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Abstract: Meibomian gland dysfunction is one of the main causes of dry eye disease and has limited
therapeutic options. In this study, we investigated the biological function of the beta 2-adrenergic
receptor (ADRB2)/protein kinase A (PKA) pathway in lipid synthesis and its underlying mechanisms
in human meibomian gland epithelial cells (HMGECs). HMGECs were cultured in differentiation
media with or without forskolin (an activator of adenylate cyclase), salbutamol (an ADRB2 agonist),
or timolol (an ADRB2 antagonist) for up to 4 days. The phosphorylation of the cAMP-response
element-binding protein (CREB) and the expression of peroxisome proliferator activator receptor
(PPAR)γ and sterol regulatory element-binding protein (SREBP)-1 were measured by immunoblotting
and quantitative PCR. Lipid synthesis was examined by LipidTOX immunostaining, AdipoRed assay,
and Oil Red O staining. PKA pathway activation enhanced PPARγ expression and lipid synthesis
in differentiated HMGECs. When treated with agonists of ADBR2 (upstream of the PKA signaling
system), PPARγ expression and lipid synthesis were enhanced in HMGECs. The ADRB2 antagonist
timolol showed the opposite effect. The activation of the ADRB2/PKA signaling pathway enhances
lipid synthesis in HMGECs. These results provide a potential mechanism and therapeutic target for
meibomian gland dysfunction, particularly in cases induced by beta-blocker glaucoma drugs.
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1. Introduction

Meibomian gland dysfunction (MGD) is a major cause of evaporative dry eye disease
and is characterized by terminal duct obstruction and/or qualitative/quantitative changes
in glandular secretion [1]. The meibomian gland secretes lipid-rich substances called
meibum to the ocular surface, which stabilizes the tear film by preventing its evaporation.
Conversely, MGD destabilizes the homeostasis of the tear film and elicits dry eye-related
ocular symptoms, followed by the deterioration of the patient’s visual function and quality
of life [2,3].

Acinar cells of meibomian glands (meibocytes) mainly produce meibum and maturate
from proliferating, non-lipid-producing basal cells to non-proliferating, lipid-accumulating
differentiated cells. Lipid biosynthesis and accumulation are hallmarks of meibocyte matu-
ration. It has been reported that various signal pathways are involved in this maturation
process. Notch signaling enhances human meibomian gland epithelial cell (HMGECs)
differentiation and lipid production [4]. The loss of the CD147-mediated pathway was
associated with a lower number of acini and a decrease in lipid-filled meibocytes in CD147
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knockout mice [5]. The hedgehog signaling pathway has an antagonistic effect on the
proliferation and differentiation of rat meibomian gland epithelial cells [6]. Transcriptome
analysis revealed multiple pathways, such as the insulin signaling pathway, mammalian tar-
get of rapamycin pathway, and peroxisome proliferator activator receptor (PPAR) signaling,
which are possibly associated with lipid synthesis in HMGECs and mouse meibocytes [7,8].
PPARγ is a member of the nuclear receptor superfamily and is considered a master regu-
lator of adipogenesis [9,10]. In the case of the meibomian gland, the PPARγ agonist was
shown to enhance maturation and lipid synthesis in HMGECs and mouse meibocytes, and
our group previously reported that interkeukin-4 facilitated lipogenesis in HMGECs via
the STAT6/PPARγ signaling pathway [11–13]. However, there are no studies on the role of
the protein kinase A (PKA) pathway in the differentiation and lipogenesis of meibocytes.

PKA, a tetrameric enzyme consisting of two catalytic subunits, each bound to a
regulatory subunit dimer [14], is known to be the primary target for cyclic adenosine
monophosphate (cAMP) in the cell and plays a role as the principal effector mechanism
for G-protein-coupled receptors linked to adenylate cyclase [15]. In adipocytes, it is well-
known that PKA phosphorylation and the activation of downstream molecules, such as
the cAMP-response element-binding protein (CREB), are essential for the transcription of
PPARγ and subsequent adipogenesis [16]. In ophthalmology, the PKA pathway has been
mainly studied for its role in aqueous humor flow and neuroprotection in glaucoma [17].
Regarding dry eye syndrome, although one study reported that the cAMP/PKA pathway
activated by α-melanocyte-stimulating hormone has a protective effect in a dry eye rat
models [18], no study has investigated the role of the PKA signaling pathway in the
meibomian gland.

