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Abstract: Due to the non-linear characteristics of the processing parameters, predicting the desired
properties of nanocomposites using the conventional regression approach is often unsatisfactory. Thus,
it is essential to use a machine learning approach to determine the optimum processing parameters.
In this study, a backpropagation deep neural network (DNN) with nanoclay and compatibilizer
content, and processing parameters as input, was developed to predict the mechanical properties,
including tensile modulus and tensile strength, of clay-reinforced polyethylene nanocomposites.
The high accuracy of the developed model proves that DNN can be used as an efficient tool for
predicting mechanical properties of the nanocomposites in terms of four independent parameters.

Keywords: polymer; clay; nanocomposites; mechanical properties; deep neural network;
back-propagation algorithm

1. Introduction

Polyethylene is extensively used as an insulated material in electrical and electronic applications
due to its high dielectric properties. However, the mechanical properties of this thermoplastic need to
be improved. It has been observed that the mechanical properties of nanocomposite materials can be
enhanced by adding nanoparticle filler to the polymer matrix [1–11].

Nanoclay materials are considered to be an emerging category of two-dimensional (2D) materials
owing to their atomically thin silicate layered structure. The exceptional mechanical properties of
nanoclay fillers, namely, high tensile modulus and tensile strength, make them a potential candidate
for the enhancement of the mechanical properties of some polymer matrices. This improvement is due
to the high contact between the clay platelets and the polymer [12–14]. However, the dispersion of the
nanoclays into the thermoplastic matrix is a challenge in the manufacturing of nanocomposites, due to
the incompatibility of the polymer matrix with nanoclay fillers [15]. Hotta et al. [6] showed that at low
nanoclay loading the degree of dispersion has been enhanced, whereas high loading led to difficulty
dispersing the nanoclay in the polymer matrix. This is due to the formation of nanoclay aggregates.
To improve the dispersion and achieve exfoliation, maleic anhydride modified polyethylene PE-g-MA
has been widely used as a compatibilizer for polyolefin-based nanocomposites [16,17].

In previous decades, the deep neural network (DNN) approach has been widely used in many
applications, including speech, digit and face recognition; form and object detection; and experiment
design. DNN has recently been used as an effective tool to predict the performance of mechanical,
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electrical and thermal properties of nanocomposites [18–30]. DNN consists of many small units called
neurons, which are grouped into several layer units. DNN takes a number of inputs, carries out
numerical processing on those inputs and produces an output.

To the extent of our knowledge, there are no results in previous research works on using
DNN for modeling the effect of the numerous input parameters, including weight fraction of
nanoclay, weight fraction of compatibilizer, screw speed, and feed rate on the mechanical properties
of nanoclay-reinforced polyethylene. Figure 1 displays an example of DNN architecture of inputs
and outputs.
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Figure 1. An example of the deep neural network (DNN) structure.

2. Experimental

2.1. Materials

Linear low-density polyethylene (LLDPE) with a melt flow index (MFI) of 1 g/10 min was
purchased from NOVA Chemicals (Beaver County, PA, USA). A commercially available masterbatch
(MB) of LLDPE/nanoclay (NanoMax-LLDEP) containing 50 wt.% of organo-modified montmorillonite
(O-MMT) and 50 wt.% of LLDPE, was obtained from Nanocor (Hoffman Estates, IL, USA) and used
as a source of the 2D nanoclay fillers. Maleic anhydride-grafted linear low-density polyethylene
(LLDPE-g-MA) (Fusabond®M603, DuPont, Wilmington, DE, USA), with MFI of 25 g/10 min was
selected as a compatibilizer in this study.

2.2. Preparation of Nanocomposites

The MB was further diluted with LLDPE to obtain nanocomposites with different nanoclay
content and different processing parameters such as compatibilizer concentration, feed rate and screw
speed. All materials were manually pre-mixed before introduction into the twin-screw extruder (Haake
Polylab Rheomex OS PTW16, Thermo Fisher, Waltham, MA, USA). The obtained pellets were then
press-molded using an electrohydraulic press (178 ◦C) to form thin plate samples with a thickness of
1.2 mm for mechanical testing.

