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DAMPs released by pyroptotic cells as major
contributors and therapeutic targets for
CAR-T-related toxicities
Tian Deng1,2, Chao Tang3, Guizhong Zhang 1,2 and Xiaochun Wan 1,2,3

Abstract
CAR-T transfer, recently well-developed immunotherapy, has offered substantial benefit to more and more patients
with advanced cancers. However, along with growing experience in the clinical application comes the increasing
awareness of the potentially fatal adverse effects, most notably cytokine release syndrome (CRS) and neurotoxicity.
Understanding the mechanisms underlying these toxicities can help to improve therapeutic outcomes. Recent
findings highlight the importance of monocyte/macrophage in CAR-T-related toxicities (CARTOX) and shed light on a
novel mechanism mediated by damage-associated molecular patterns (DAMPs) released from pyroptotic cells.
Therefore, this review summarizes these findings and provides practical guidance to the management of CARTOX.

Introduction
Recently, chimeric antigen receptor T-cell (CAR-T)

therapy has shown promising efficacy in refractory B-cell
malignancies and brought hope for the treatment of other
advanced cancers1,2. CAR-T therapy induces a rapid
immune response and lasts for months or years, but also
leads to certain toxicities like cytokine release syndrome
(CRS) and neurotoxicity, which can be severe or even
fatal3,4. So it is exigent to understand the mechanisms of
these side effects and to develop strategies to reduce or
eliminate therapy-induced toxicities.
CRS is a potentially life-threatening toxicity that can be

triggered by infections (influenza5, COVID-19 6), certain
drugs, and immunotherapy, especially those involve
T cells7. CRS is non-antigen-specific toxicity caused by
high levels of immune activation8. It is associated with

elevated circulating levels of several core cytokines
including interleukin (IL)-6 8. Hence, immunosuppression
using tocilizumab, an anti-IL-6 receptor (IL-6R) antibody,
with or without corticosteroids, can mitigate CRS3,8.
However, since early and aggressive immunosuppression
could limit the efficacy of the immunotherapy8,9,
approaches that can address life-threatening complica-
tions of CRS without compromising CAR-T efficacy are
urgently needed.
Unlike CRS, which is well understood, the pathophy-

siology and treatment of neurotoxicity have remained
elusive. Although the association between IL-6 and the
development of neurotoxicity has been investigated in
several clinical experiences10–12, targeting IL-6R has not
been shown to be effective for neurotoxicity treatment4,13.
Therefore, more studies are required to evolve our
understanding of the mechanisms underlying such CAR-
T-related toxicities (CARTOX), and to identify more
predictive biomarkers of severity and attractive ther-
apeutic targets. Recent findings highlight the importance
of monocyte/macrophage in CARTOX14,15, and shed light
on a novel mechanism mediated by damage-associated
molecular patterns (DAMPs) released from pyroptotic
cells16. Therefore, this review summarizes these findings
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and provides practical guidance to the management of
CARTOX.

Monocytes/macrophages: the key mediator in CARTOX
Although the clinical manifestations of CARTOX are