In addition, it is clinically important to study the PKA pathway because eye drops that
modulate the PKA pathway are widely used in glaucoma patients. Beta blockers are one
of the most widely used anti-glaucoma eye drops and are known to cause damage to the
ocular surface, including MGD [19–21]. However, the pathophysiology of MGD-inducing
effect is remains to be elucidated.

We hypothesized that the PKA signaling pathway plays a role in the differentiation
and lipid accumulation of meibocytes, similar to adipocytes, and we examined the role
of the PKA pathway in the differentiation and lipid accumulation of meibocytes using
HMGECs. We further investigated the function of adrenergic receptors, which could affect
the PKA pathway and meibocyte maturation.

2. Results
2.1. PKA Activation Induced Lipogenesis in Human Meibomian Gland Epithelial Cells (HMGECs)

CREB phosphorylation was assessed to evaluate the PKA pathway in HMGECs.
HMGECs were treated with forskolin, which activates adenylyl cyclase, thereby increasing
the intracellular concentration of cAMP and activating the PKA pathway. The phosphory-
lation of CREB at the ser133 residue was assessed by immunoblotting at 0, 15, 30, 60, and
120 min. The phosphorylation of CREB in HMGECs increased after 15 min and gradually
decreased after 120 min. We then treated HMGECs with escalating doses of forskolin to
HMGECs and the level of phosphorylated CREB (pCREB) was examined at 30 min. As
shown in Figure 1A, the pCREB levels increased in a dose-dependent manner. These results
indicate that the PKA pathway is well conserved in HMGECs.
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Figure 1. PKA activation enhanced lipid synthesis in human meibomian gland epithelial cells 
(HMGECs). (A) HMGECs were treated with forskolin, and the phosphorylation of CREB at ser133 
residue was assessed by immunoblotting in serial and dose escalation manners. After treatment 
with forskolin (1 μM), the CREB phosphorylation was assessed with time. CREB phosphorylation 
was highest at 30 min after treatment and decreased thereafter. After forskolin was treated by con-
centration, CREB phosphorylation was observed 30 min later. CREB phosphorylation increased 
with forskolin concentration (the sum of 3 and 4 experiments, respectively). (B–D) HMGECs were 
cultured with or without forskolin (1 μM; forskolin was treated at day 0 and 2). (B,C) mRNA and 
protein expression of PPARγ and SREBP-1 were assessed by quantitative PCR and immunoblotting 
at day 0, 2, and 4 (the sum of 3 and 4 experiments respectively). (D,E) Lipid accumulation was meas-
ured by AdipoRed assay and LipidTOX assay at day 4, and the results of three experiments are 
summarized. Data are presented as the mean ± standard error of the mean. D, day after differentia-
tion; * p < 0.05; ** p < 0.01; *** p < 0.001. 

Figure 1. PKA activation enhanced lipid synthesis in human meibomian gland epithelial cells
(HMGECs). (A) HMGECs were treated with forskolin, and the phosphorylation of CREB at ser133
residue was assessed by immunoblotting in serial and dose escalation manners. After treatment
with forskolin (1 µM), the CREB phosphorylation was assessed with time. CREB phosphorylation
was highest at 30 min after treatment and decreased thereafter. After forskolin was treated by
concentration, CREB phosphorylation was observed 30 min later. CREB phosphorylation increased
with forskolin concentration (the sum of 3 and 4 experiments, respectively). (B–D) HMGECs were
cultured with or without forskolin (1 µM; forskolin was treated at day 0 and 2). (B,C) mRNA and
protein expression of PPARγ and SREBP-1 were assessed by quantitative PCR and immunoblotting at
day 0, 2, and 4 (the sum of 3 and 4 experiments respectively). (D,E) Lipid accumulation was measured
by AdipoRed assay and LipidTOX assay at day 4, and the results of three experiments are summarized.
Data are presented as the mean ± standard error of the mean. D, day after differentiation; * p < 0.05;
** p < 0.01; *** p < 0.001.
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It is generally accepted that cAMP signaling, followed by PKA activation, plays an
important role in lipogenesis in white adipose tissue [16]. To determine the role of the
cAMP/PKA pathway in lipogenesis in HMGECs, we treated HMGECs with forskolin and
examined the expression levels of PPARγ and sterol regulatory element-binding protein
(SREBP-1), the master regulators of lipogenesis. Cells were treated with forskolin on
differentiation days 0 and 2, and PPARγ and SREBP-1 were examined on days 0, 2, and
4. Forskolin-treated HMGECs showed an enhanced expression of PPARγ and SREBP-
1 at both the mRNA and protein levels compared to control HMGECs (Figure 1B,C).
Lipid synthesis was measured by AdipoRed assay and LipidTOX immunostaining in
differentiated HMGECs on day 4, with or without forskolin, and lipids accumulated more
in forskolin-treated HMGECs than in the untreated controls (Figure 1D). Overall, the
activation of the cAMP/PKA pathway in differentiated HMGECs promoted additional
lipid synthesis and lipid droplet accumulation.

