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Abstract

Mitochondrial dysfunction is a central mediator of disease progression in diverse neurodegenerative diseases that often
present with prominent gastrointestinal abnormalities. Gastrointestinal dysfunction in these disorders is related, at least in
part, to defects in the enteric nervous system (ENS). The role of mitochondrial deficits in ENS neurodegeneration and their
relative contribution to gastrointestinal dysfunction, however, are unclear. To better understand how mitochondrial
abnormalities in the ENS influence enteric neurodegeneration and affect intestinal function, we generated mice (Tfam-
ENSKOs) with impaired mitochondrial metabolism in enteric neurons and glia through the targeted deletion of the
mitochondrial transcription factor A gene (Tfam). Tfam-ENSKO mice were initially viable but, at an early age, they developed
severe gastrointestinal motility problems characterized by intestinal pseudo-obstruction resulting in premature death. This
gastrointestinal dysfunction was caused by extensive, progressive neurodegeneration of the ENS involving both neurons
and glia. Interestingly, mitochondrial defects differentially affected specific subpopulations of enteric neurons and regions
of the gastrointestinal tract. Mitochondrial deficiency-related neuronal and glial loss was most prominent in the proximal
small intestine, but the first affected neurons, nitrergic inhibitory neurons, had the greatest losses in the distal small
intestine. This regional and subtype-specific variability in susceptibility to mitochondrial defects resulted in an imbalance of
inhibitory and excitatory neurons that likely accounts for the observed phenotype in Tfam-ENSKO mice. Mitochondrial
dysfunction, therefore, is likely to be an important driving force of neurodegeneration in the ENS and contribute to
gastrointestinal symptoms in people with neurodegenerative disorders.
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Introduction

Gastrointestinal dysfunction is a prevalent symptom in neuro-

logic and systemic diseases associated with neurodegeneration.

Constipation, for example, is the most widely recognized non-

motor symptom in people with Parkinson’s disease (PD), the

second most common neurodegenerative disorder in industrialized

countries [1,2]. Decreased frequency of bowel movements is in fact

one of the earliest signs of PD, predating the development of the

classic motor symptoms, sometimes by many years [3–5]. In

addition, impaired gastric emptying is estimated to affect the

majority of patients with PD and complicates treatment by

interfering with levodopa absorption, which can only be absorbed

once it reaches the small intestine (SI) [1,6,7]. Similarly, up to 75%

people with diabetes mellitus, a systemic metabolic disease

associated with progressive neuronal damage [8], experience a

variety of gastrointestinal symptoms ranging from diarrhea to

severe gastroparesis and constipation [9]. Gastrointestinal dys-

function in these neurodegenerative disorders is related, at least in

part, to abnormalities and cell loss in the enteric nervous system

(ENS) [9–11], the complex network of neurons and glia that

innervates the gut and controls intestinal function. A better

understanding of the pathophysiology of neurodegeneration within

the ENS could therefore be relevant to the treatment of patients

with diseases characterized by neuron loss with prominent

gastrointestinal symptoms.

Mitochondria are now thought to be critical mediators of

disease progression in diverse disorders such as PD and diabetes.

Studies primarily focusing on the central nervous system (CNS)

have established that mitochondrial dysfunction is involved in both

the initiation and propagation of disease processes that eventually

result in neuron death [12,13]. A growing body of evidence

indicates that mitochondrial defects may similarly contribute to

neurodegeneration in the ENS. Consistent with this notion, rodent

models of PD induced by mitochondrial toxins are characterized

by ENS pathology and cell loss, even at doses below those

necessary to cause CNS pathology [14–17]. Indeed, the ENS

appears to be particularly susceptible to mitochondrial dysfunction
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compared to other tissues. This is best exemplified by the fact that

primary inherited mitochondrial disorders, a heterogeneous group

of complex multisystem diseases, commonly include gastrointes-

tinal symptoms. As is the case in PD, symptoms of gastrointestinal

dysfunction can precede other presentations of mitochondrial

deficits and, in some cases (e.g. mitochondrial neurogastrointest-

inal encephalomyopathy, or MNGIE) may be the most prominent

manifestation of the disease [18]. The role of mitochondrial

abnormalities in ENS neurodegeneration and its relative contri-

bution to gastrointestinal dysfunction, however, remain poorly

understood.

With the goal of elucidating how mitochondrial abnormalities in

the ENS contribute to enteric neurodegeneration and affect

gastrointestinal function, we generated mice with impaired

mitochondrial metabolism in neurons and glia of the ENS. These

Tfam-ENSKO mice were generated by tissue-specific deletion of

the gene encoding mitochondrial transcription factor A (Tfam),

which is required for mitochondrial DNA (mtDNA) transcription

and replication [19]. We show that normal mitochondrial function

in the ENS is essential for the survival of both enteric neurons and

glia as well as for maintenance of normal gastrointestinal motility.

Interestingly, we found that mitochondrial dysfunction differen-

tially affected specific subpopulations of enteric neurons and, most

surprisingly, specific regions of the gastrointestinal tract. Mito-

chondrial deficiency-related neuronal and glial loss was most

prominent in the proximal SI, but nitrergic, inhibitory neurons

were less severely affected in this region and, instead, were most

affected in the distal SI. This regional and subtype variability of

enteric neurons appears to directly correlate to the phenotype

observed in Tfam-ENSKO mice, with dilation in the proximal SI

and relative constriction in the distal SI. Mitochondrial dysfunc-

tion in the ENS and the regional- and subtype-specific

vulnerabilities of enteric neurons are likely contributors to the

gastrointestinal symptoms of patients suffering from some

neurodegenerative disorders.

Results

Cre-mediated deletion of Tfam results in mitochondrial
abnormalities in the ENS

To study how mitochondrial dysfunction in the ENS affects

gastrointestinal function and contributes to enteric neurodegener-

ation, we generated mice with disrupted mitochondrial metabo-

lism in both enteric neurons and glia (Tfam-ENSKOs). For this

purpose we used a previously developed mouse with loxP-flanked

Tfam alleles (TfamloxP) [19]. Tfam is a mitochondrial protein

encoded by nuclear DNA that is essential for mtDNA mainte-

nance, copy number regulation and transcription [19,20].