2.3. Characterization

The morphology of the samples was examined using a JEOL JEM-2100F (JEOL, Tokyo, Japan)
transmission electron microscope (TEM), with an accelerating voltage of 200 kV. Samples with a
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thickness of 50–80 nm were cut from the molded plaques of nanocomposites at −120 ◦C, using a Leica
Ultramicrotome (Leica, Germany) equipped with a diamond knife. The tensile tests of LLDPE and its
nanocomposites were conducted in accordance with the ASTM D638 standard using the MTS Alliance
RF/200 testing machine (MTS, Huntsville, AL, USA) at room temperature with a crosshead speed of
50 mm/min.

3. Deep Neural Network

DNN is a computational model inspired by the functional aspects of the human brain. DNN is
often used to explore and analyze the correlations between the input and output data sets. Neurons of
DNN in each layer receive one input from the neurons of the previous layer and send the output signal
to the neurons of the next layer. The main object of DNN is to fine-tune the values of the weights
constantly until the predicted data match the target values well. The back-propagation algorithm (BPA)
is often used to calculate the error between the target and the predicted data and then to update the
weights to diminish this error after appropriate iteration [31].

The output variable Y of DNN is given by

Y = f
(∑

i(W i jXi) + b j

)
, (1)

where f represents the activation function, Wi j denotes the weight, Xi refers to the j the input signal
and b j represents the bias. Sigmoid activation function is usually employed as the activation function
in the DNN algorithm [32–34], which is expressed as follows:

f (x) =
1

1 + e−δx
, (2)

where x is given by
x =

∑
i(X iWi

)
, (3)

and δ represents the sigmoid function steepness parameter.
Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE) and coefficient of correlation

R2 are commonly used for evaluating the accuracy and performance of the DNN model, and they are
given as follows:

MSE =
1
N

∑
n
k=1(Yi −Yk)

2, (4)

MAPE =
1
N

∑
n
k=1(
|Yi −Yk|

Yi
) × 100, (5)

R2 = 1−

∑n
k=1(Yk −Yi)

2∑n
k=1

(
Y −Yi

)2 , (6)

where Yi represents the ith target value, Yk is the ith predicted value and Yi indicates the average of
predicted data. N is the number of data.

In the present work, Matlab code (Matlab 2014b, The MathWorks, Natick, MA, USA) was written
to develop a DNN model of a multi-layer feed-forward network with sigmoid hidden neurons and
linear output neurons. The hyperbolic tangent sigmoid function (Equation (2)) is used as the activation
function. Weight fraction of nanoclay, weight fraction of compatibilizer, screw speed and feed rate
are taken as the inputs and the tensile strength and tensile modulus are the output for the model as
described in Figure 1. The backpropagation algorithm is employed for training the neural networks.
The Levenberg Marquardt algorithm [35] is used to update the weights and consequently minimize
the discrepancy between the output and target values [31]. After several tentative tests, it was found
that the optimal DNN architecture that gives the highest correlation coefficient and the lowest relative
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error has a structure of 4-13-13-12-1, which means four variables in the input layer; three hidden layers
with 13, 13 and 12 neurons; and, finally, one predicted output.

In this simulation, 45 data specimens were used; 70% of data were randomly selected for network
training, 15% were used to measure network generalization and another 15% were selected for testing.
These data have no effect on training and so provide an independent measure of network performance
during and after training. Input parameters were nanoclay content (wt.%), screw speed, feed rate and
compatibilizer content (wt.%). The predicted parameters were tensile modulus and tensile strength.
For each output parameter, a separate neural network has been constructed.

4. Results and Discussion

4.1. Microstructure Analysis

In the TEM micrographs of specimen #4 and sample #16 nanocomposite materials at low
magnification (Figure 2a,b), the two nanocomposites display nearly the same dispersion. At higher
magnifications (Figure 2a’,b’), one can better observe the differences in clay dispersion in the polymer
matrix. In Figure 2a’, it can be seen that the clay is not well dispersed in the sample #4 nanocomposites.
When the compatibilizer (LLDPE-g-MA) was added, the microstructure of the nanocomposites
appeared as a combination of intercalated and exfoliated nanoclays, as shown in Figure 2b’. A better
dispersion of the clay platelets was achieved for specimen #16 than for the specimen #4 without
compatibilizer. This is owing to the polar interactions between the maleic anhydride group of the
PE-MA and the OH group of nanoclay [36]. However, Venkatesh et al. showed that nanoclay mixed
with compatibilizers (m-TMI-g-PP) is not distributed uniformly and tends to be more aggregated in
polypropylene (PP)-nanocomposites than nanocomposites without compatibilizer, wherein a more
uniform dispersion of nanoclay is evident [37].
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Materials 2020, 13, 4266 5 of 11

