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Ultrasound‑based radiomics 
technology in fetal lung texture 
analysis prediction of neonatal 
respiratory morbidity
Yanran Du1,5, Jing Jiao3,5, Chao Ji4, Man Li2, Yi Guo3*, Yuanyuan Wang3*, Jianqiao Zhou1* & 
Yunyun Ren2*

To develop a novel method for predicting neonatal respiratory morbidity (NRM) by ultrasound-based 
radiomics technology. In this retrospective study, 430 high-throughput features per fetal-lung image 
were extracted from 295 fetal lung ultrasound images (four-chamber view) in 295 single pregnancies. 
Images had been obtained between 28+3 and 37+6 weeks of gestation within 72 h before delivery. A 
machine-learning model built by RUSBoost (Random under-sampling with AdaBoost) architecture 
was created using 20 radiomics features extracted from the images and 2 clinical features (gestational 
age and pregnancy complications) to predict the possibility of NRM. Of the 295 standard fetal lung 
ultrasound images included, 210 in the training set and 85 in the testing set. The overall performance 
of the neonatal respiratory morbidity prediction model achieved AUC of 0.88 (95% CI 0.83–0.92) in the 
training set and 0.83 (95% CI 0.79–0.97) in the testing set, sensitivity of 84.31% (95% CI 79.06–89.44%) 
in the training set and 77.78% (95% CI 68.30–87.43%) in the testing set, specificity of 81.13% (95% CI 
78.16–84.07%) in the training set and 82.09% (95% CI 77.65–86.62%) in the testing set, and accuracy 
of 81.90% (95% CI 79.34–84.41%) in the training set and 81.18% (95% CI 77.33–85.12%) in the testing 
set. Ultrasound-based radiomics technology can be used to predict NRM. The results of this study may 
provide a novel method for non-invasive approaches for the prenatal prediction of NRM.

Neonatal respiratory morbidity (NRM), associated with prematurity, is the leading cause of mortality and 
morbidity1. Fetal lung maturity (FLM) was influenced by many factors, including gestational diabetes mellitus 
(GDM) and pre-eclampsia (PE), the two most common complications of pregnancy2,3. With the increasing use of 
assisted reproductive technology (ART), the incidence of gestational hypertension and GDM in these women is 
11.0% and 15.1% respectively4. Accurate estimates of fetal lung development in pregnancies during complications 
will help obstetricians make clinical decisions that can avoid unnecessary premature birth and ensure optimal 
maternal and fetal outcomes. Although the methods and techniques have been improved since the L/S ratio was 
applied 25 years ago, FLM detection still cannot predict whether the fetal lung is mature or not5.

In recent years, the combination of ultrasound images with artificial intelligence technology has provided new 
ideas for the detection of FLM6,7. Radiomics is a technology that combines big data and medical imaging-assisted 
diagnosis. By extracting and mining high-throughput features from multi-modality images, it can quantitatively 
analyze the human molecular and genetic changes hidden behind medical images. This technology has been 
widely used in the analysis of ultrasound images8–10. But to the best of our knowledge, there is no published 
research on ultrasound-based radiomics technology being employed to study the development of fetal lungs 
during pregnancy complications.

In the present study, by collecting fetal lung ultrasound standard images, the fetal lung texture characteristics 
were analyzed and compared using ultrasound-based radiomics technology. A neonatal respiratory morbidity 
prediction model was established by using the ultrasound image features of fetal lungs combined with clinical 
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characteristics (gestational age and pregnancy complications), which may provide a new method for non-invasive 
prediction of NRM.

Results
Populations.  The characteristics of the study cohort are summarized in Table 1. Included in the study were 
295 standard fetal lung ultrasound images obtained within 72 h before delivery, including 210 in the training set 
and 85 in the testing set. In the end, there were 69 (69/295, 23.4%) newborns with neonatal respiratory morbid-
ity, among which 49 (49/69, 71.0%) newborns with transient tachypnea of the newborn and 20 (20/69, 29.0%) 
with respiratory distress syndrome.