easily recognized, the detailed mechanisms still remain
unclear. The previous study had demonstrated that high
levels of cytokines contribute to both CRS and neuro-
toxicity by activating endothelial cells11,17, yet the source
and precise function of these cytokines are ill-defined.
Recently, two groups reported cytokines released from
myeloid but not from CAR-T cells are the main cause of
CRS and neurotoxicity14,15. One of the researches used
SCID-beige mice with a high tumor burden, so as to
initiate CRS within a few days. They found CAR-T cells
activated by the tumor cells could recruit and activate
macrophages through CD40L–CD40 interaction. Acti-
vated macrophage releases a large number of inflamma-
tory mediators that have been described in CRS on
clinical studies, including IL-6 and IL-1β, which exacer-
bate CRS. Modulation of macrophage function or IL-1
signaling blockade abrogates CRS-related mortality, sig-
nifying the importance of macrophage in CRS and sug-
gesting IL-1 as a new potential target to alleviate CRS
severity15. Using humanized triple transgenic NSG mice
that can more completely recapitulate the CARTOX seen
in humans, Norelli et al. confirmed IL-1 and IL-6 are
produced by monocytes and serve as key contributors in
CARTOX. Monocyte depletion or IL-1R blockade using
anakinra protects mice from both lethal CRS and neuro-
toxicity, however, pre-emptive use of IL-6R antagonists
can only prevent CRS but not neurotoxicity14, suggesting
different priorities in the contribution for CARTOX
between IL-1 and IL-6. IL-1 is a gatekeeper cytokine
critically involved in many events related to inflamma-
tion18. IL-1 release precedes IL-6 by 24 h14, thereby is
reasonable to make a more critical contribution to
CARTOX, especially neurotoxicity. Collectively, these
findings update our understanding of the sources of
inflammatory cytokines and mechanisms for CARTOX
and highlight macrophage as the key contributor for both
CRS and neurotoxicity. Therefore, the activation and
regulation of macrophages in the tumor microenviron-
ment during CAR-T therapy should be the focus of future
studies to find new targets for alleviating side effects and
making CAR-T therapy safer.

DAMPs: endogenous triggers for macrophage activation
Macrophages are an important group of innate immune

system, existing in almost all tissues. They are differentiated
from circulating monocytes19 and have important roles in
the control of inflammation and infection20. Pathogen-
associated molecular patterns (PAMPs) and damage-
associated molecular patterns (DAMPs) are two major

groups of macrophage triggers, which are released from
invading pathogens and damaged or dying cells, respectively.
DAMPs also referred to as “danger”-associated mole-

cular patterns, are endogenous immunogenic molecules
released upon “danger” situations such as tissue damage
or cellular stress. There are basically two categories of
DAMPs according to the location, from the extracellular
matrix (Decorin, Heparan sulfate, Fibrinogen, etc.) or
intracellular compartments (HMGB1, ATP, HSP,
etc.)21,22. DAMPs are recognized mainly by PRRs and
trigger macrophage activation22, thereby be crucially
involved in many inflammatory diseases21,22.
As recently reported, macrophages are involved in

CARTOX development14,15, but the detailed mechanisms
for macrophage activation remain to be determined.
During CAR-T therapy, large amounts of cell death might
cause DAMPs leakage and thereby trigger macrophage
activation. However, this was not proven until this year.

Pyroptosis and subsequent DAMPs leakage trigger
macrophage activation resulting in CARTOX
Pyroptosis is a form of inflammatory programmed cell

death, characterized by cell swelling, lysis, and the release
of many inflammatory factors as well as DAMPs23. Dying
cells activate pyroptosis through the following three main
approaches: (i) GSDMD (gasdermin D)-dependent acti-
vation mediated by caspase 1/4/5/11 24; (ii) GSDME-
dependent activation mediated by caspase 3 25,26 and (iii)
GSDMB-dependent activation mediated by lymphocyte-
derived granzyme A27. Activated gasdermins release the
novel segment with membrane pore-forming activity and
leading to pyroptosis23,28.
A recent study reported CAR-T cells can induce

GSDME-mediated target cell pyroptosis, which resulted
in CRS16. They found CAR-T cells release granzyme B
into tumor cells to activate caspase 3, causing the sub-
sequent activation of GSDME and pyroptosis. Pyroptotic
tumor cells release large amounts of DAMPs, HMGB1
and ATP in particular, which activate macrophages and
induce the release of IL-1β and IL-6, causing CRS. Cor-
respondingly, a higher level of GSDME in primary B-ALL
leukemia cells was associated with a more severe case of
CRS in patients who accepted CD19-CAR-T treatment16,
signifying the importance of pyroptosis in CRS. Although
it has not been determined yet, however, the dramatic
induction of IL-1β strongly indicates the involvement of
pyroptosis–DAMPs axes in neurotoxicity. Taken toge-
ther, this study reveals a possible mechanism that how
CAR-T therapy and tumor cells themselves trigger the
macrophage-mediated toxicities and highlights the key
involvement of pyroptosis–DAMPs axis in CARTOX. In
line with these findings, our data further confirm this view
and suggest HMGB1 serves as a predictive biomarker and
attractive therapeutic target for CRS since 7/10 patients
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who received CAR-T cells induce high levels of HMGB1,
which preceded IL-6 release (Fig. 1).
HMGB1 has recently attracted much attention for its