Previous studies have shown that cre-mediated deletion of Tfam

in TfamloxP homozygous mice results in severe tissue-specific

mtDNA depletion and mitochondrial respiratory chain deficiency

[19,21–25]. The tissue-specific deletion of Tfam is, therefore, an

effective way to induce mitochondrial dysfunction in a selected

population of cells.

We mated TfamloxP mice to mice expressing cre-recombinase

under the control of the Cnp promoter (CNP-Cre) [26]. Cnp

encodes the enzyme 29, 39-cyclic nucleotide 39-phosphodiesterase

(CNP), a commonly used marker for myelin-forming glia.

However, we inadvertently discovered that the Cnp promoter also

drives the expression of cre-recombinase in the ENS and thereby

induces recombination in the majority of enteric neurons and glia.

Consistent with this fortuitous observation, CNP has been

reported to be highly expressed in gut neural crest stem cells

[27]. Indeed, when we crossed CNP-Cre mice with Cre-inducible

Rosa26-YFP reporter animals, YFP fluorescence was visible in

over 90% of enteric neurons and glia throughout the gut (Fig. 1a

and b).

Crossing of Tfam-ENSKO mice to Cre-inducible Rosa26-YFP

reporter animals (YFP/Tfam-ENSKOs) showed that Tfam was

efficiently excised in all enteric neurons and glia in which we

observed Cnp-mediated expression of cre-recombinase (as visual-

ized by YFP fluorescence). When we isolated YFP-positive enteric

neurons and glia from 7 week old YFP/Tfam-ENSKO mice, we

could not detect the Tfam allele by RT-PCR analysis (Fig. 1c).

Given the extent and high efficiency of the Cnp promoter-driven

expression of cre-recombinase, we conclude that the mating of

TfamloxP to CNP-Cre mice resulted in animals that lacked Tfam in

the majority of enteric neurons and glia.

To determine the functional effect of deleting Tfam in the ENS,

we next assessed mtDNA copy number in YFP-positive enteric

neurons and glia from 7 week old YFP/Tfam-ENSKO and YFP/

control mice. Tfam has an essential role in the maintenance and

replication of mtDNA [19,20] and previous reports have described

severe mtDNA depletion following tissue-specific excision of Tfam

from a cell of interest [19,21–25]. Consistent with this, we found

an 80% reduction in total mtDNA content in enteric neurons and

glia isolated from different regions throughout the gut of YFP/

Tfam-ENSKO mice (Fig. 1d).

In previous studies using TfamloxP mice, the depletion of mtDNA

following Tfam excision has been shown to induce severe

respiratory chain deficiency, since the mitochondrial genome

encodes 13 subunits that are essential components of the electron

transport chain. In addition, Tfam deficiency-induced mitochon-

drial dysfunction is accompanied by abnormalities in mitochon-

drial morphology [19,21–25,28]. Therefore, to further confirm the

enteric neuron- and glia-specific disruption of mitochondria in

Tfam-ENSKO mice we examined the enteric nervous system by

electron microscopy. Abundant abnormal and enlarged mito-

chondria with distorted cristae were found specifically within

enteric neurons and glia of Tfam-ENSKOs but not of control

littermates (Fig. 1e). Together, our results confirm that by deleting

Tfam in enteric neurons and glia we were able to generate mice

with disrupted mitochondria in the ENS.

Tfam-ENSKOs develop progressive gastrointestinal
dysfunction characterized by intestinal pseudo-
obstruction

Tfam-ENSKO mice were viable and born at the expected

Mendelian ratios and, for the first 2 weeks of life, they were

indistinguishable from their control littermates. After 2 weeks of

age, however, Tfam-ENSKO mice displayed signs of poor growth

and, by 4 weeks of age, they were significantly smaller than their

control littermates (Fig. 2a). In addition, Tfam-ENSKO mice

developed abdominal distention at about 6-8 weeks of age, which,

together with poor growth, suggests gastrointestinal dysfunction.

After 8 weeks of age, the health of Tfam-ENSKO mice

deteriorated rapidly and the majority of the animals died by 12

weeks of age (Fig. 2b).

Dissection of late stage (i.e. 10–12 weeks old) Tfam-ENSKO

mice consistently revealed massive dilation within the proximal

small bowel along with relative contraction of the distal small

bowel (Fig. 2c). The region of transition from dilated proximal

small bowel to the narrower distal small bowel was consistently

located within the mid-small bowel, with variable accumulation

of luminal contents in the proximal small bowel and stomach.

No stenosis or mechanical cause of the obstruction could be

found and the mice did not have malrotation or other anatomic

explanations for the obstruction. Proximal to the transition

Mitochondria-Induced Enteric Neurodegeneration
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zone, in the region of dilation, the bowel was filled with dark-

colored luminal contents and the bowel wall appeared to be

stretched thinner than in controls (Fig. 2c). Luminal contents

were absent distally and no stool pellets could be found in the

colon or rectum. The distal small intestine and colon in Tfam-

ENSKOs generally appeared to have a smaller diameter than in

control mice. Therefore, we conclude that disrupted mitochon-

drial metabolism in enteric neurons and glia in Tfam-ENSKO

mice results in significant gastrointestinal dysfunction and

dysmotility.