4.2. Mechanical Testing

Table 1 displays the effect of the input parameters, namely, clay content, compatibilizer content,
screw speed and feed rate, on tensile modulus and tensile strength of the nanocomposites. Results show
that reinforcing neat LLDPE with optimum fractions of nanoclay and compatibilizer, and processing
ability, results in improved mechanical properties. The variation in tensile modulus and tensile
strength indicates the mechanical reinforcing effect of nanoclay in the neat LLDPE. The highest
mechanical properties and the better compatibilization efficiency were therefore observed in specific
cases. The results are in line with those reported in the literature [37,38]. The change in properties of
nanocomposites was also found to be related to the clay and compatibilizer content, and processing
parameters. Huitric et al. reported that the elongation at yield and yield strength of LLDPE-nanoclay
were improved by the addition of the compatibilizer, whereas the addition of nanoclay was shown to
have the opposite effect [38].

Figure 3 shows the effect of nanoclay and compatibilizer content (wt.%) on tensile modulus
(Figure 3a) and tensile strength (Figure 3b) of LLDPE/nanoclay nanocomposites. It can be observed
that tensile modulus increased as the nanoclay content increased (Figure 3a). This improvement
could be due to the high modulus value of the nanoclay and to the fact that the presence of these
nanofillers decreases the mobility of polymer chains resulting in higher tensile modulus [39]. However,
the tensile strength decreased as nanoclay content increased, as is shown in Figure 3b. This can be
related to the decrease in the degree of dispersion of the nanoclay in the polymer matrix due to the
agglomeration. The results also show that the tensile modulus and tensile strength for LLDPE/nanoclay
with compatibilizer increased in all nanoclay composition and then decreased. At optimum content of
compatibilizer, the tensile modulus and tensile strength of the nanocomposites reached the maximum
value, due to the presence of maleic anhydride groups in the LLDPE-g-MA, which facilitated the
compatibility between the polymer and the nanoclay, as discussed above. Further increase of the
compatibilizer could increase the flexibility of the polymer chains, leading to a decrease of the tensile
modulus and tensile strength of the nanocomposites [40].
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compatibilizer and nanoclay fractions.

As depicted in Figure 4, it is observed that the tensile modulus (Figure 4a) and tensile strength
(Figure 4b) slightly increased with an increase in screw speed. This could be due to the fact that high
shear stress engendered by screw rotation delaminates clay platelets and improves the quality of
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dispersion, leading to an enhancement of the mechanical properties. Morever, it can be observed that
the value of the tensile modulus was improved with nanoclay loading.

Table 1. Experimental data for different processing parameters.

Specimen
Number

LLDPE
Fraction
(wt.%)

Nanoclay
Fraction
(wt.%)

Compatibilizer
Fraction
(wt.%)

Screw
Speed
(rpm)

Feed
Rate

(kg/h)

Tensile
Strength

(MPa)

Tensile
Modulus

(MPa)