2.2. Differentiated HMGECs Express Beta 2-Adrenergic Receptor

Diverse hormones and extracellular signals utilize cAMP-dependent signal trans-
duction to exert their effects; sympathetic activation of beta-adrenergic receptors by cat-
echolamines is a classic example [22]. Therefore, we assessed whether beta 2-adrenergic
receptors (ADRB2) were expressed in HMGECs. The mRNA expression of ADRB2 in-
creased gradually as HMGECs differentiated (Figure 2A). The protein expression of ADRB2
was scarcely detected in pre-differentiated HMGECs, but, like mRNA expression, progres-
sively increased as HMGECs differentiated (Figure 2B), suggesting that lipid synthesis,
governed by the cAMP/PKA pathway, could be regulated via ADRB2 signals.
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PPARγ and SREBP-1 showed similar patterns to immunoblotting, although PPARγ did 
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Figure 2. Differentiated HMGECs increased expression of beta 2-adrenergic receptor (ADRB2)
(A) HMGECs were cultured with differentiation media from Day 0. mRNA (A) and protein expression
(B) were measured by quantitative PCR and immunoblotting at day 0, 2, and 4, respectively. Data are
presented as the mean± standard error of the mean. D, day after differentiation; * p < 0.05; ** p < 0.01,
*** p < 0.001.

2.3. Beta 2-Adrenergic Agonist Facilitates PPARγ Expression and Lipid Droplet Synthesis

To investigate the influence of ADRB2 signal cues on lipid synthesis and PPARγ
expression levels, we first evaluated the effect of salbutamol, a selective beta 2-adrenergic
receptor agonist, on the PKA signaling pathway in differentiated HMGECs. Salbutamol was
added to differentiated HMGECs and the phosphorylation of CREB was assessed at a series
of time points, then at 10 min each with escalating doses. Figure 3A demonstrated that
Salbutamol enhanced CREB phosphorylation in HMGECs in a dose-dependent manner
(Figure 1). Subsequently, cells were treated with salbutamol on days 0 and 2, and the
expression of PPARγ and SREBP-1 was examined by immunoblotting and quantitative
PCR (qPCR) on days 0, 2, and 4. Salbutamol augmented the protein expression of PPARγ
and SREBP-1 on days 2 and 4, compared to the control (Figure 3B). The transcription of
PPARγ and SREBP-1 showed similar patterns to immunoblotting, although PPARγ did
not reach statistical significance (Figure 3C). Lipogenesis was measured by AdipoRed
assay and LipidTOX immunostaining on day 4, and salbutamol remarkably enhanced lipid
accumulation in HMGECs (Figure 3D,E).
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Figure 3. Beta 2-adrenergic agonist activates PKA signaling pathway, followed by promoted PPARγ
expression and lipid droplet synthesis. (A) HMGECs were treated with salbutamol and phosphoryla-
tion of CREB at ser133 residue, which was assessed by immunoblotting in serial and dose escalation
manners. After treatment with salbutamol (1 µM), the CREB phosphorylation was assessed with
time. CREB phosphorylation was highest at 15 min after treatment and decreased thereafter. After
salbutamol was treated by concentration, CREB phosphorylation was examined 15 min later. CREB
phosphorylation increased with salbutamol concentration. (B–E) HMGECs were cultured with or
without salbutamol (1 µM; salbutamol was treated at day 0 and 2). (B,C) Transcription and protein
expression of PPARγ and SREBP-1 were assessed by quantitative PCR and immunoblotting at day 0,
2, and 4. (D,E) Lipid synthesis was measured by AdipoRed assay and LipidTOX assay at day 4. All
results are the sum of three independent experiments. Data are presented as the mean ± standard
error of the mean. D, day after differentiation; * p < 0.05; ** p < 0.01; *** p < 0.001.
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2.4. Beta 2-Adrenergic Antagonist Inhibits Lipogenesis in HMGECs