Neonatal respiratory morbidity prediction model.  By permuting out-of-bag data feature of random 
regression forest, 20 radiomics features and 2 clinical features (GA and Pregnancy complications) were selected 
and input into RUSBoost classifier to predict the possibility of NRM. Calibration, gain and lift curves created 
with the cross-validation results to see how much the predictive model would have helped to predict possibility 
of NRM are shown in Fig. 1. The confusion matrix and model performance for predicting neonatal respiratory 
morbidity depending on different features (clinical features, radiomics features and the combination of clinical 
and radiomics features) are shown in Table 2 and Fig. 2. In the testing set, the area under the receiver operating 
characteristic curves (AUCs) of three models were 0.61 (95% CI 0.52–0.70) in clinical model, 0.67 (95% CI 0.58–
0.76) in radiomics model and 0.83 (95% CI 0.79–0.97) in clinical & radiomics model respectively. For the combi-
nation of clinical and radiomics features, the diagnostic efficacy of the neonatal respiratory morbidity prediction 
model achieved sensitivity of 77.78% (95% CI 68.30–87.43%), specificity of 82.09% (95% CI 77.65–86.62%), 
accuracy of 81.18% (95% CI 77.33–85.12%), positive predictive value (PPV) of 53.85% (95% CI 44.08–63.93%), 
negative predictive value (NPV) of 93.22% (95% CI 90.16–96.31%) and AUC of 0.83 (95% CI 0.79–0.97). The 
risk probability of NRM predicted by the clinical & radiomics model was 0.008–0.999 (0.796 ± 0.334) in NRM 
cases, while it was 0.001–0.999 (0.285 ± 0.268) in normal cases.

The intraclass correlation coefficient (ICC) values of each selected radiomics features depending on different 
delineations (manual delineation by radiologists A and B and square delineation) are shown in Table 4, which 
were 0.705 (95% CI 0.599–0.790) to 0.961 (95% CI 0.944–0.973). The diagnostic performance of the fetal-lung-
texture analysis based on the ROIs delineated by radiologist B (free-hand) and on the square delineation (40 × 40 
pixels) are shown in Table 3. The diagnostic performance of testing set was very similar to that of radiologist A, 
with AUCs of 0.87 (95% CI 0.78–0.96) (Radiologist B), 0.88 (95% CI 0.79–0.96) (square delineation) and 0.83 
(95% CI 0.79–0.97) (Radiologist A), sensitivities of 74.67% (95% CI 55.41–77.93%) (Radiologist B), 76.12% 
(95% CI 71.07–81.05%) (square delineation) and 77.78% (95% CI 68.30–87.43%) (Radiologist A), specificities 
of 80.60% (95% CI 75.84–85.25%) (Radiologist B), 88.89% (95% CI 81.41–95.93%) (square delineation) and 
82.09% (95% CI 77.65–86.62%) (Radiologist A) and accuracies of 77.65% (95% CI 73.23–82.00%) (Radiologist 
B), 78.82% (95% CI 74.48–82.98%) (square delineation) and 81.18% (95% CI 77.33–85.12%) (Radiologist A).

Table 1.   Characteristics of study cohort. Data are presented as mean ± SD or n (%). GA gestational age, GDM 
gestational diabetes mellitus, PE pre-eclampsia, TTN transient tachypnea of the newborn, RDS respiratory 
distress syndrome, NICU neonatal intensive care unit.

Characteristic Training set (n = 210) Testing set (n = 85)

Maternal age (years) 31 ± 3.88 31 ± 4.23

GA at ultrasound (weeks) 28–37 (35 ± 2.42) 29–37 (35 ± 2.11)

Pregnancy complications (GDM or PE)

With 73 (34.76%) 25 (29.41%)

Without 137 (65.24%) 60 (70.59%)

Mode of delivery

Spontaneous vaginal 75 (35.71%) 52 (61.18%)

Cesarean 135 (64.29%) 33 (38.82%)

Birth weight (g) 3006 ± 562 3212 ± 616

Sex of newborn

Female 116 (55.24%) 51 (60.00%)

Male 94 (44.76%) 34 (40.00%)

5-min Apgar score

 ≤ 7 4 (1.90%) 3 (3.53%)

 > 7 206 (98.09%) 82 (96.47%)

Neonatal prognosis

No neonatal respiratory morbidity 159 (75.71%) 67 (78.82%)

Neonatal respiratory morbidity 51 (24.29%) 18 (21.18%)

TTN 35 (16.67%) 14 (16.47%)

RDS 16 (7.62%) 4 (4.71%)

NICU admission 51 (24.29%) 18 (21.18%)



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:12747  | https://doi.org/10.1038/s41598-022-17129-8

www.nature.com/scientificreports/

Discussion
The results of the present study revealed that fetal lung texture analysis by ultrasound-based radiomics technol-
ogy can be used to predict the probability of neonatal respiratory morbidity by analyzing fetal lung ultrasound 
images and in combination with clinical characteristics (GA and pregnancy complications). It may provide a 
new method for noninvasive prediction of NRM.