Figure 1. CNP-Cre excises Tfam in enteric neurons and glia and disrupts ENS mitochondria in Tfam-ENSKO mice. a) YFP fluorescence
in 2-day-old Rosa26-YFP/CNP-Cre mice overlaps (merge) with enteric neurons (HuC/HuD+ cells, Hu, red) and glia (Sox-10+ cells, Sox, blue). Excision-
dependent YFP fluorescence is visible in the majority of enteric neurons and glia in all gut regions. Asterisks indicate the occasional non-recombined,
non-YFP+ cell. Scale bars: 30 mm. b) Quantification of the percent of YFP+ neurons (% of HuC/HuD+ and YFP+ cells/total HuC/HuD+ cells) and glia (% of
Sox-10+ and YFP+ cells/total Sox-10+ cells) in different gut regions confirms high efficiency of CNP-Cre mediated recombination in the ENS. n = 3 mice
per genotype. c) RT-PCR of Tfam transcript demonstrates the complete excision of Tfam in YFP+ FACS selected myenteric neurons and glia in YFP/
Tfam-ENSKO mice at 7 weeks of age. n = 3 mice per genotype. d) qRT-PCR results show depletion of mtDNA content in YFP+ FACS-selected myenteric
neurons and glia in 7 week old YFP/Tfam-ENSKO mice. mtDNA content was significantly reduced in YFP/Tfam-ENSKO mice in all regions examined at
this age (*, p,0.01). Reported values are normalized to nuclear DNA content and ratio of mtDNA to nuclear DNA in control animals was set at 100;
n = 3 mice per genotype. e) Electron micrographs of myenteric plexus mitochondria (arrowheads) in 7 week old control and Tfam-ENSKO mice. Tfam-
ENSKO myenteric neurons and glia contain abundant abnormal, enlarged mitochondria with dilated and distorted cristae. Scale bars, 500 nm.
doi:10.1371/journal.pone.0027727.g001
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Tfam-ENSKO mice develop progressive neuronal
degeneration with distinct regional vulnerabilities

To test the hypothesis that ENS defects underlie the bowel

abnormalities and early death observed in Tfam-ENSKO mice,

we used whole mount immunohistochemical methods to evaluate

ENS structure. We initially examined total myenteric neuron

density using immunohistochemistry for HuC/HuD, a widely used

pan-neuronal marker that labels the cell body of all neurons within

the myenteric plexus [29]. Two week old Tfam-ENSKO mice had

a lower mean neuron density in all regions examined compared to

control animals, but these differences were not statistically

significant (p.0.1 in all cases, Fig. 3b and Table 1). This suggests

that the ENS develops normally in these animals and is consistent

with the healthy appearance of Tfam-ENSKOs at this age.

We next examined the myenteric plexus of 7 week old Tfam-

ENSKO and control mice. At this age, Tfam-ENSKO mice begin

to show subtle phenotypic abnormalities (i.e. poor growth) but

appear healthy, do not display signs of gastrointestinal obstruction,

and lack intestinal dilation (Fig. 2a and b). Despite their healthy

appearance, at 7 weeks of age Tfam-ENSKO mice had a 68%

decrease in myenteric neuron density in the proximal SI, and a

41% decrease in the distal SI (Fig. 3a and b and Table 1).

Surprisingly, even though the extent of Tfam excision appeared

equal in all regions analyzed at 7 weeks of age (Fig. 1), we found no

difference in colon total neuron density between Tfam-ENSKOs

and control littermates at this age (Fig. 3a and b and Table 1). In

fact, enteric neuron density in the colon of Tfam-ENSKOs

remained normal even at late pathological stages (e.g. 10-12 weeks

old), when enteric neurodegeneration in more proximal regions

was profound (data not shown). Thus, mitochondrial dysfunction

in the ENS results in progressive neurodegeneration with marked

differences in regional vulnerability to neuronal loss.

Glial degeneration parallels that of neurons in Tfam-
ENSKOs

A growing body of literature now implicates glial dysfunction in

many neurodegenerative diseases traditionally thought to be

neuron autonomous. In animal models of amyotrophic lateral

sclerosis, PD, and Huntington’s disease among others, glia-specific

abnormalities alter disease onset and progression (for a review see

Figure 2. Tfam-ENSKOs develop progressive GI dysfunction characterized by intestinal pseudo-obstruction. a) Growth curve of Tfam-
ENSKO mice and control littermates. Tfam-ENSKOs are initially indistinguishable from control mice, but begin to exhibit poor growth at 4 weeks of
age (n$10 mice per genotype at each time point). b) Survival curve of Tfam-ENSKO mice and control littermates. Tfam-ENSKO mice die prematurely
beginning at 60 days old. By 90 days, nearly all Tfam-ENSKO mice are dead. n = 47 mice. c) Photograph of gastrointestinal tract of 11-12 week old
control and Tfam-ENSKO mice depicts their typical appearance. Arrowheads indicate regions of dilation and accumulation of luminal contents. St:
stomach, SI: small intestine, Co: colon.
doi:10.1371/journal.pone.0027727.g002
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[30]). To address the role of enteric glia in the mitochondria-

related gastrointestinal dysfunction of Tfam-ENSKO mice, we

assessed the effect of Tfam-depletion on enteric glia using Sox-10

immunohistochemistry. We first examined glial density in the

myenteric plexus of 2 week old mice and observed very little

difference between Tfam-ENSKOs and littermate controls except

in the distal SI (Fig. 3c and Table 1). By 7 weeks of age, however,

Tfam-ENSKO mice had significantly reduced glial cell density in

both the proximal and distal SI (Fig. 3a and 3c and Table 1).

However, as is the case for HuC/HuD+ neurons, the glial cell

density in the colon of Tfam-ENSKO mice remained normal at 7

weeks of age (Fig. 3a and 3c and Table 1).

