
We also encountered this warning for the [*'C]PK11195
cohort, with 8 warnings for 24 TACs, of which 2 corre-
sponded to the frontal cortex ROI and the remaining 6
were from the thalamus. When parameter estimates are
equal to upper or lower limit bounds, kinfitr returns a
warning recommending either altering the bounds or
attempting to use multiple starting points to increase
the chance of finding the global minimum. Since in this
case we deemed the values to be abnormally high, we
opted for the latter strategy using the multiple starting
point functionality of kinfitr using the wnls.multstart
package [53]. This entails setting a number of iterations
to perform as an input function, and the software auto-
matically fits each curve the given number of times (we se-
lected 100) using randomly sampled starting parameters
from across the parameter space, finally selecting the fit
with the lowest sum of squared residuals. This process led
to negligible changes in the Vi estimates, but yielded
microparameter estimates whose values were no longer
equal to the upper or lower limit bounds for [''C]PBR28.
For the ["'C]PK11195 cohort, the values remained at the
parameter bounds; however, the parameter bounds were
deemed to be reasonable given the distribution of the re-
mainder of the data in lower ranges and were therefore
left unchanged. We compared outcomes using both
methods for both invasive radioligands for the two-tissue
compartment model in Supplementary Materials S5,
showing no differences for (R)-[*'C]PK11195.

Data and code availability

All analysis code is available at https://github.com/tjerkas-
kij/agreement_kinfitr_pmod. The data are pseudonymized
according to national (Swedish) and EU legislation and
cannot be fully anonymized, and therefore cannot be
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shared openly within this repository due to current insti-
tutional restrictions. Metadata can be openly published,
and the underlying data can instead be made available
upon request on a case by case basis as allowed by the le-
gislation and ethical permits. Requests for access can be
made to the Karolinska Institutet'’s Research Data Office
at rdo@ki.se.

Results

We found excellent correlations between kinfitr and
PMOD, with a median Pearson's correlation coefficient of
0.99 (range 0.95-1.00) (Table 1). Likewise, we observed
high absolute agreement between binding estimates com-
puted using both tools, with a median ICC of 0.98 (range
0.80-1.00) (Table 1, Figs. 1 and 2, Supplementary Mate-
rials S6) [51]. It was observed that the linearized methods
(ie. MA1, MRTM2 and both invasive and non-invasive
Logan plots) generally exhibited lower agreement than the
non-linear models. We also ran the linearized models in
kinfitr using the t* values fitted by PMOD, which resulted
in slight improvements in correlation (mean pairwise in-
crease of 0.001), ICCs (mean pairwise increase of 0.004)
and decreased bias (mean pairwise decrease of 0.7%) (Sup-
plementary Materials S7).

We also found strong correlations between the binding es-
timates of the different kinetic models that were estimated
using kinfitr and PMOD (Supplementary Materials S8).
When comparing the binding estimates of the three refer-
ence tissue models within kinfitr and PMOD, respectively,
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for both tools (range 0.76—1.00 for PMOD and 0.71-1.00 for
kinfitr). For the invasive models, there was a median Pearson’s
correlation coefficient of 0.98 for PMOD (range 0.53-1) and
0.98 for kinfitr (range 0.92—-1). When using the #* values fitted
by PMOD in the kinfitr analysis, we observed a median Pear-
son’s correlation coefficient of 0.99 (range 0.68—1) between
the non-invasive models and a median Pearson’s correlation
coefficient of 1.0 (range 0.93-1) for the invasive models.

Both tools performed similarly in terms of test-retest
reliability, with no substantial differences seen in the
mean values, dispersion (CV), reliability (ICC) or vari-
ability (WSCV and AV) (Supplementary Materials S9).

Microparameters

We also compared the values of microparameters (i.e. in-
dividual rate constants) estimated using the non-linear
methods. Figure 3 shows a comparison between the values
of R1 and k, obtained using SRTM for ["'C]AZ10419369
and [!C]SCH23390. We observed Pearson’s correlation
coefficients of > 0.99 for both R1 and k, estimated by kin-
fitr and PMOD. Similarly, the relationships between the
microparameter estimates obtained using 2TCM for
[M'C]PBR28 and (R)-[''C]PK11195 were assessed (Fig. 4).
We found high correlations between kinfitr and PMOD
estimates of Kj, ks, k3 and k, (mean Pearson’s correlation
coefficients of 0.99, 0.81, 0.80, and 0.88, respectively).