The finding that the ADRB2 receptor agonist facilitated the lipogenesis of differentiated
HMGECs led us to examine the effect of the ADRB2 receptor antagonist on HMGECs.
Timolol, a beta-adrenergic receptor blocking agent and one of the representative anti-
glaucoma therapeutics, was chosen and used to differentiate HMGECs. It is well-known
that long-term use of topical antiglaucoma eye drops, including timolol, is associated
with meibomian gland dysfunction [19,20]. Zhang et al. reported the influence of timolol
on HMGECs, stating that timolol causes a dose-dependent decrease in the survival of
HMGECs and that physiological doses of timolol (0.0002%) do not influence HMGEC
survival [23].

We treated HMGECs with physiological doses of timolol [24] on differentiation days
0 and 2, and PPARγ and SREBP-1 were examined on days 0, 2, and 4. The protein level
of PPARγ decreased with timolol administration on days 2 and 4, and the protein level of
SREBP-1 decreased on day 4 (Figure 4A). However, the mRNA expression of PPARγ and
SREBP-1 was not significantly different between the timolol-treated and control groups
(Figure 4B).
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Figure 4. Beta 2-adrenergic antagonist inhibits lipogenesis in HMGECs. HMGECs were cultured
with or without timolol (0.0002%; timolol was treated at days 0 and 2). (A,B) mRNA and protein
expression levels of PPARγ and SREBP-1 were assessed by quantitative PCR and immunoblotting on
days 0, 2, and 4 (the sum of 3 and 4 experiments, respectively). (C,D) Lipid synthesis was measured by
AdipoRed assay and LipidTOX assay at day 4, and the results of three experiments are summarized.
Data are presented as mean ± standard error of the mean. D, days after differentiation; * p < 0.05;
** p < 0.01.
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The lipogenesis of differentiated HMGECs was compared at day 4, and timolol-treated
HMGECs showed a significantly reduced lipid droplet accumulation, as evaluated by the
AdipoRed assay and LipidTOX immunostaining (Figure 4C,D).

Finally, lipid synthesis was confirmed by Oil Red O staining at day 4 after forskolin.
HMGECs with differentiation media were treated with salbutamol or timolol at day 0
and 2. Consistent with previous results, HMGECs treated with forskolin and salbutamol
demonstrated increased lipid accumulation. The HMGECs treated with timolol showed a
significant reduction in lipid accumulation (Figure 5).
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Figure 5. Lipid synthesis was examined by Oil Red O staining at day 4 after treatment with forskolin,
salbutamol, and timolol. HMGECs were cultured with or without forskolin, salbutamol, and timolol,
and lipid accumulation was assessed using Oil Red O staining on day 4. The results of three
experiments are summarized in the right panels. Data are presented as the mean ± standard error of
the mean; * p < 0.05.