The clinical utility of FLM assays has been largely debated11. At present, instead of studying several compo-
nents of the amniotic fluid through amniocentesis, the application of prenatal corticoids and postnatal surfactant 
has become the main clinical measure to reduce neonatal respiratory diseases12. However, the recommended 
type of corticosteroid and the gestational window of treatment administration have not been clearly defined13. 
Studies have shown that there are potentially important risks of corticosteroids in neurodevelopment and fetal 
metabolic planning14–16. In a study of 278,508 live-born singletons of 24 weeks gestation or above in Finland, 
antenatal steroid was shown to be associated with the delivery of small fetus at birth17. The results of this study 
may provide a new method for non-invasive approaches for the prenatal assessment of FLM, which can not only 
avoid the fear and discomfort of amniocentesis, help to decide whether to use prenatal corticosteroids, but also 
refine the timing of delivery in high-risk pregnancies.

With the widespread use of ultrasound in obstetrics, several attempts have been made to evaluate fetal lung 
maturity noninvasively. Sm et al.18 showed that a measured elevated acceleration-to-ejection time ratio of the 
fetal pulmonary artery doppler was independently associated with the development of RDS in preterm infants 
and thus a possible marker of lung maturity. Attempts to quantify fetal lung volume in normal pregnancies by 
using 3-dimensional ultrasonography though useful in cases like diaphragmatic hernia have not been shown to 
objectively evaluate FLM19,20. In addition, gray scale measurement21, fetal lung tissue movement assessment22, and 
evaluation of fetal lung images relative to fetal liver and fetal placenta images23 have been tried to proposed as a 
possible tool for the assessment of fetal lung maturity. Unfortunately, the accuracy of this diagnosis is very poor, 
so no clinical significance is found. Recently, Palacio et al.24 reported that the quantitative ultrasound lung texture 
analysis could be used to evaluate fetal lung maturity and showed an accuracy similar to that of biochemical tests 

Figure 1.   The calibration plots, gain curve and lift curve of machine-learning model built by RUSBoost 
architecture for predicting the possibility of NRM. (A) Calibration plots; (B) gain curve; (C) lift curve. RUSBoost 
random under-sampling with AdaBoost, NRM neonatal respiratory morbidity.

Table 2.   Model performance for predicting neonatal respiratory morbidity depending on different features. 
Clinical features include pregnancy complications and gestational age. Radiomics features were based on free-
hand delineation of region of interests by Radiologist A. CI confidence interval, PPV positive predictive value, 
NPV negative predictive value, AUC​ area under the receiver-operating-characteristics curve.

Clinical features Radiomics features Clinical and radiomics features

Training set (95% 
CI)

Testing set (95% 
CI)

Training set (95% 
CI)

Testing set (95% 
CI)

Training set (95% 
CI)

Testing set (95% 
CI)

Sensitivity 45.10% (38.27–
51.99%)

55.56% (43.35–
67.96%)

74.51% (68.58–
80.27%)

66.67% (54.91–
78.86%)

84.31% (79.06–
89.44%)

77.78% (68.30–
87.43%)

Specificity 90.57% (88.23–
92.89%)

83.58% (79.10–
88.00%)

73.58% (70.11–
77.02%)

74.63% (69.30–
80.08%)

81.13% (78.16–
84.07%)

82.09% (77.65–
86.62%)

Accuracy 79.52% (76.60–
82.43%)

77.65% (73.20–
82.10%)

73.81% (70.80–
76.74%)

72.94% (68.06–
77.98%)

81.90% (79.34–
84.41%)

81.18% (77.33–
85.12%)

PPV 60.53% (52.29–
68.82%)

47.62% (36.07–
59.01%)

47.50% (42.00–
52.93%)

41.38% (32.04–
50.99%)

58.90% (53.25–
64.51%)

53.85% (44.08–
63.93%)

