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The lower urinary tract is routinely exposed to microbes residing in the gastrointestinal

tract, yet the urothelium resists invasive infections by gut microorganisms. This infection

resistance is attributed to innate defenses in the bladder urothelium, kidney epithelium,

and resident or circulating immune cells. In recent years, surmounting evidence suggests

that these cell types produce and secrete soluble host defense peptides, including

members of the Ribonuclease (RNase) A Superfamily, to combat invasive bacterial

challenge.While some of these peptides, including RNase 4 and RNase 7, are abundantly

produced by epithelial cells, the expression of others, like RNase 3 and RNase 6, increase

at infection sites with immune cell recruitment. The objective of this mini-review is to

highlight recent evidence showing the biological importance and responses of RNase A

Superfamily members to infection in the kidney and bladder.

Keywords: Ribonuclease A Superfamily, urinary tract infection, innate immunity, pyelonephritis, antimicrobial

peptides

INTRODUCTION

Urinary tract infections (UTIs) are one of the most common infections encountered in clinical
medicine (1). Nearly half of all women develop one or more UTIs requiring antimicrobial therapy
(2, 3). Specific subpopulations have a heightened UTI susceptibility, including pregnant women,
people with diabetics, the elderly, people with acquired immunodeficiency diseases, people with
structural urologic anomalies, and those who must perform bladder catheterization. Although
UTI is not routinely associated with significant acute health morbidities, pregnant women who
develop UTI have an increased risk for premature delivery and/or fetal mortality (4). In the
elderly, urosepsis is a significant source of mortality (5). Long-term UTI complications include
kidney scarring, hypertension, and chronic kidney disease. Thus, UTIs have a significant burden on
healthcare resources, with annual costs for UTI management exceeding $2.5 billion United States’
dollars (2, 6–8).

Uropathogenic Escherichia coli (UPEC), strains of E. coli that have adapted to live in
extraintestinal niches and cause disease, cause the majority of UTIs (9, 10). UPEC originate
from the fecal microbiota, spread across the perineum, ascend the urethra, and invade
the bladder. The microbial virulence of UPEC has been linked to many factors that have
been previously reviewed (11–13). The most prominent virulence factor are Type I fimbriae,
which are adhesion organelles capped by the mannose-binding protein FimH. Type I fimbrae
facilitate UPEC attachment to superficial bladder epithelial cells by binding to a matrix
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of uroplakin proteins (12). After binding, UPEC invade the
urothelium and establish a state of commensalism or cause an
invasive infection that triggers the activation of innate immune
defenses, cellular injury, epithelial proliferation and shedding,
cytokine release, and leukocyte recruitment (14). If UPEC ascend
from the bladder to the kidney, they concentrate in the collecting
duct and attach to the luminal surfaces of intercalated cells.
Recent evidence suggests that intercalated cells have a role in UTI
defense (15, 16).

To cause a symptomatic infection, UPEC must overcome
several innate host defense mechanisms. These include
the unidirectional flow of urine and regular bladder
emptying that minimize UPEC attachment, alterations
in urinary ionic composition that prevent bacterial
replication, uroepithelial barrier formation and exfoliation
during infection, mucous production, bacterial expulsion,
and the secretion of antibacterial peptides and proteins
(AMPs) that directly kill invading pathogens or modulate
immune defenses (17–19). AMPs that have been identified
to prevent UTI include defensins, cathelicidin, lectins,
metal binding proteins, and bactericidal peptides of the
Ribonuclease (RNase) A Superfamily (20, 21). The following
sections of this mini-review highlight published literature
investigating the roles of RNase A Superfamily in urinary tract
host defense.