Discussion
In this study, we evaluated the performance of kinfitr by

there was a median Pearson’s correlation coefficient of 0.99  comparing radioligand binding estimates to those
Table 1 Correspondence between kinfitr and PMOD
Pearson’s r ICC Bias (%)
Ligand Model Region 1 Region 2 Region 1 Region 2 Bias 1 Bias 2
Invasive
[''CIPBR28 2TCM 1.00 1.00 099 1.00 201 119
Logan 1.00 1.00 0.99 0.99 047 - 027
MA1 1.00 0.99 0.95 097 10.07 9.55
[''CIPK11195 2TCM 1.00 098 1.00 0.98 116 0.69
Logan 1.00 0.97 0.99 0.94 - 340 - 5.88
MA1 0.99 0.95 0.97 0.89 4.99 9.54
Non-invasive
[''CJAZ10419369 SRTM 1.00 1.00 1.00 1.00 017 0.13
ref Logan 0.99 0.99 0.93 091 — 295 - 355
MRTM2 097 0.96 0.86 0.80 — 394 - 535
[M"CISCH23390 SRTM 1.00 1.00 1.00 1.00 0.24 0.53
ref Logan 0.99 0.99 0.88 0.96 - 526 - 431
MRTM2 1.00 1.00 0.98 0.99 - 207 - 217

Region 1 corresponds to the occipital cortex for the radioligand [''C]AZ10419369, the striatum for [''C]SCH23390 and the thalamus for both (R)-[''CJPK11195 and
[''CIPBR28. Region 2 corresponds to the frontal cortex for all four radioligands which were used in this study. Abbreviations: 2TCM two-tissue compartmental
model, Logan invasive Logan plot, MAT Ichise’s Multilinear Analysis 1, SRTM simplified reference tissue model, ref Logan reference tissue Logan plot, MRTM2
Ichise's Multilinear Reference Tissue Model 2 (MRTM2), ICC intra-class correlation coefficient, Pearson’s r Pearson’s correlation coefficient
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Fig. 1 Comparison of BPyp values calculated by kinfitr and PMOD. The relationship between binding estimates calculated by either kinfitr or
PMOD. The results for the radioligand ["'C]AZ10419369 are derived from the occipital cortex ROI, and for [""CISCH23390, the striatum ROl The
diagonal line represents the line of identity. Each colour corresponds to a different subject, and the dotted lines connect both measurements
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obtained with the established commercial software
PMOD. We assessed the similarity between these tools
using four datasets, each encompassing a different radi-
oligand, and employed three kinetic models for invasive
and non-invasive applications. Mean regional BPyp and
Vr values computed by both tools were similar to those
reported in previous literature on the same radioligands
[33-35, 54]. We observed high correspondence between
estimates of BPyp and Vr using kinfitr and PMOD. Fur-
thermore, there were no substantial differences between
the tools in terms of test-retest reliability for these mea-
sures. We further found that both tools exhibited a high
correspondence between estimates of the micropara-
meters, as well as between the macroparameter esti-
mates of the different models assessed using each tool
separately. While the bias between some outcome mea-
sures estimated with the two tools was non-negligible
(Table 1), the high correlations for all outcomes mean

that this would not present an issue when using one or
the other tool within a given dataset.

Despite the overall high similarity with regard to binding
estimates, the linearized models (i.e. MA1, MRTM2 and
both invasive and non-invasive Logan plots) exhibited a
slightly lower degree of agreement the nonlinear models
(2TCM and SRTM). This observation is partially ex-
plained by the fact that the linearized models require the
selection of a t* value, which was performed differently
using the two tools, and the correspondence between the
tools improved slightly overall when using the ¢* values fit-
ted by PMOD in the analysis in kinfitr. As described in
more detail in the Supplementary Material S2, PMOD fits
a t* value for the user, whereas kinfitr requires the user to
specify a ¢* based on several plots as visual aids with which
to select an appropriate value. As such, the PMOD inter-
face makes it more convenient to fit ¢* values independ-
ently for each individual, while the kinfitr interface
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ationship between binding estimates calculated by either kinfitr or PMOD.
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subject, and the dotted lines connect both measurements from the same subject

encourages selecting a single ¢* value which is applicable
across all study participants.