pro-inflammatory activity and potential clinical applica-
tions in many inflammatory diseases29. It is a nonhistone
chromatin-binding protein and participates in many
important nuclear processes in a steady-state, such as
replication, DNA repair, and transcription30. In the con-
text of tissue or cell stress, HMGB1 is mobilized into the
cell cytoplasm or released to the extracellular space to
drive the inflammatory responses as a DAMP30,31.
HMGB1 is recognized by several receptors, including

TLR2, TLR4, TLR9, and RAGE32–34. Recent studies
revealed HMGB1 can induce macrophage activation
through binding to TLR4 35, and trigger macrophage
pyroptosis through RAGE/dynamin-dependent endocy-
tosis36. Pyroptotic macrophages could release more
DAMPs to favor further immune activation and cytokine
release, which might form a vicious circle leading to more
severe CARTOX. Additionally, high levels of cytokines
might induce necrosis or pyroptosis in tissue cells37,38,
resulting in severe DAMPs leakage which can further
exacerbate CARTOX. That’s to say, CARTOX is a set of
macrophage-dependent complications, in which DAMPs
released by pyroptotic cells as upstream trigger have cri-
tical roles. During CARTOX, several processes including
pyroptosis, DAMPs release, macrophage activation, and
cytokine release form a loop that drives CARTOX more
severely (Fig. 2). Strategies capable of breaking down links
in this loop might be exploited to manage CARTOX, as
IL-6R or IL-1R blockade can mitigate CRS or neurotoxi-
city. However, both IL-6 and IL-1 are only two identified
macrophage-derived cytokines that lie downstream of
inflammatory events that result in CARTOX, their inhi-
bition may be insufficient hence ineffective. Therefore,
targeting pyroptosis to reduce DAMPs release, or directly
targeting DAMPs, the upstream specific triggers for
macrophage activation during CAR-T therapy, might be a
more prudent approach for CARTOX treatment.

Conclusion
CARTOX remains a common challenge of CAR-T

therapies. Recently, our understanding of the molecular
mechanisms governing CARTOX has evolved substantially.
The identification of pyroptosis–DAMPs–macrophage
loop involvement opens up new avenues by which CAR-
TOX can be better predicted and treated. It is reasonable to
speculate that blocking the executors of pyroptosis (such as
GSDME), consuming the DAMPs released from pyroptotic
cells, or improving CAR-T design to cause tumor cell
apoptosis but not pyroptosis may be possible strategies to
reduce CARTOX.
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Fig. 1 Time course of HMGB1 and IL-6 release post-CAR-T
injection. Sera HMGB1 and IL-6 levels of 10 acute lymphoblastic
leukemia patients with CAR-T therapy were detected using ELISA kit
(SEA399Hu, Cloud-Clone Corp.) and CBA kit (551811, BD) respectively.
The representative time-course is presented.

Fig. 2 Proposed pathomechanism of CARTOX. CAR-T cells
recognize and trigger tumor cells in pyroptosis. Pyroptotic cells release
large amounts of DAMPs, which activate macrophages (Mφ) with
subsequent cytokine release, resulting in endothelial activation and
CARTOX. High levels of cytokines impair other cell functions and even
cause necrosis or pyroptosis, further increase DAMPs leakage, which
forms a vicious circle that leads to more severe CARTOX. In addition,
DAMPs, such as HMGB1, could be endocytosed and induce
macrophage pyroptosis, further increasing DAMPs release and
exacerbating CARTOX.
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