THE RIBONUCLEASE A SUPERFAMILY

The RNase A Superfamily is a vertebrate-specific gene family
that was initially discovered to encode eight human peptides and
proteins. These cationic peptides (RNases 1–8) are enzymatically
active and can be grouped into four host defense peptide lineages:
(1) eosinophil-produced RNases, (2) angiogenins, (3) RNase
6, and (4) RNase 7 and 8 (22–25). Nearly 15 years ago, five
additional “non-canonical” ribonucleases were identified (RNase
9–13) that lack a catalytic domain and enzymatic activity (26, 27).

Each canonical RNase A peptide contains a signal peptide and
a mature peptide containing 130–159 amino acid residues. Seven
of the eight peptides possess eight cysteine residues, forming four
disulfide bonds that confer a shared three-dimensional structure
across family members. Each peptide also has a conserved
catalytic motif (CKXXNTF) (28). Although the canonical
peptides are enzymatically active, the catalytic activity may
not be necessary for their immunomodulatory or antibacterial
functions. While the catalytic motif is conserved, RNase A
Superfamily peptides have significant sequence diversity, which
may define each peptide’s function(s) (21, 28).

Like other host defense peptides, the primary bactericidal
mechanism of RNase A peptides is dependent on their
ability to disrupt bacterial cell walls. This is driven by the
peptide’s net charge, amphipathicity, disulphide bonding, and
secondary structure (29, 30). The peptide’s bactericidal activity
is primarily restricted to the amino terminus (31, 32). In
addition to their membrane penetrating capability, RNase A
peptides can interfere with bacterial attachment, translocate
into bacterial cells to inhibit protein and/or DNA synthesis,

or initiate signaling pathways important in innate immunity
and inflammatory responses (19, 20). As recently reviewed,
RNase A Superfamily members can act as chemoattractants,
damage-associated molecular patterns (DAMPS or alarmins),
immune cell activators, or opsonins. Also, they participate
in extracellular RNA clearance (21, 22, 25, 28, 33–35). In
the urinary tract, research has primarily focused on their
bactericidal activity.

EPITHELIAL-PRODUCED
RIBONUCLEASES

RNase 4 and RNase 7 are produced by epithelial cells in the
urinary tract. RNase 7 is produced by the urothelium of the
ureter and bladder and secreted into the urinary stream. In the
kidney, the collecting duct is the main source of RNase 4 and 7
production (Figure 1) (36, 37).

RNase 4 is one of the least studied members of the
Ribonuclease A Superfamily. RNASE4 mRNA is expressed in
multiple human tissues as well as circulating immune cells
(38–41). In the urinary tract, the kidney’s collecting duct is
a source of RNase 4 production where it is regulated by
insulin receptor activation and downstream phosphatidylinositol
3-kinase/AKT (PI3K/AKT) signaling (37, 42). RNase 4 is
constitutively secreted into the urine and neutralization of
urinary RNase 4’s antimicrobial activity with RNase 4-specific
antibodies facilitates UPEC replication, suggesting it plays a
role in UTI defense. Recombinant RNase 4 peptide exhibits
antimicrobial activity toward UPEC, including multi-drug
resistant UPEC (37). It is possible that monocyte and
macrophages are additional sources of RNase 4 in the
urinary tract.

RNase 7, which was first identified in human skin, is the
best example of an RNase that provides antibacterial defense
(43, 44). RNase 7 possesses broad-spectrum antimicrobial activity
against Gram-positive and Gram-negative urothopathogens
(32, 45). In the urinary tract, RNase 7 is produced by the
lower urinary tract and by the kidney’s collecting tubules.
Within the collecting tubules, RNase 7 is expressed by
alpha and beta intercalated cells (36). RNase 7 is secreted
into the urine and urinary concentrations increase with
UTI to prevent infection (36, 45). Females and adolescent
girls with recurrent UTI have suppressed urinary RNase 7
levels compared to controls without UTI (46). When human
urine is incubated with RNase 7 neutralizing antibodies and
inoculated with UPEC in vitro, bacterial growth significantly
increases (36, 47). These findings indicate that decreased urinary
RNase 7 concentrations are a UTI risk-factor and provide
insight into why certain populations are more susceptible
to UTI.