NPV 83.72% (80.81–
86.61%)

87.50% (83.43–
91.67%)

90.00% (87.46–
92.47%)

89.29% (85.03–
93.66%)

94.16% (92.08–
96.17%)

93.22% (90.16–
96.31%)

AUC​ 0.70 (0.65–0.75) 0.61 (0.52–0.70) 0.79 (0.75–0.84) 0.67 (0.58–0.76) 0.88 (0.83–0.92) 0.83 (0.79–0.97)
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in amniotic fluid previously reported. In this study, the overall performance of neonatal respiratory morbidity 
prediction model based on fetal lung texture analysis by ultrasound-based radiomics technology achieved AUC 
of 0.83–0.88, sensitivity of 77.78–84.31%, specificity of 81.31–82.09% and accuracy of 81.18–81.90%. These 
ultrasound images, which appear indistinguishable to the naked eye, could quickly and accurately predict the 
risk of NRM in the fetus. And the images collected by different trained doctors using different machines do not 
affect the estimation results of the model.

Our previous research25 reported that there were great differences in fetal lung texture between pregnancies 
with GDM, PE and normal pregnancy and between different gestational ages. In our study population, there 
were 33.2% (98/295) of pregnant women with GDM and PE. Among these, the proportion of newborns with 
NRM was nearly twice that in the normal pregnancy group (6.1% vs 3.2%). Therefore, in this study, the model 

Figure 2.   The confusion matrix and ROC curve for predicting neonatal respiratory morbidity depending 
on different features. (A) Results of the training set; (B) results of the testing set; (i), (ii) and (iii): confusion 
matrix; (iv): ROC curves. (i): Results of the model based on clinical features. (ii) Results of the model based on 
radiomics features. (iii) Results of the model based on the combination of clinical and radiomics features. NRM 
neonatal respiratory morbidity, ROC receiver operating characteristic curve, AUC​ area under the receiver-
operating-characteristics curve, C clinical features, R radiomics features; C&R the combination of clinical and 
radiomics features.

Table 3.   Diagnostic performance of fetal-lung-texture analysis, based on free-hand delineation of region 
of interest by radiologist B and square delineation by radiologist B. CI confidence interval, PPV positive 
predictive value, NPV negative predictive value, AUC​ Area under the receiver-operating-characteristics curve.

Radiologist B free-hand delineation Square delineation

Training set (95%CI) Testing set (95%CI) Training set (95%CI) Testing set (95%CI)

Sensitivity 84.31% (79.33–89.19%) 74.67% (55.41–77.93%) 72.55% (66.18–78.46%) 76.12% (71.07–81.05%)

Specificity 90.57% (88.24–92.96%) 80.60% (75.84–85.25%) 94.34% (92.51–96.12%) 88.89% (81.41–95.93%)

Accuracy 89.05% (86.89–91.23%) 77.65% (73.23–82.00%) 89.05% (86.90–91.05%) 78.82% (74.48–82.98%)

PPV 74.14% (68.30–80.05%) 48.00% (37.88–57.80%) 80.43% (74.53–86.13%) 50.00% (40.97–58.66%)

NPV 94.74% (2.98–96.47%) 90.00% (86.22–93.84%) 91.46% (89.30–93.49%) 96.23% (93.67–98.64%)

AUC​ 0.94 (0.88–0.99) 0.87 (0.78–0.96) 0.86 (0.82–0.89) 0.88 (0.79–0.96)
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was established by high-throughput radiomics features and two clinical features (pregnancy complications and 
gestational age). Studies26 have shown that the accuracy and PPV of tests on amniotic fluid in predicting NRM 
was 73.3% (57.5–81.6%) and 27.1% (18.0–34.1%) respectively. In this study, results showed improvements by 
about 8.2 pp in accuracy (81.5%) and 29.3 pp in PPV (56.4%).

Our study had several limitations: First, large amounts of data are necessary in radiomics for mining con-
cealed prognostic information and to avoid overfitting. Expanding the sample size, especially the positive sample 
size, would improve the stability and accuracy of the model. Second, in this study, the ROIs of fetal lungs were 
performed manually. A computer system will be used to identify fetal lung tissue automatically, so that the model 
could be used more conveniently. Third, it is a single-center study, and image acquisition and delineation were 
performed by highly-trained personnel. But as the number of operators and settings increases, there will be many 
unqualified images. Multi-center research will be carried out in the future.