3. Discussion

In this study, we demonstrated that the PKA pathway plays an important role in
HMGEC differentiation and lipid accumulation. Forskolin, a PKA pathway activator,
enhances both differentiation and lipid synthesis in HMGECs. We then evaluated the
function of ADRB2, which is a G-protein-coupled membrane receptor and an upstream
signal transducer of the PKA pathway, in the differentiation of HMGECs. Salbutamol, an
ADRB2 agonist, successfully induced the activation of the PKA pathway and subsequent
PPARγ expression and lipid synthesis, whereas timolol showed the opposite effect. These
results suggest that the PKA pathway might be related to the pathophysiology of MGD
and that drugs affecting the PKA signaling pathway could have an effect on MGD.
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PKA includes two regulatory subunits and two catalytic subunits [14]. When cAMP
binds to the inactive PKA tetramer for both regulatory subunits, the catalytic subunit is
dissociated and activated, resulting in the phosphorylation of the serine and threonine
residues of the matrix protein. PKA-anchored proteins (AKAPs) can bind to the cytoskele-
ton or organelles and PKA regulatory subunits, thereby modulating the distribution of
PKA in cells and allowing PKA to catalyze specific targets [25]. When activated, PKA
phosphorylates substrates such as CREB, Raf, Bad, and GSK3, and then regulates gene
expression [25]. For CREB, a well-characterized PKA substrate, when the CREB ser133
residue is phosphorylated, CREB binds to the cAMP response element and initiates target
gene transcription [26,27].

The role of the PKA pathway in meibomian gland dysfunction and dry eye disease is
not well-understood. Ru et al. reported the protective effects of α-melanocyte-stimulating
hormone against dry eye using a scopolamine-induced dry eye rat model, and that these
protective effects were mediated by the PKA-CREB pathway [18]. However, they evaluated
the cornea and conjunctiva, but not the meibomian glands. Qu et al. reported the antag-
onistic role of hedgehog signaling in the proliferation and differentiation of rat MGECs,
suggesting that the PKA pathway might play a role in the differentiation of MGECs because
the PKA pathway is an antagonist of hedgehog signaling [6]. In this study, we treated
HMGECs with forskolin to increase cAMP levels and evaluated CREB phosphorylation
to elucidate the role of the PKA pathway in lipid synthesis in meibocytes. As shown in
Figure 1, we demonstrated that the PKA pathway is well-conserved in HMGECs and
promotes PPARγ expression and lipid synthesis.

The PKA pathway is known to play an important role not only in lipid synthesis
but also in lipolysis of adipocytes, in connection with cAMP signals [16]. cAMP is one of
the earliest discovered second messengers that plays essential roles in cell signaling and
regulates many physiological processes. cAMP can regulate the transcription of various
target genes, mainly through PKA and its downstream effectors, such as CREB [28]. In
adipogenesis, CREB knockdown blocks the expression of PPARγ, and ectopic expression of
constitutively active forms of CREB is sufficient to initiate adipogenesis in mouse 3T3-L1
adipocytes [29]. In addition, CREB promotes the expression of PPARγ, a master regula-
tor of adipogenesis, and enhances lipid synthesis and adipogenesis [30]. In contrast, the
cAMP/PKA pathway is also related to lipolysis. PKA induces the sequential breakdown
of triacylglycerides through the phosphorylation of proteins involved in lipolysis, such as
perilipin, adipose triglyceride lipase (ATGL), and hormone-sensitive lipase (HSL) [31,32].
The activation of the PKA pathway can promote both lipid synthesis and lipolysis, and
these two opposite actions are precisely regulated by compartmentalization [16]. Optical
atrophy 1 (OPA1), an AKAP, moves PKA to a separate intracellular compartment close
to perilipin, and perilipin, phosphorylated by PKA, induces lipolysis [33]. In our study,
the activation of the PKA pathway enhanced PPARγ expression and lipid synthesis rather
than lipolysis in HMGECs. Although additional studies are needed to provide an accurate
answer, this may occur due to the differentiation characteristics of the HMGEC lines used
in our experiments. The HMGEC line was established by immortalizing the HMGECs of a
58-year-old male donor with retroviral human telomerase reverse transcriptase in 2010 [34],
and HMGECs have been used as experimental models to mimic human meibocytes. How-
ever, it is still unclear whether the serum-induced differentiation of HMGECs reaches a late
differentiation stage [35]. The possibility that the activation of the PKA pathway induces
lipolysis in the later stages of HMGECs differentiation should be elucidated in further
studies. Furthermore, since the accumulation of lipid droplets is the sum of lipogenesis
and lipolysis reactions, it will be necessary in future studies to investigate whether acti-
vated PKA phosphorylates lipolysis-related molecules, such as perilipin, ATGL, and HSL
in HMGECs.