The changes in glial cell density in Tfam-ENSKO mice,

therefore, seemed to parallel that of neurons, involving the same

Figure 3. Tfam-ENSKO mice display progressive degeneration of neurons and glia with distinct regional vulnerabilities.
a) Representative images of HuC/HuD (neurons, red) and Sox-10 (glia, green) immunohistochemistry in three regions of myenteric plexus of 7 week
old control and Tfam-ENSKO mice. Loss of both HuC/HuD+ neurons and Sox-10+ glia is apparent in Tfam-ENSKOs at this age. Scale bars, 100 mm.
b) Quantification of total myenteric neuron density in Tfam-ENSKOs expressed relative to control littermates at 2 and 7 weeks of age. For 2 weeks old,
n = 6 (Ctrl) and n = 4 (Tfam-ENSKO). For 7 weeks old, n = 3 for each genotype. c) Quantification of glial density in Tfam-ENSKOs expressed relative to
control littermates at 2 and 7 weeks of age. For 2 weeks old, n = 6 (Ctrl) and n = 4 (Tfam-ENSKO). For 7 weeks old, n = 3 for each genotype. d) Neuron-
to-glia ratio in ENS of Tfam-ENSKOs and control littermates at 2 and 7 weeks of age demonstrates that relative cell loss is equivalent for both neurons
and glia. For 2 weeks old, n = 6 (Ctrl) and n = 4 (Tfam-ENSKO). For 7 weeks old, n = 3 for each genotype. PSI: proximal small intestine, DSI: distal small
intestine, Co: colon.
doi:10.1371/journal.pone.0027727.g003
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regions and a similar proportion of cells. We examined this in more

detail by comparing the ratio of neurons to glia in control and

Tfam-ENSKO mice. As expected from the absence of either neuron

or glial cell loss in 2 week old Tfam-ENSKOs, we found no

difference in the neuron to glia ratio in any of the regions examined

compared to control animals (Fig. 3d and Table 1). Interestingly,

despite extensive neuron and glia loss in 7 week old Tfam-ENSKOs,

the ratio of neurons to glia in all regions examined remained

comparable to that of control littermates (Fig. 3d and Table 1).

These results suggest that enteric neurons and glia are equally

susceptible to mitochondrial defects in Tfam-ENSKO mice.

Early and differential loss of nitrergic inhibitory neurons
in Tfam-ENSKO mice

Intestinal motility and peristalsis depend on the balance

between ENS excitatory and inhibitory inputs which together

produce the rhythmic coordination of contraction and relaxation

necessary to propel luminal contents [31]. The apparent

constriction observed in the distal bowel of Tfam-ENSKO mice,

as well as the dilation proximal to this point (Fig. 2c), suggested the

possibility of an imbalance between these inputs. To address how

enteric neuron loss in Tfam-ENSKO mice affects the balance

between inhibitory and excitatory inputs, we examined the

number and proportion of nitric oxide (NO)-producing inhibitory

neurons in the myenteric plexus by NADPH diaphorase

(NADPH-d) staining [32]. The proportion of NADPH-d+ neurons

in different gut regions is normally within a narrow range that

maintains the balance between ENS excitatory and inhibitory

inputs and allows for normal intestinal motility. As early as 2 weeks

of age, the NADPH-d+ neuron density in the proximal and distal

SI in Tfam-ENSKO mice was significantly lower than in controls

(Fig. 4b and Table 1). These data suggest early preferential loss of

nitrergic inhibitory neurons relative to other neuronal subtypes.

As the pathologic changes in the ENS of Tfam-ENSKO mice

progressed, the loss of NADPH-d+ neurons became more

pronounced and, moreover, by 7 weeks of age the percentage of

NADPH-d+ neurons varied quite dramatically between different

regions of the gut. NADPH-d+ neuron loss was greatest in the

distal SI with a 60% decrease, but significant decreases were also

found in the proximal SI and colon (33% and 25%, respectively;

Fig. 4a and b and Table 1). Interestingly, the observed loss of

nitrergic neurons did not parallel the loss of total neurons in each

region (Fig. 3a and b), causing significant differences in the relative

proportion of NADPH-d+ neurons to total neurons (i.e. changes in

inhibitory input) throughout the bowel (Fig. 4c and Table 1). In 7

week old Tfam-ENSKOs, NADPH-d+ neurons accounted for

75% of total neurons in the proximal SI compared to 36% in

controls (Fig. 4c and Table 1). In contrast, in the distal SI, the

proportion of NADPH-d+ inhibitory neurons was lower than in

control animals, (19% in Tfam-ENSKOs, 28% in controls; Fig. 4c

and Table 1). In the colon, there was no significant difference in

the ratio of nitrergic to total neurons between control and Tfam-

ENSKO mice (Fig. 4c and Table 1). This concurrent increase in

relative abundance of inhibitory inputs in the proximal SI along

with the decrease in the ratio of NADPH-d+ to total neurons in the

distal SI of Tfam-ENSKOs may thus account for the proximal

dilation and distal constriction observed in the late pathology of

these mice (Fig. 4d).

Axonal degeneration is a key feature of enteric neuron
loss in Tfam-ENSKOs and may precede cell body loss

During our examination of NADPH-d+ neurons, we observed

extensive and prominent blebbing in neuronal projections in the
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Figure 4. Early and differential loss of nitrergic inhibitory neurons in Tfam-ENSKO mice. a) Representative images of NADPH-d stained
myenteric plexus show inhibitory neurons in the proximal SI and distal SI in 7 week old Tfam-ENSKO mice. Scale bar, 150 mm. b) Quantitative analysis
of NADPH-d+ neuron density in Tfam-ENSKOs relative to control littermates at 2 and 7 weeks of age. n = 3 for each genotype at each age. c) Ratio of
nitrergic neurons to total neurons in 7 week old Tfam-ENSKO and control mice. n = 3 for each genotype. PSI: proximal small intestine, DSI: distal small
intestine, Co: colon. d) Diagram depicting how the imbalance of inhibitory neurons to excitatory neurons in each region in Tfam-ENSKOs could
produce the observed proximal SI dilation and distal SI constriction. In Tfam-ENSKO mice, greater total neuron loss (Tfam-ENSKO top panel) relative to
NADPH-d+ neuron loss (Tfam- ENSKO middle panel) would result in increased inhibitory input and dilation of the proximal SI (Tfam-ENSKO bottom
panel). Greater NADPH-d+ neuron loss (Tfam-ENSKO middle panel) relative to total neuron loss (Tfam-ENSKO top panel) would result in decreased
inhibitory input and constriction (and pseudoobstruction) of the distal SI of Tfam-ENSKO mice (bottom panel). Color intensity represents neuronal
density with WT density set as the most intense color in all regions of the bowel.
doi:10.1371/journal.pone.0027727.g004
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myenteric plexus of Tfam-ENSKO mice (Fig. 5a). In the CNS and