RNase 7 expression is restricted to humans and higher
vertebrates (26). Genomes of the laboratory mouse or the rat do
not contain sequences orthologous to RNase 7, which limited the
capacity to assess RNase 7’s bactericidal and immunomodulatory
functions in vivo (26, 27, 30). However, our research group
recently generated humanized RNase 7 transgenic mice. RNase
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FIGURE 1 | RNase A Superfamily members collaborate to prevent and eradicate UTI. Schematic representation showing that RNase 4 (orange squares) and RNase 7

(blue circles) are produced by the bladder urothelium and the kidney’s collecting duct (inset) and released into the urine. In response to microbes (red), circulating

leukocytes that harbor RNase 3 (eosinophils and neutrophils) and RNase 6 (monocytes and macrophages) exit the bloodstream and cross the urothelium to

accumulate in the urine. The antimicrobial activity of RNase 3 and RNase 6 may be predominantly exerted at the intracellular level, following phagocytosis of microbes.

Urinary, parenchymal, and leukocyte-produced RNases kill invading pathogens and facilitate bacterial clearance.

7 expression in these mice did not impact urothelial histology,
endogenous innate immune profiles, or the diversity of the
gastrointestinal microbiome. When subjected to UTI in vivo,
these mice were significantly protected from UPEC, suggesting
that RNase 7 could be a therapeutic target for protection against
UTI (46).

Only limited evidence has evaluated the mechanisms that
regulate RNase 7 expression. Published data shows that Toll-Like
Receptor (TLR)-mediated pathways, the PI3K/AKT pathway, as
well as the mitogen-activated protein kinase (MAPK) pathway
regulate RNase 7 expression (48–51). Like RNase 4, our research
team has shown that insulin enhances RNase 7 expression via
PI3K/AKT activation to shield the urinary tract from UPEC
(51). RNase 7’s structure, immunomodulatory properties, and
bactericidal activity have been recently reviewed (35, 44).

LEUKOCYTE-PRODUCED
RIBONUCLEASES

Eosinophil granule proteins were among the first leukocyte-
produced RNases to demonstrate a role in innate immunity
(52). Eosinophil Cationic Protein (RNase 3) is a highly
basic, 21 kilodalton polypeptide originally isolated from
eosinophilic granules (53). In the urinary tract, the expression,
immunomodulatory properties, and anti-parasite activity of
RNase 3 have been investigated in the setting of schistosomiasis.
Urinary RNase 3 concentrations increase during schistosomiasis,
and the magnitude of urinary RNase 3 is proportional to
the intensity of infection (54, 55). Functionally, purified
RNase 3 shows dose-dependent antihelminthic activity toward
schistosomula, which represent the larval stage of the Schistosoma
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mansoni parasite (56). Subsequent work demonstrates that RNase
3 exhibits greater antimicrobial activity toward schistosomula
than other eosinophilic granule proteins (57). To facilitate
schistosomula killing, RNase 3 synergizes with the oxidative
burst capacity of plasma membrane fractions derived from
neutrophils and eosinophils (58).

While eosinophils are the most studied cellular source of
RNase 3, eosinophils generally are not associated with the host
response to bacterial UTI. However, studies in the literature
argue that neutrophils are also a source of RNase 3, and this
cell population is briskly recruited to the urinary space during
UTI (59–61). When purified from eosinophils, RNase 3 exhibits
antimicrobial activity toward laboratory strains of Staphyloccus
aureus and E. coli (62). To our knowledge, RNase 3’s bactericidal
activity has not been tested against clinically relevant UPEC
strains. Thus, further studies are needed that evaluate RNase
3’s expression during bacterial UTI, its cellular source(s) of
production, and its contribution to UPEC clearance.