One of the most representative signals activating the PKA pathway is an increase
in cAMP levels via beta-adrenergic receptors [22]. As various glaucoma therapeutics act
by blocking beta-adrenergic receptors, it is clinically important to evaluate the effect of
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beta-receptor signaling on HMGEC differentiation. We evaluated whether ADRB2 affects
subsequent PKA pathways as forskolin did. As shown in Figures 3 and 4, the ADRB2 ago-
nist salbutamol promoted the PKA pathway and subsequent PPARγ expression and lipid
synthesis, whereas the ADRB2 antagonist timolol showed the opposite effect. Although
it is now widely accepted that topical anti-glaucoma drugs aggravate MGD [19,20], the
underlying mechanisms remain to be elucidated. Topical beta-blockers cause decreased
tear production, tear film instability, corneal epithelial damage, and a reduction of con-
junctival goblet cells [36–41]. Although these ocular surface changes may be the causes
of MGD, evidence on whether a beta-blocker directly induces MGD is still lacking. Our
findings might help understand why timolol worsens MGD in patients with glaucoma and
the overall pathophysiology of MGD. Previous studies investigating the effect of timolol
on HMGECs did not show a significant effect on lipid synthesis [23]. This discrepancy
might be due to the different compositions of the differentiation media. Zhang et al. used
azithromycin to enhance lipid synthesis in HMGECs; however, whether these differences
have other effects on lipid synthesis signals requires further study. In addition, it is known
that, not only the decrease in lipid production, but also the change in the lipid composition
are important for the pathophysiology of MGD [42,43]. Therefore, future studies should
investigate whether the lipid composition of HMGECs is also changed by the beta-blocker.

In conclusion, we demonstrated that the activation of the PKA pathway enhanced
PPARγ expression and lipid synthesis in HMGECs. The physiological relevance of ADRB2
to the PKA pathway was also evaluated. The ADRB2 agonist salbutamol enhanced the
PKA pathway and subsequent PPARγ expression and lipid synthesis, whereas the ADRB2
antagonist timolol had the opposite effect. These results show that the ADRB2-PKA
pathway could be implicated in the pathogenesis of MGD and provide an understanding of
how drugs, such as timolol, could aggravate MGD in patients. In addition, the ADRB2-PKA
pathway may be a potential target for MGD treatment.

4. Materials and Methods
4.1. Cell Culture and Differentiation

The immortalized HMGEC—kindly provided by Dr. Sullivan (Schepens Eye Research
Institute)—were cultured in keratinocyte serum-free medium (KSFM; Gibco, Grand Island,
NY, USA) as previously described [13]. HMGECs were differentiated through culturing in
DMEM-F12 (Lonza, Basel, Switzerland), supplemented with 10% (v/v) fetal bovine serum
and 10 ng/mL epidermal growth factor (R&D Systems, Minneapolis, MN, USA), with or
without drug compounds, according to each experiment. To assess the phosphorylation of
CREB, chemicals were treated with fresh differentiation media after 2 h of incubation. To
evaluate the PPARγ pathway and lipid accumulation, differentiation media were added
on days 0 and 2. Forskolin (Sigma, St. Louis, MO, USA) was added to the differentiation
medium at a final concentration of 1 µM. Salbutamol (Sigma) and timolol maleate (Sigma)
were supplemented at final concentrations of 1 µM and 0.0002%, respectively.

4.2. Quantitative PCR Analysis

qPCR was performed as previously described [13]. Total RNA was isolated using
Tri-RNA reagent (FAVORGEN, Ping-Tung, Taiwan), and 1 µg of total RNA was used
to synthesize cDNA using RNA-to-cDNA EcoDryTM premix (TaKaRa, Shiga, Japan) ac-
cording to the manufacturer’s protocol. Relative mRNA levels were evaluated in ViiA7
(Applied Biosystems, Foster City, CA, USA) using the SYBR Green PCR Master Mix (Ap-
plied Biosystems). Target gene expression was normalized to that of the housekeeping
gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Primer sequences used in
this study are listed in Table 1.
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Table 1. Primers used for the quantitative PCR analysis.