PNS, axon blebbing has been recognized as a sign of axonal

degeneration, a central component of many neurodegenerative

diseases, which can precede and sometimes cause neuronal death

[33]. To assess the role of axon degeneration in the neuron loss

observed in Tfam-ENSKOs we first examined the neuronal

projections, or neurites, extending into the villi in the proximal

and distal SI. As early as two weeks of age, Tfam-ENSKO mice

displayed signs of neurite loss within intestinal villi, although at this

age neurite degeneration was limited to the proximal SI (Fig. 5c

and Table 2). Neurite loss worsened over time, and by 7 weeks of

age the number of neurites in the villi of Tfam-ENSKO mice was

significantly reduced in both the proximal and distal SI (Fig. 5b

and c and Table 2) suggesting that loss of neuronal projections

could contribute to subsequent neuron loss.

Because we are unable to easily identify the cell of origin for

neurites in the villi, we also quantified neuronal fiber density for

NADPH-d+ fibers in the myenteric plexus of 7 week old mice. We

found no difference in the density of large fiber bundles (i.e.,

primary fibers; [34]) in any region examined between Tfam-

ENSKOs and controls (Table 3). In contrast, small fiber density

(i.e., secondary and tertiary fibers; [34]) was significantly lower

(44%) in the proximal SI of Tfam-ENSKOs mice, but was similar

to controls in the distal SI and colon (Table 3). Note, however, that

what we count as ‘‘small fibers’’ or ‘‘large fiber bundles’’ are

actually one or more tightly fasciculated neurites. In Tfam-

Figure 5. Axonal degeneration is present in Tfam-ENSKO mice and may precede enteric neuron loss. a) Tfam-ENSKO mice show
noticeable neurite blebbing (arrowheads) in the proximal and distal SI at 7 weeks of age. Scale bars, 25 mm. b, c) Representative images (b) and
quantification (c) of TuJ1+ neurites extending into SI villi of 7 week old control and Tfam-ENSKO mice. n = 3 for each genotype. Scale bars, 40 mm.
d, e) Representative images (d) and quantification (e) of axonal fragmentation (TuJ1, green) and cell body loss (ethidium homodimer, staining not
shown) in cultured enteric neurons after treatment with the mitochondrial inhibitors rotenone or antimycin. Images correspond to untreated or
rotenone-treated enteric neurons. n = duplicate wells for each condition from 3 independent assays. Scale bars, 100 mm.
doi:10.1371/journal.pone.0027727.g005
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ENSKO mice both ‘‘small fibers’’ and ‘‘large fiber bundles’’

appear significantly thinner than in control animals at 7 weeks of

age (Fig. 4a and 5a), suggesting that our counting method for

NADPH-d+ neuronal projections significantly underestimates

neurite loss in the mutant mice. Because of these limitations, we

devised an alternate method to evaluate the effect of mitochondrial

dysfunction on enteric neuron and neurite degeneration in vitro.

E12.5 enteric neurons were cultured from control mouse gut

and exposed to different inhibitors of the mitochondrial electron

transport chain (e.g. rotenone and antimycin). Disrupting

mitochondrial respiration induced significant neurite degeneration

within 24 hours, yet did not initially affect neuron viability as

measured by ethidium homodimer staining (Fig. 5d and e and

Table 4). Moreover, even though extended exposure to mito-

chondrial inhibitors eventually induced enteric neuron death, the

proportion of cells showing axonal degeneration remained larger

at every time point examined (Table 4). Together, these results

suggest that axonal degeneration precedes enteric neuron cell

body loss induced by mitochondrial defects.

Discussion

The current understanding of how mitochondrial deficits affect

enteric neurons and contribute to ENS neurodegeneration and

gastrointestinal dysfunction has been hindered by a lack of animal

models. Here we describe a new mouse model with disrupted

mitochondrial function in enteric neurons and glia. We show that

abnormal mitochondrial metabolism in the ENS causes wide-

spread enteric neurodegeneration and results in severe intestinal

pseudo-obstruction, the likely cause of premature death in Tfam-

ENSKO mice. Remarkably, mitochondrial dysfunction differen-

tially affected specific subpopulations of enteric neurons and

regions of the gastrointestinal tract. This regional and subtype-

specific variability resulted in an imbalance of inhibitory and

excitatory enteric neurons that likely accounts for the observed

phenotype in Tfam-ENSKO mice. Our observations support the

hypothesis that damage to the ENS resulting from defects in

mitochondrial function may underlie some of the pathophysiology

involved in gastrointestinal abnormalities in many human

neurodegenerative diseases.

Mitochondria are thought to be critical mediators of neuron loss

in diverse neurodegenerative disorders such as PD or diabetes. We

show that mitochondrial defects in the ENS cause both neuron

and glia cell loss as well as severe intestinal dysmotility. Strikingly,

not all regions of the gut were equally affected. The proximal SI

suffered the most extensive neuron and glial loss whereas the colon

was largely spared (Fig. 3). Furthermore, we observed differential

vulnerability among distinct subtypes of enteric neurons. Nitrergic

neurons, which are predominantly inhibitory in nature, were lost

earliest in the progression of the disease in Tfam-ENSKOs (Fig. 4).

These findings cannot be explained by variations in the efficiency

of Tfam excision or in the resulting effect on mitochondria. Cnp-

mediated expression of cre-recombinase (as visualized by YFP

fluorescence) and mtDNA depletion were comparable throughout

the bowel of Tfam-ENSKO mice (Fig. 1). The observed variability

in sensitivity to mitochondrial defects suggests, therefore, that

there are regional and cell type specific differences in metabolic

needs for individual enteric neuron populations.