Unlike RNase 3, RNase 6 has been investigated in the context
of UTI (24). RNase 6 expression has been localized to human
and murine monocytes, macrophages, and neutrophils that are
recruited to the urinary tract during UPEC-UTI (Figure 1).
Recombinant human and murine RNase 6 peptides exhibit
potent, dose-dependent killing of Gram-negative and positive
uropathogenic bacteria, comparable to human RNase 7 (24, 63).
RNase 6 levels increase in urine from humans and mice with
UTI, but its expression was largely retained as an intracellular
pool, suggesting that RNase 6 may act intracellularly, following
phagocytosis of microbes (24). Further studies are required
to determine the contributions of RNase 6 to host immunity
during UTI.

THE NON-CANONICAL RIBONUCLEASES

The less-studied non-canonical RNases, including RNases 9–13,
lack the signature catalytic motif of the canonical RNases and
do not require enzymatic activity to function (26). These RNases
share 15–30% identity with the canonical RNases and contain
the signal peptide as well as the three most conserved disulfide
bonds. They lack the N-terminal region of mature RNases (21,
28, 64). These RNases are expressed in the epididymis of the male
reproductive system and they may regulate sperm maturation
and motility (65–67). Recombinant RNase 9 has bactericidal
activity against E. coli (68). Additional investigation is warranted
to define the role of these peptides in UTI defense and the
prevention of sexually transmitted infections.

DISCUSSION AND FUTURE DIRECTIONS

As outlined by the published findings above, significant
knowledge gaps remain defining the regulation of antimicrobial
activity as well as the roles of antimicrobial RNases—both
individually and collectively—in limiting the incidence and
spread of UTI. Here, we outline these knowledge gaps and
discuss the potential clinical applications of antimicrobial RNases
during UTI.

Mechanisms of Antimicrobial Action
Most published studies of RNase function have focused on
the structural elements of each peptide that are required for
antimicrobial activity in vitro (31, 63, 69, 70). However, it is
important that similar structure-function tests be undertaken in
the context of eukaryotic cells, which serve as the natural source
of RNase A Superfamily members. Recently, we demonstrated
that human urothelial cells can be genetically modified to over-
express RNase 7, which confers antimicrobial activity toward
UPEC (46). This type of experimental approach affords the
opportunity to test the relationship between RNase 7 structural
elements and antimicrobial function in the context of its cellular
source. It is conceivable that this experimental system may
reveal key aspects of RNase regulation, including roles for post-
translational modifications and protein-protein interactions.

Regulation of RNase Expression and
Function
While emerging data point to the importance of cellular signal
transduction pathways such as the insulin-PI3K/AKT pathway as
regulators of RNase 4 and RNase 7 in the kidney or bladder, there
are significant gaps in our understanding of this process or other
processes that are activated during UTI and may impact RNase
regulation (37, 51). Also, there are no published data regarding
the transcriptional regulation and signal transduction pathways
responsible for expression of leukocyte RNases during UTI.

In addition to their regulation at the level of mRNA
and protein expression, evidence points to a key role for
the RNase Inhibitor (RI) as a regulator of RNase function
and cytotoxicity. RI is expressed by all mammalian cells and
exhibits high-affinity binding with multiple members of the
RNase A Superfamily (47, 71). RI complexes to RNase A
proteins in the cytosolic compartment, attenuating or inhibiting
their biological functions and protecting host cells from their
cytotoxic RNase activity. Raines and colleagues have elegantly
shown that RNase A peptides complexed to RI have limited
cellular toxicity. In contrast, RI-elusive RNases degrade cellular
RNA and trigger apoptosis (72, 73). Currently, there is only
limited data evaluating the role of RI in the kidney or urinary
tract. While no studies have evaluated the impact of RI
on urothelial proliferation or cellular protection during UTI,
we have shown that RI complexes to recombinant RNase 7
and abrogates it’s antimicrobial activity against uropathogens
(47). Similarly, RI complexes to RNase 7 in kidney tissue
as well as in the urine sediment in vivo. In the context
of acute or chronic UTI, the significance of this interaction
remains unknown.