Gene Forward (5′–3′) Reverse (5′–3′) Product Size (bp)

GAPDH GAG TCA ACG GAT TTG GTC GT GAC AAG CTT CCC GTT CTC AG 185

PPARγ TTG CAG TGG GGA TGT CTC AT TTT CCT GTC AAG ATC GCC CT 208

SREBP-1 GAG CTC AAG GAT CTG GTG GT CCG ACA CCA GAT CCT TCA GA 175

4.3. Immunoblot Analysis

Immunoblotting was performed as previously described [44]. The cells were grown in
a 12-well plate, and the experiments were repeated at least three times. Cell lysates were
prepared using a cell lysis buffer (Cell Signaling Technology, Danvers, MA, USA) containing
1 µM PMSF (Roche, Basel, Switzerland). The protein levels of the obtained lysates were
quantified using BCA Protein Assay reagent (Thermo Fisher Scientific, Waltham, MA,
USA). The cell lysates were diluted in a 5× sodium dodecyl sulfate (SDS) sample buffer
and then separated on 10% SDS-PAGE gel. The separated proteins were transferred onto
polyvinylidene fluoride membranes (Invitrogen, Carlsbad, CA, USA), which were then
incubated with appropriate primary and secondary antibodies. Specific proteins were
detected using rabbit anti-PPARγ (Cell Signaling Technology), mouse anti-SREBP-1 (Santa
Cruz Biotechnology, Dallas, TX, USA), rabbit anti-CREB (Cell Signaling Technology), rabbit
anti-phospho-CREB (ser133, Cell Signaling Technology), chicken anti-ADRB2 (Abcam,
Cambridge, MA, USA), and mouse anti-GAPDH (Santa Cruz Biotechnology). Protein
bands were detected using horseradish peroxidase-conjugated anti-chicken IgY (Abcam),
anti-rabbit IgG (AbFrontier, Seoul, Korea), and anti-mouse IgG (AbFrontier) antibodies,
and enhanced chemiluminescence (GE Healthcare, Little Chalfont, UK).

4.4. Oil Red O Staining and AdipoRed Assay

Oil Red O staining and AdipoRed assays were performed as previously described,
with some modifications [13]. The cells were fixed with 4% paraformaldehyde (Biosesang,
Seongnam, Korea) for 20 min at room temperature (RT) and washed three times with
distilled water. Subsequently, 100% propylene glycol (Junsei Chemical, Tokyo, Japan) was
added and left to stand for 2 min at RT. After complete removal of propylene glycol, the
cells were stained with 0.3% Oil Red O (Sigma) solution for 1 h at room temperature. After
the removal of the Oil Red O solution, 85% propylene glycol was applied for 2 min and
washed twice with distilled water. To quantify the lipid droplets, the stained cells were
eluted with 100% isopropanol (Millipore, Billerica, MA, USA), and the absorbance of the
extracts was measured at 492 nm.

For the AdipoRed assay, the cells were grown in a 48-well plate in triplicate for each
cycle. The cells were stained with AdipoRed (Lonza) according to the manufacturer’s
instructions. After 10 min, the stained cells were placed in a fluorimeter (Varioskan Flash,
Thermo Fisher Scientific) and the fluorescence was measured at excitation and emission
wavelengths of 485 and 572 nm, respectively.

4.5. Confocal Immunocytochemistry

The differentiated cells, grown in the Nunc™ Lab-Tek™ II Chamber Slide™ system
(Thermo Fisher Scientific), were fixed with 4% paraformaldehyde (Biosesang) for 30 min
at room temperature and then washed twice with phosphate-buffered saline. The cells
were stained by incubation with LipidTOX (Invitrogen) for 30 min at room temperature
and mounted with gel/mount containing DAPI (Molecular Probes, Eugene, OR, USA).
Fluorescence images were obtained using a Zeiss LSM 700 confocal microscope (Carl Zeiss,
Oberkochen, Germany).

4.6. Statistical Analysis

The results of multiple experiments are presented as the mean ± standard error of
the mean, and p < 0.05 was considered significant. All experiments were repeated at least
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three times. The results of the cell culture experiments were compared using Student’s
t-test using GraphPad Prism 8 (GraphPad Software, Inc., La Jolla, CA, USA).
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