In the CNS, regional- and subtype-specific differences in the

vulnerability of neurons to mitochondrial dysfunction are well

established; such differences are thought to underlie the preferen-

tial loss of striatal neurons in PD or Huntington’s disease [35].

Early preferential loss of nitrergic neurons has also been reported

in a streptozotocin-induced rat model of diabetic autonomic

neuropathy [36]. Similar differences in vulnerability to metabolic

insults among enteric neurons had been suggested by an earlier

study using a rotenone-induced rat model of PD [16]. The enteric

nervous system abnormalities observed in Tfam-ENSKO mice

suggest that regional- and subtype-specific differences in the

susceptibility of neurons to mitochondrial defects are also present

in the ENS and may explain the gastrointestinal presentations of

neurodegenerative diseases.

While the mitochondrial dysfunction in Tfam-ENSKO mice is

caused by the loss of Tfam, the way in which these mice

recapitulate gastrointestinal pathological features often seen in

neurodegenerative disorders indicates that there may be broader

implications of this work for understanding the bowel dysfunction

that accompanies both rare and common human disease. For

example, Tfam-ENSKO mice consistently developed intestinal

pseudo-obstruction with dilated proximal small bowel and

contracted distal bowel reminiscent of that seen in the human

mitochondrial disease MNGIE. Our results indicate that this

Table 2. Villus Neurite Density.

Neurites/villus

Region Age (weeks) Ctrl Tfam-ENSKO % of Ctrl p value

PSI 2 4.2560.18 2.7260.09 64% 0.002

DSI 2 3.6360.25 3.1860.2 0.235

PSI 7 1061.3 2.660.23 26% 0.006

DSI 7 1261.6 4.160.35 34% 0.011

Density of neuronal projections in intestinal villi in 2 and 7 week old Tfam-
ENSKO and control mice. n = 3 for each genotype and age. PSI: proximal small
intestine, DSI: distal small intestine, Co: colon.
doi:10.1371/journal.pone.0027727.t002

Table 3. Nitrergic Fiber Density.

NADPH-d+ Bundles/mm2 NADPH-d+ Fibers/mm2 NADPH-d+ Fibers/neuron

Region
Age
(weeks) Ctrl

Tfam-
ENSKO

% of
Ctrl

p
value Ctrl

Tfam-
ENSKO

% of
Ctrl

p
value Ctrl

Tfam-
ENSKO

% of
Ctrl

p
value

PSI 7 1960.5 1462 0.073 312618 174632 56% 0.020 3.960.6 3.160.5 0.208

DSI 7 2263 1960.5 0.700 298625 23366 0.100 3.461.4 6.864.8 0.098

Co 7 2561 2561 0.844 583656 52765 0.378 4.060.7 4.860.2 0.099

Myenteric NADPH-d+ fiber density and number of NADPH-d+ fibers per neuron in 7 week old Tfam-ENSKO and control mice. n = 3 for each genotype. PSI: proximal small
intestine, DSI: distal small intestine, Co: colon.
doi:10.1371/journal.pone.0027727.t003
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pseudo-obstruction could occur because of an imbalance in the

ratio of inhibitory to excitatory inputs in the ENS. In Tfam-

ENSKOs such an imbalance arises from a relative preservation of

nitrergic inhibitory neurons in the proximal SI and preferential

loss of these same neurons in the distal SI of these mice. This is of

particular interest, because the severe intestinal pseudo-obstruc-

tion resulting in cachexia and death in MNGIE patients has

traditionally been attributed to smooth muscle abnormalities, even

though mtDNA depletion is also found within enteric neurons in

the SI of MNGIE patients [37]. Our results demonstrating that

mitochondrial dysfunction in enteric neurons and glia alone is

capable of producing very similar pathology, however, suggest that

the ENS may play a more prominent role in this mitochondrial

disease than previously thought.

While MNGIE is a rare disease, mitochondrial dysfunction is

thought to be a common underlying mechanism in both normal

human aging [38] as well as in many common diseases such as

type 2 diabetes [39]. Defects in gastrointestinal motility frequently

cause serious problems in the elderly and in patients with diabetes

[9,40]. These motility defects, similar to what we observed in

Tfam-ENSKO mice, have been attributed to enteric neurodegen-

eration [9,40]. Moreover, enteric neurodegeneration in models of

aging, PD and diabetes have been associated with imbalances in

inhibitory and excitatory neurons [40]. As such, understanding the

ENS abnormalities in Tfam-ENSKO mice could provide valuable

insight into the pathophysiology responsible for gastrointestinal

motility disorders involved in numerous disease processes and

affecting a large number of people.

In summary, Tfam-ENSKO mice are the first genetic model of

enteric nervous system-specific mitochondrial dysfunction and

interestingly recapitulate a number of pathological features often

seen in human neurodegenerative diseases with prominent

gastrointestinal presentations, such as MNGIE, PD or diabetes

mellitus. Enteric mitochondrial dysfunction in these diseases is

therefore likely to contribute to their gastrointestinal pathology.

Moreover, Tfam-ENSKOs revealed a remarkable region- and

subtype-specific differential vulnerability of enteric neurons to

defects in mitochondrial metabolism. Appropriate management of

gastrointestinal dysfunction in patients with neurodegenerative

diseases might thus be facilitated by devising therapeutic strategies

that improve ENS mitochondrial function and address the

differential vulnerability of specific enteric neuron populations.

Materials and Methods

Ethics
All studies were reviewed and approved by the Washington

University Animal Studies Committee, protocol approval #
20110071 (J.M.) and # 20090190 (ROH).