Specifically, are there events triggered by infection that
modify the interaction between RNase 7 and RI? The interaction
between RNase 7 and RI is dependent on the presence of
intact disulfide bridges in RI, as disruption of these bridges
triggers rapid dissociation of the RNase 7:RI complex (47).
This has led us to speculate that the RNase 7’s antimicrobial
activity may be redox dependent (47). There is precedent
for this among other AMPs, such as human β-defensin 1
and paneth cell α-defensin 6 (74, 75). Alternatively, we have
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found that neutrophil proteases can degrade RI, and this
may be a mechanism for recruited inflammatory cells to
augment local RNase activity during UTI (47). The precise
roles of RNase:RI interactions and their regulation during UTI
remain a significant knowledge gap. As research progresses, the
benefits and risks of RI-interactions and evasion need to be
carefully evaluated.

Roles of RNases During UTI in vivo
While the antimicrobial activity of RNases can be measured in
vitro, the ultimate biological test of relevance is to over-express
and delete antimicrobial RNases and demonstrate a consequence
on host susceptibility to experimental UTI in laboratory animals.
These experiments are challenging, since there are instances in
which genes encoding human antimicrobial RNases have no
orthologousmouse gene (RNASE7) or up to 15 paralogousmouse
genes (RNASE3) (76). Moreover, there are instances in which the
same cell type expresses multiple antimicrobial RNases, such as
monocytes in the case of RNase 4 and RNase 6, or epithelial
cells in the case of RNase 4 and RNase 7 (36, 37, 41, 77).
These circumstances can lead to gene redundancy and lack of
an overt phenotype when a single gene is deleted. Thus, we have
taken the opposite approach, namely, to generate humanized
RNASE7 transgenic mice. This gain of function experiment has
allowed us to establish the consequences of RNASE7 expression
on host immune functions and susceptibility to experimental
UTI in vivo (46). Further studies are required to determine the
function of RNases—both individually and collectively—in the
setting of UTI, as well as to determine theirmechanisms of action.

Impact of Uropathogens on Rnase
Expression and Activity
Up to this point, we have addressed the impact of RNases
on microbes as unidirectional. However, it is likely that
uropathogens influence the levels and activity of RNase peptides.
For example, UPEC strains expressing the toxin Hemolysin A
(HlyA) attenuate intracellular PI3K/AKT signaling, leading to
decreased RNase 7 expression in vitro (51). Similarly, UPEC
produced proteases like OmpT have the ability to degrade RNase
7 (78). Thus, additional studies are required to identify the ways
in which microbes might regulate the expression and activity of
antimicrobial RNases in the urinary tract.

Applications of RNases as Therapeutics
Interest has centered on use of AMPs as an antibiotic-
independent mechanism of limiting, treating, and even
preventing UTIs. This interest has been fueled by a growing
concern regarding antibiotic overuse and its impact on rising
bacterial antibiotic resistance rates (20, 79). AMPs may offer
an alternate therapeutic strategy, with even some benefit
over antibiotics given their efficacy at low concentrations,
limited bacterial resistance patterns, and potential synergistic
mechanisms of action with conventional antibiotics (19, 80–82).

However, multiple hurdles must be overcome to realize the
direct therapeutic potential of RNase as AMPs in patients with
UTI. This includes achieving the synthesis of large quantities
of purified RNase peptides or peptide fragments, taking steps
to assure stability and delivery, and ensuring that RNases do
not exhibit significant toxicity toward host cells. Despite these
formidable challenges, we envision future direct applications of
antimicrobial RNases to people with highest UTI risk. In addition
to such direct applications, we also envision circumstances in
which endogenous pathways are pharmacologically triggered to
induce RNase expression as an alternative strategy to prevent
and even treat UTI. In sum, while many knowledge gaps remain,
the urinary tract is an excellent venue to realize the biological
significance and therapeutic applications of antimicrobial RNases
and define their roles as novel therapies.
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