With regard to the user interface of the two tools, the
most important difference is that kinfitr requires the
user to interact with the data using code, while PMOD
makes use of a graphical user interface (GUI), i.e. the
user clicks buttons and selects items from drop-down
menus. As such, kinfitr requires learning basic R pro-
gramming before it can be used effectively, while PMOD
can essentially be used immediately. Therefore, kinfitr
may be perceived as having a steeper learning curve than
PMOD. However, in our experience, kinfitr provides the
user with greater efficiency once a moderate degree of
proficiency has been gained. For instance, as a result of
the code interface, re-running an analysis using kinfitr
on all study participants using different parameters (e.g.
altering a fixed v or ¢* value) or a different model, can
be performed by modifying only the relevant lines of
code. In contrast, performing re-analyses using PMOD

can require a great deal of manual effort, as all tasks
must essentially be repeated. This exemplifies the funda-
mental benefit of computational reproducibility: by crys-
tallising all steps in computer code, the results can easily
be generated anew from the raw input data. This pro-
cedure also makes the detection of potential errors sub-
stantially easier as all user actions are recorded
transparently in the analysis code and allows others to
more quickly and easily adapt, modify or build upon pre-
vious work.

Another important consideration when comparing dif-
ferent tools is the time and effort required to transition
from one tool to another due to file formats or structure.
For the PMOD analysis, TAC data was formatted ac-
cording to the PMOD structure, while kinfitr does not
make any requirements about the format of the input
data other than that the TACs are expressed in numeric
vectors. Importantly, the recent development of the
Brain Imaging Data Structure (BIDS) [55] and its PET
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extension (BEP009) has now been established as the
standard for how PET image and blood data should be
organised and shared in the recent consensus guidelines
[13]. This is expected to simplify the use of and design
of new tools for analysis of PET data greatly. Both kinfitr
and PMOD, according to its documentation, support the
BIDS standard for ancillary data (i.e. not originating
from the PET image itself, such as blood data and
injected radioactivity). In this study, TACs were used
which are not currently part of the BIDS structure as
they are derived from PET images following image pro-
cessing; however, another BIDS standard for PET Pre-
processing derivatives (BEP023) is currently under
development.

It is important to note that the kinetic modelling was
not performed in an identical manner between the two
tools; rather we performed the modelling in a manner as
consistent with the way users might actually use the

software as possible. This was done in order to
emphasize ecological validity. While this diminishes the
extent to which we can specifically compare the out-
comes using both of the two tools, our intention was in-
stead to compare how both tools would be expected to
perform independently in practice. This approach fo-
cuses on the extent to which outcomes might potentially
differ between these tools, rather than the extent to
which they can be made similar. It is reasonable to as-
sume that even higher agreement could be achieved if
additional measures were taken to make each analytic
step identical. We observed slightly increased corres-
pondence when running the kinfitr analyses using the
PMOD ¢* values (although paradoxically not PMOD
weights) (Supplementary Materials S7), but additional
measures such as using identical delay, k2’ values, inte-
gration algorithms, interpolation and starting values
could all impact the correspondence between tools.
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As we assessed the correspondence between these
tools using real data, we were unable to directly com-
pare their accuracy. Our aim in this study was instead
to ascertain that both tools perform similarly in an
applied setting using real data, given all its imperfec-
tions—“warts and all”. Furthermore, by including test-
retest data, we were able to examine the question of
accuracy indirectly—although this data is subject to
both biological and measurement-related differences
between PET measurements. One method by which
to evaluate accuracy directly would be to compare
performance using simulated data. However, given the
high degree of correspondence between the tools, any
differences observed using simulated data would be
strongly dependent on correspondence of the data-
generating process with the model being applied and
its assumptions. Hence, if we simulate data using one
tool and its particularities, then this tool will have an
unfair advantage in modelling the simulated data, lim-
iting the relevance of such a comparison. A future
study making use of carefully simulated data using
different tools or methods would be of some rele-
vance for the field to compare the accuracy and per-
formance of PET analysis tools.

Conclusions

In summary, we showed good correspondence between
the open-source R package kinfitr, and the widely used
commercial application PMOD, which we have treated as
the reference point. We, therefore, conclude that kinfitr is
a valid and reliable tool for kinetic modelling of PET data.
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