Matings of transgenic animals
TfamloxP/loxP mice [19] and CNP-Cre mice [26] in pure C57Bl/

6 backgrounds were crossed to generate Tfam-ENSKO mice

(CNP-Cre+/-, TfamloxP/loxP) and their control littermates (CNP-Cre-/-,

TfamloxP/loxP or CNP-Cre-/-, Tfam+/loxP). For experiments involving

YFP fluorescence-based FACS sorting or imaging of enteric

neurons and glia, Tfam-ENSKO mice were crossed to Rosa26-

YFP reporter mice [41] to generate YFP/Tfam-ENSKO mice

(Rosa26-YFP+/-, CNP-Cre+/-, TfamloxP/loxP). Mice with transgenic

Rosa26-YFP and CNP-Cre alleles, but with wild type Tfam alleles

(YFP/control: Rosa26-YFP+/-, CNP-Cre+/-, Tfam+/+), were used as

controls in these experiments. TfamloxP/loxP, CNP-Cre and

Rosa26-YFP genotyping were carried out as previously described

[19,26,41].

Quantitative ENS analysis
Mice were euthanized by carbon dioxide asphyxiation followed

by cervical dislocation. The gastrointestinal tract was removed and

enteric whole-mount samples were prepared. Intestines were

flushed with ice cold PBS, then opened by cutting along the

mesenteric border, flattened and pinned mucosal side down, and

fixed using 4% paraformaldehyde for 30 minutes. After fixation,

samples were washed with ice cold PBS before isolating the

myenteric plexus by peeling off the muscle layers of the intestine. A

6 cm-long intestinal sample was isolated from the proximal SI

(measured from the pylorus), distal SI (measured from the ileocecal

junction), and distal colon (measured from the anus). In the 2-

week-old mice, 3–4 cm long samples were obtained from the same

regions as described above. Samples were then cut into 1 to 2 cm

segments before storing in 50% glycerol/PBS at 220uC until

staining and analysis.

In the 7-week-old mice, sequential 1 cm-long samples of

myenteric plexus were stained with NADPH-d [42], biotinylated-

HuC/HuD (1:250; Invitrogen A21272) and Sox-10 (1:250; Santa

Cruz). In the 2-week-old mice, sequential 1-1.5 cm long samples of

myenteric plexus were stained with NADPH-d or biotinylated-

HuC/HuD and Sox-10, again using the order described above.

For the biotinylated-HuC/HuD and Sox-10 double labeling,

samples were first labeled by HuC/HuD immunohistochemistry

(1:250; Invitrogen A21272) and then labeled by Sox-10 immuno-

histochemistry (1:250; Santa Cruz).

Quantification of neuron or glial cell density was done by

counting all cells present within the borders of a 0.560.5 mm grid

(20x objective lens). For instances in which the cellular density was

very high, counts were done using a 40x objective lens (within the

borders of a 0.2560.25 mm grid). An attempt was made to stretch

all segments evenly and equally for all samples. All analyses used

three to six animals, and counting was done without knowledge of

the mouse genotype. Twenty (20) randomly selected fields were

Table 4. In vitro Mitochondrial Inhibitor Assay Results.

Neurons with fragmented
axons (%/well) % of Control p value

Et2D+ (dead)
Neurons (%/well) % of Control p value

Time Veh Rot Antim Rot Antim Rot Antim Veh Rot Antim Rot Antim Rot Antim

24 hrs 7.361.2 26.363 1563.6 360% 205% 0.004 0.03 5.760.3 861.15 6.361.5 0.124 0.5

48 hrs 6.761.2 51.766.7 1261 772% 179% 0.003 0.01 6.760.3 3163.6 1262.6 463% 179% 0.002 0.01

72 hrs 7.761.2 83.764.7 3266.8 1087% 416% ,0.001 0.003 760.6 58.765.2 19.363.2 839% 276% ,0.001 0.003

In vitro mitochondrial inhibitor assay results from cultured E12.5 immunoselected enteric neurons. n = duplicate wells for each condition from 3 independent assays.
Veh = Vehicle; Rot = Rotenone; Antim = Antimycin
doi:10.1371/journal.pone.0027727.t004
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counted for each region and data are presented as neurons/mm2.

Averages for each animal were used to calculate the mean,

standard deviation and standard error for each genotype. Neuron-

to-glia ratio was determined by dividing the number of neurons by

the number of glia present within a single field.

Villus neurite quantification
Villus preparations were made by cutting along single rows of

intestinal villi from full-thickness, pinned samples of proximal and

distal small intestine in 70% ethanol. These were then labeled by

TuJ1 (1:10,000; Covance) immunohistochemistry. Villus neurite

quantification was determined by counting all TuJ1+ projections

that crossed a perpendicular line drawn through the middle of

each villus. Twenty (20) randomly selected villi were counted for

each region and averaged for each animal. At least 3 mice were

used to calculate the mean, standard deviation and standard error

for each genotype.

FACS isolation of enteric neurons and glia
Rosa26-YFP+ cells were sorted by flow cytometry after isolating

and digesting unfixed myenteric plexus from 7-week-old YFP/

control and YFP/Tfam-ENSKO mice. A modified version of the

protocol published by Schafer et al. [43] was used to isolate adult

mouse ENS neurons and glia. Briefly, muscle layers of the bowel

containing the myenteric plexus were isolated by dissection as

described above, but were not fixed. Samples from the proximal

SI, distal SI and colon were cut into 1 mm2 pieces in ice-cold PBS,

then treated with collagenase (1 mg/ml in DMEM; 37uC, 45 min).

After collagenase treatment, tissues were centrifuged at 4,500 rpm

for 2 min and collagenase solution was replaced with 0.25%

Trypsin in DMEM. Samples were rotated (37uC, 20–30 min) and

triturated by pipetting before centrifugation (4,500 rpm for 2 min)

to remove supernatant. Cells were diluted in 300 mL FACS buffer

(0.002% BSA, 0.001% Sodium Azide, 1 mM EDTA in PBS) and

filtered through 70 micron MACS separation filters. Cells were

then sorted for YFP expression on a MoFlo Cell Sorter (Beckman

Coulter Corp., Fullerton, CA), using 15 p.s.i. and a 120 mm

sorting nozzle. YFP fluorescence was captured with a 525/40

optical filter in the cytometer’s FL 1 channel. Samples were taken

from three mice of each genotype (YFP/Ctrl: Rosa26-YFP+/-, CNP-

Cre+/-, Tfam+/+; YFP/Tfam-ENSKO: Rosa26-YFP+/-, CNP-Cre+/-,

TfamloxP/loxP) and a non-YFP+ littermate (Rosa26-YFP-/-, CNP-

Cre+/-, Tfam+/+ or Rosa26-YFP-/-, CNP-Cre+/-, TfamloxP/loxP) was

used for standardization.