1 97 3 0 150 0.8 29.94 219.36
2 97 3 0 150 0.8 30.12 218.11
3 97 3 0 150 0.8 29.01 217.67
4 97 3 0 150 1.2 32.34 209.52
5 97 3 0 150 1.2 32.43 211.42
6 97 3 0 150 1.2 31.98 208.74
7 97 3 0 150 1.2 31.78 207.15
8 97 3 0 150 1.2 30.96 210.12
9 97 3 0 150 1.6 32.22 220.34
10 97 3 0 150 1.6 32.10 221.87
11 97 3 0 150 1.6 32.32 219.23
12 97 3 0 150 1.6 32.63 220.91
13 97 3 0 150 1.6 31.89 220.17
14 95 3 2 150 1.2 32.61 246.45
15 92 3 5 150 1.2 31.15 237.27
16 87 3 10 150 1.2 31.43 226.12
17 97 3 0 150 1.2 32.51 243.48
18 95 3 2 150 1.2 35.75 241.15
19 92 3 5 150 1.2 33.63 240.27
20 87 3 10 150 1.2 31.61 239.37
21 95 3 2 75 0.8 32.57 228.48
22 95 3 2 75 0.8 32.30 227.12
23 95 3 2 75 0.8 32.47 225.17
24 95 3 2 75 0.8 31.88 226.72
25 95 3 2 75 0.8 32.56 229.82
26 95 3 2 300 1.6 30.82 243.65
27 95 3 2 300 1.6 31.01 245.87
28 95 3 2 300 1.6 30.78 242.72
29 95 3 2 300 1.6 31.08 244.14
30 95 3 2 300 1.6 30.14 242.12
31 90 8 2 150 1.2 29.23 343.23
32 90 8 2 150 1.2 29.34 344.23
33 90 8 2 150 1.2 29.73 342.89
34 90 8 2 150 1.2 28.87 342.75
35 90 8 2 150 1.2 29.30 343.10
36 86 12 2 150 1.2 27.15 380.26
37 86 12 2 150 1.2 27.24 378.98
38 86 12 2 150 1.2 26.98 382.17
39 86 12 2 150 1.2 27.83 381.42
40 86 12 2 150 1.2 26.72 374.23
41 82 16 2 150 1.2 25.15 412.37
42 82 16 2 150 1.2 25.13 414.23
43 82 16 2 150 1.2 24.97 411.87
44 82 16 2 150 1.2 24.09 420.00
45 82 16 2 150 1.2 24.87 410.72
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4.3. Validation of Neural Networks Model

In constructing the DNN model, the data were divided into three groups: training, validation and
testing datasets. The training dataset was used to build the network, the validation dataset was used
to validate the models against unseen data and the testing dataset was used to provide an independent
measure of network performance. In order to evaluate the validity and accuracy of the proposed DNN
model, it is often suitable to do regression analysis between the actual and predicted values. Figures 5
and 6 present the regression analysis for a DNN model with three hidden layers that provided the
highest performance for the tensile modulus and tensile strength, respectively. On the top side and y
axis of these figures, the coefficients of correlation R and equations of fit that are lined by the format
(Output ~ = slope ∗ Target + intercept) are presented for each stage (training, validation and testing).
It is clear that the coefficient of correlation R in all stages is close to unity, indicating the validity and
accuracy of this DNN model.

Various ranges are collected to ensure the development of a robust model that can be applied to a
wide range of the nanocomposites LLDPE-nanoclay. Tables 2 and 3 show the comparison of actual and
predicted values at the testing stage for tensile modulus and tensile strength, respectively. It can be
shown that the relative error between experimental results and the predicted data does not exceed
3.60% for the modulus and 1.00% in the case of tensile strength. Thus, this DNN model can predict the
tensile modulus and tensile strength of the prepared nanocomposites with satisfactory accuracy.

Table 2. Comparison of the experimental and DNN-predicted results of tensile modulus for test samples.

Specimen Number 2 6 14 23 26 33 36

Measured Modulus (MPa) 218.11 208.74 246.45 225.17 243.65 342.89 380.26
Predicted Modulus (MPa) 218.57 216.17 241.61 228.79 244.17 343.33 379.32

Relative Error (%) 0.20 3.60 1.96 1.60 0.21 0.13 0.24

Table 3. Comparison of the experimental and DNN-predicted results of tensile strength for test samples.

Specimen Number 9 11 16 21 23 35 37

Measured Strength (MPa) 32.22 32.32 31.43 32.57 32.47 29.3 27.24
Predicted Strength (MPa) 31.99 31.99 31.61 32.24 32.24 29.14 27.16

Relative Error (%) 0.70 1.00 0.57 0.99 0.69 0.52 0.26
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5. Conclusions

In this study, LLDPE/nanoclay nanocomposites were successfully prepared by extrusion process.
Mechanical results showed that screw speed and nanoclay loading have a large effect on the tensile
modulus, and that tensile strength reached its maximum value at 3 wt.% nanoclay loading, a screw
speed of 150 rpm and 2 wt.% compatibilizer content. Additionally, the proposed DNN model presented
in this study shows a correlation coefficient value higher than 0.97 during training, validation and
test data sets. In addition, the relative error (%) between experimental data and the predicted results
does not exceed 3.60% and 1% for tensile modulus and tensile strength, respectively. This confirms the
high reliability and accuracy of the proposed DNN model. Moreover, this study proved that DNN can
be employed as an efficient tool to predict the satisfactory performance of the mechanical properties
of nanocomposites.
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