In conclusion, ultrasound-based radiomics technology can be used to predict neonatal respiratory morbid-
ity. The results of this study may provide a new method for non-invasive approaches for the prenatal prediction 
of NRM.

Methods
Patients.  Between July 2018 and October 2020, 2047 routine fetal-lung ultrasound images (either right or 
left lung) from 2047 women with singleton pregnancy were obtained, at gestational ages (GA) ranging from 
27+3 to 42+0 weeks. All participating women included in the study gave written informed consent for the use of 
ultrasound images and clinical data. All the methods hereby explained were performed in accordance with the 
relevant guidelines and regulations and approved, together with the study protocol, by the ethics committee of 
the Obstetrics and Gynecology Hospital Affiliated to Fudan University (2018-73). Of these, 731 babies with GA 
28+3–37+6 weeks were delivered within 72 h after ultrasound examination in the hospital. According to the same 
enrolment criteria of previous studies, the final cohort comprised 295 women with singleton pregnancy, with a 
total of 295 fetal-lung ultrasound images. The flowchart for the study population is shown in Fig. 3. Gestational 
age was determined by last menstrual period and verified by first-trimester dating ultrasound (crown–rump 
length).

Pregnancy complications included GDM and PE. GDM was diagnosed using a 75-g oral glucose tolerance 
test at 24–28 weeks of gestation27. Pre-eclampsia and gestational hypertension are characterized by the new onset 
of hypertension (> 140 mmHg systolic or > 90 mmHg diastolic) after 20 weeks gestation28.

Analysis of neonatal clinical data was supervised by a neonatal doctor. NRM included respiratory distress 
syndrome (RDS) or transient tachypnea of the newborn (TTN). The diagnosis of RDS and TTN is based on 
symptoms, signs and radiological examination7,29. Diagnostic criteria of RDS: tachypnea, snoring, chest wall 
retraction, nasal dilatation, the need for supplemental oxygen and the appearance of chest X-rays led to admis-
sion to the neonatal intensive care unit for respiratory support. Diagnostic criteria of TTN: mild or moderate 
respiratory distress (isolated tachypnea, rare snoring, slight retraction) and a chest X-ray (if done) showing 
alveolar and/or pulmonary interstitial effusion and prominent pulmonary vascular patterns.

Figure 3.   Flowchart of the selection of the study population. NRM neonatal respiratory morbidity.
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Ultrasound imaging and segmentation.  All ultrasound images were obtained during routine prenatal 
ultrasound examinations within 72 h before delivery. Among which, the images of the training set were obtained 
by radiologist 1 with more than 10 years’ experience in obstetric and gynecological ultrasound imaging, using 
aWS80A ultrasound system (Samsung, Korea). The frequency of the CA1-7A probe was 1–7 MHz, with a center 
frequency was 4.0 MHz. The images of the testing set were obtained by radiologist 2 with 3 years’ experience in 
obstetric and gynecological ultrasound imaging, using a VOLUSON E8 ultrasound system (GE, United States) . 
The frequency of the C1-5-D probe was 2–5 MHz, with a center frequency was 3.5 MHz.

A detailed description of the standard image acquisition protocol and the method used of manual (free-hand) 
delineation is fully described in a previous study25: Briefly, the standard fetal lung images requiring: on an axial 
section of the fetal thorax at the level of the four-chamber cardiac view, the settings were adjusted (depth, gain, 
frequency and harmonics) to ensure that at least one of the lungs had no obvious acoustic shadowing from 
the fetal ribs. All the images were inspected for image quality control and stored in DICOM format (.dcm) for 
offline analysis. Manual (free-hand) delineation was performed in each fetal lung by two radiologists (radiolo-
gists A and B), and square delineation (40 × 40 pixels) was performed by radiologist B, selecting one side of the 
fetal lung, taking great care to ensure that only the lung tissue was delineated, and avoiding blood vessels, rib 
shadows, and the lung capsule, as shown in Fig. 4. The radiologist A’s segmentation results were used to generate 
the model, while the radiologist B’s segmentation and the square delineation results were utilized to verify the 
stability of the model.