RNA and DNA preparation and quantitative real-time PCR
(qRT-PCR)

RNA and DNA were isolated from FACS sorted enteric

neurons and glia from YFP/Tfam-ENSKO mice and YFP/Ctrl

littermates. For RNA isolation, cells were lysed in Trizol reagent

(Invitrogen) and total RNA prepared according to the manufac-

turer’s protocol. For DNA isolation, cells were digested and DNA

isolated using DNeasy Blood and Tissue Kit (Qiagen) according to

the manufacturer’s protocol. DNA and RNA concentration were

quantified using an ND-1000 spectrophotometer (Nanodrop

Technologies).

For RT-PCR, cDNA was reverse transcribed from total RNA

using M-MLV reverse transcriptase (Invitrogen) and Tfam or

GAPDH mRNA were amplified using the following primers (59-

39): Tfam: F, CAGGAGGCAAAGGATGATTC; R, ATGTC-

TCCGGATCGTTTCAC; GAPDH: F, TGCCCCCATGTT-

TGTGATG; R, TGTGGTCATGAGCCCTTCC. mtDNA con-

tent was quantified by qRT-PCR using a SYBR green-based

detection system on a 7700 Sequence Detector instrument

(Applied Biosystems) as described previously [44]. Instead of

cDNA, however, 15 ng of total DNA were used per reaction.

Primers that recognize a region unique to the mitochondrial

genome were used to determine mtDNA content normalized to

nuclear DNA content, as determined by a set of primers directed

to the genomic locus of Smrt1. The primers used were as follows:

mtDNA: F, AAGTCGTAACAAGGTAAGCA; R, ATATTT-

GTGTAGGGCTAGGG. Nuc.DNA: F, GGGTATATTTTT-

GATACCTTCAATGAGTTA; R, TCTGAAACAGTAGGTA-

GAGACCAAAGC

Cell culture
Enteric neural crest cells were immunoselected from embryonic

day 12.5 (E12.5) CD1 mice small bowel and colon using p75NTR

antibody (Millipore). Bowel was dissociated with collagenase (1

mg/ml) and dispase (1 mg/ml) to yield a single cell suspension.

After p75NTR antibody incubation (Millipore, 1:1000, 1 h, 4uC) in

B27 (Invitrogen) supplemented Neurobasal medium, cells were

incubated with goat anti-rabbit coupled paramagnetic beads (1:50,

1 h, 4uC; Miltenyi Biotec, Bergisch Gladbach, Germany) before

separating neural crest-derived cells from unselected cells with a

positive selection column (MACS separation columns; Miltenyi

Biotec). Immunoselected crest-derived cells were plated at a

density of 500 cells per well on poly-d-lysine/laminin-coated 24-

well plates in B27 supplemented Neurobasal medium plus 50 ng/

ml glial cell line-derived neurotrophic factor (GDNF). In all

experiments, inhibitors were added to the medium 24 h after

plating using 2.5 mm antimycin (Complex III inhibitor) or 2.5 mm

rotenone (Complex I inhibitor). Control wells were treated with

DMSO vehicle. All experiments were performed in triplicate. All

analyses were performed blinded.

Neuronal cell body death assay and
Immunohistochemistry

Neurons were treated with inhibitors or vehicle control and

monitored for cell body damage by ethidium homodimer

exclusion (Biotium, Hayward, CA). Ethidium homodimer was

added to the cultures at a final concentration of 100 nM and after

30 minutes of incubation cells were washed with PBS and fixed

4% paraformaldehyde. After fixation, cells were washed with PBS

and blocked with 5% normal donkey serum in TBST (Tris-

buffered saline plus 0.1% Triton X-100) (1 h, 37uC). Cells were

incubated in rabbit polyclonal Tuj1 antibody (1:1000 at 4uC
overnight) and antibody binding was visualized with Alexa Fluor

488 conjugated anti-rabbit secondary antibodies (Jackson Im-

munoresearch Laboratory, 1:500, 25uC, 1 h).

Electron Microscopy
Samples for transmission electron microscopy were obtained

from 7 week old mice by intracardiac perfusion of Modified

Karnovsky’s Fixative (2.5% glutaraldehyde, 2% paraformaldehyde

in 0.1 mmol/liter cacodylate buffer), followed by isolation of

whole mount samples as described above, omitting peeling. Gut

samples were pinned in modified Karnovsky’s Fixative and post-

fixed in 2% OsO4 (in 0.1 mmol/L cacodylate buffer). Samples

were then dehydrated and embedded in PolyBed 812 (Polysciences

Inc., Warrington, PA). 100 nm sections were cut with a Diatome

diamond knife and stained with uranyl acetate in 50% methanol

and Venable’s lead citrate. Transmission EM was performed on a

JEOL JEM 1200-EX microscope with AMT Advantage HR

(Advanced Microscopy Techniques Corp., Danvers MA) high-

speed, wide-angle 1.3 megapixel TEM digital camera.
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Light Microscopy and quantification
Samples were counted using a 10610 grid counting eyepiece on

an Olympus Optical Bx60 microscope or Zeiss Axioskop and an

Axiocam digital camera and AxioVision imaging software (Zeiss,

Germany). Photoshop 7.0 was used to uniformly adjust contrast

and brightness so that digital images appear as they did when

observed directly through the microscope.

Statistical analysis
All values are expressed as mean 6 SEM. P values were

determined by paired Student’s t-test or Mann-Whitney rank sum

test using Sigma Plot 11.0 (Systat Software, San Jose, CA). In all

applicable figures, an asterisk (*) indicates statistical significance

(p value , 0.05).
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