Radiomics evaluation and machine learning.  The research process is shown in Fig. 5.
All the feature extraction and image classifications were carried out using Matlab R2018a and Toolbox Clas-

sification (Mathworks, Inc, Natick, Massachusetts, US).
Univariate analysis was used to describe the differences in features among the different categories. The t-test 

was performed on each 430 continuous radiomics features25, including 15 morphological, 73 texture and 342 
wavelet features. The χ2 test was performed for two categorical clinical features, gestational age and pregnancy 
complications. P value < 0.05 indicated a significant difference.

The feature extraction method to analyze each ROI has been previously reported25. First, high-throughput 
radiomics features importance per fetal lung image were ranked to selected features by permuting out-of-bag 
data feature of random regression forest. If a feature is influential, permuting its values would influence the 
model error testing with out-of-bag data. The more important a feature is, the greater its influence will be30. 
As a result, 20 radiomics features (2 texture features and 18 wavelet features) and 2 clinical features (GA and 
Pregnancy complications) were selected to classification, which are shown in Table 4. The stability of selected 
radiomic features depending on different delineations (manual delineation by radiologists A and B and square 
delineation) was analyzed with ICC (2, 1)31. Then, the diagnostic performance of predicting neonatal respira-
tory morbidity depending on different features was compared, including clinical features (GA and pregnancy 
complications), radiomics features and the combination of clinical and radiomics features. For clinical features, 

Figure 4.   Fetal human lung ultrasound images with defined regions of interest. (a,a1,a2,a3) Are images of 
training set. (b,b1,b2,b3) Are images of testing set. (a1,b1) Manual delineation (radiologist A) of each lung. 
(a2,b2) Manual delineation (radiologist B) of each lung. (a3,b3) Square delineation (40 × 40 pixels) of each lung. 
(a,a1,a2,a3) Image of left lung at 36+1 weeks in woman with pre-eclampsia (PE). Cesarean delivery occurred 
2 days after ultrasound examination, and baby was diagnosed with transient tachypnea of the newborn. The risk 
probability derived from the model is 0.829 (> 0.5). (b,b1,b2,b3) Image of left lung at 34+0 weeks in woman with 
gestational diabetes mellitus (GDM). Cesarean delivery occurred immediately after ultrasound examination, 
and baby was diagnosed with respiratory distress syndrome. The risk probability derived from the model is 
0.843 (> 0.5).
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Figure 5.   Workflow of the fetal lung texture analysis system based on ultrasound-based radiomics technology. 
Stage I: Fetal-lung US image (four-chamber view) was segmented manually. Stage II: 430 high-throughput 
radiomics features were extracted from each segmented image. Then features were selected by permuting 
out-of-bag data feature of random regression forest. And the prediction model was built using RUSBoost 
(Random under-sampling with AdaBoost). Finally, the risk probability of NRM in each fetal lung image was 
obtained and divided into the high-risk group or low-risk group. Stage III: According to results of confusion 
matrix, performance of prediction model was assessed by sensitivity (SENS), specificity (SPEC), accuracy 
(ACC) and area under receiver-operating-characteristics (ROC) curve. ROI Region of interest, US ultrasound, 
NRM neonatal respiratory morbidity, Sens sensitivity, Spec specificity, Acc accuracy, ROC receiver operating 
characteristics.
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a support vector machine (SVM) classifier was used for classification. By adjusting the cost of misclassification 
in different categories, the classifier can focus on the positive samples. For radiomics features and the combina-
tion of clinical and radiomics features, with the high imbalance of samples and the small sample size, RUSBoost 
(Random under-sampling with AdaBoost)32 was used to build the model. Finally, the risk probability of NRM 
in each fetal lung image was obtained, which was the predicted score normalized to the range of 0–1 by softmax 
function of the RUSBoost. The cut-off point of the model was 0.5. The fetal lungs with risk probability higher 
than 0.5 were divided into the high-risk group, and lower than 0.5 were divided into the low-risk group. All 
classifier parameters were tuned with bootstrap tenfold cross-validation, and the decision tree was employed as 
the base learner for RUSBoost.

The prediction performance of the model was assessed for sensitivity (SENS), specificity (SPEC), accuracy, 
PPV, NPV and AUC.

Data availability
The data that support the findings of this study are available at the web repository of https://​pan.​baidu.​com/s/​
1p9ka​t4pr3​jFrE1​jPE8O​5wA and its extraction code can be obtained from the corresponding author upon a 
separate request.
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