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Abstract: The properties of the segregated flow model (SFM), which considers split intestinal flow
patterns perfusing an active enterocyte region that houses enzymes and transporters (<20% of the
total intestinal blood flow) and an inactive serosal region (>80%), were compared to those of the
traditional model (TM), wherein 100% of the flow perfuses the non-segregated intestine tissue.
The appropriateness of the SFM model is important in terms of drug absorption and intestinal and
liver drug metabolism. Model behaviors were examined with respect to intestinally (M1) versus
hepatically (M2) formed metabolites and the availabilities in the intestine (FI) and liver (FH) and
the route of drug administration. The %contribution of the intestine to total first-pass metabolism
bears a reciprocal relation to that for the liver, since the intestine, a gateway tissue, regulates the
flow of substrate to the liver. The SFM predicts the highest and lowest M1 formed with oral (po)
and intravenous (iv) dosing, respectively, whereas the extent of M1 formation is similar for the
drug administered po or iv according to the TM, and these values sit intermediate those of the
SFM. The SFM is significant, as this drug metabolism model explains route-dependent intestinal
metabolism, describing a higher extent of intestinal metabolism with po versus the much reduced or
absence of intestinal metabolism with iv dosing. A similar pattern exists for drug–drug interactions
(DDIs). The inhibitor or inducer exerts its greatest effect on victim drugs when both inhibitor/inducer
and drug are given po. With po dosing, more drug or inhibitor/inducer is brought into the intestine
for DDIs. The bypass of flow and drug to the enterocyte region of the intestine after intravenous
administration adds complications to in vitro–in vivo extrapolations (IVIVE).

Keywords: segregated flow intestinal model (SFM); traditional model (TM); route-dependent
intestinal metabolism; first-pass effect; drug-drug interactions; DDI; in vitro in vivo
extrapolations; IVIVE

1. The Intestine–Liver Unit

The extent of the absorption of orally administered drugs is controlled by the intestine and liver,
which are anatomically linked as a serial unit that is sequentially perfused by the circulation (Figure 1).
The intestine is the gateway tissue to the liver and is important for drug absorption and first-pass
removal. The superior mesenteric artery (SMA) supplies blood to the small intestine and its venous
drainage, together with venous returns from the spleen, pancreas, gallbladder and gastrointestinal
tract (GIT) including the stomach, constitute the hepatic portal vein flow (QPV), which is approximately
75% of the total liver blood flow, QH. Together with the hepatic artery (QHA), the remaining 25% of
QH, the dual flows collectively perfuse the liver.
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The intestine is endowed with absorptive transmembrane transporters in simple columnar,
epithelial cells known as enterocytes that line the inner surfaces of the small intestine. These
cells contain numerous protrusions known as the villi and microvilli that increase the surface area
multiple-fold to absorb drug molecules or nutrients from the gut lumen. Intestinal absorption models
have been classically linked to drug properties and the dosage form (pKa, logP, and solubility), as
well as the physiology of the gastrointestinal tract (pH, gastrointestinal transit time, gastric emptying
time, surface area, and microbiota) that control the fraction of dose absorbed (Fa) [1–11]. In addition
to passive diffusion, absorptive transporters known as the apical solute carrier transporters (SLC),
as exemplified by the PEPT1 (oligopeptide transporter 1), OATP1A2, OATP2B1 (the organic anion
transporting polypeptide 1A1 and 2B1), MCT1 (the monocarboxylic acid transporter 1), ASBT (apical
sodium dependent bile acid transporter) that reclaims bile acids, and OCT (organic cation transporter),
facilitate the entry of weak acids and weak bases [12–18]. Counterbalancing drug entry are the
efflux transporters—the P-gp (P-glycoprotein), BCRP (breast cancer resistance protein) and MRP2
(multidrug resistance-associated protein 2) that mediate drug or metabolite secretion back to the
intestinal lumen [19,20], and this backward flux tends to reduce the net absorption of solutes. The OSTα
and OSTβ (organic solute transporter α and β, half-transporters) transport bile acids out of the
enterocytes [21]. It is well recognized that P-gp is capable of secreting highly lipophilic drugs [22,23].
Since lipophilic drugs with high solubility and permeability (Biopharmaceutical Classification System
or BCS, Class I) are readily reabsorbed, the excretory function of P-gp is readily nullified [24].
The significance of P-gp, being more abundant distally in the ileum is, therefore, reduced for drugs
that are readily reabsorbed [20,23,25,26]. However, for highly soluble but poorly permeable Class
III BCS drugs, P-gp is more effective in reducing intestinal drug absorption [7]. It is also notable
that drug permeability can be influenced by the pH of the intestinal lumen that becomes more and
more basic and in turn, influence the extent of drug absorbed [3,8]. Segment-dependent decline in
membrane permeability, reduced surface area from the duodenum to ileum [27] and pH changes along
the intestine [8,28] are noted. These variables will modulate the extent of passive drug absorption.
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Figure 1. The intestine as a gateway tissue to the liver. Because of intestinal removal [extraction ratio,
EI or (1 − FI)], the drug entering the liver is reduced, and the liver may further remove the drug with
a liver extraction ratio (EH) to effect first-pass metabolism. The fraction absorbed, Fa and FI or (1 −
EI), and FH or (1 − EH) influence the systemic bioavailability, Fsys. This figure was reproduced with
permission from Noh and Pang [18], Wiley, 2019.

After crossing the intestinal membrane, the drug is met with metabolizing enzymes such as the
cytochromes P450 3A (CYP3A) and UDP-glucuronosyltransferases, UGTs [29–32]. The most abundant
CYP isoform is CYP3A4, which exceeds other isoforms such as 2C9, 2C19 > 2J2 > 2D6 that are present
in lower quantities [31,33–35]. UGT 1A (1A1, 1A6, 1A5, 1A8, and 1A10) and 2B (2B7, 2B15, and
2B17) subfamilies are present to mediate the glucuronidation of morphine, raloxifene, mycophenolate,
bisphenol A and gemfibrozil [36–40]. The intestinal metabolic activities for CYP3A4 and some of
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the UGTs are comparable to, or higher than, those in the liver [31,41,42]. Cytosolic glutathione
S-transferases [43,44] are found abundantly, whereas epoxide hydrolases [43] and sulfotransferases
(SULT) [45] are present at much lower quantities in the intestine.

The availability of the intestine (FI) after intestinal metabolism or secretion is defined as (1 − EI)
[where EI is the intestinal extraction ratio], and hepatic availability, FH, is given by (1 − EH) [where EH

is the hepatic extraction ratio]. The overall systemic availability, Fsys, is given by FaFIFH. Following oral
(po) drug dosing, the fraction of the dose absorbed (Fa) is attributed to dosage forms and/or solubility
properties, intestinal removal via metabolism or secretion (defined by the intestinal extraction ratio,
EI), and liver removal (defined as the hepatic extraction ratio, EH), respectively. The product of the
availabilities, FaFIFH, constitute the net fraction, the systemic availability, Fsys. For this reason, the
intestine and liver are both capable of removing a significant proportion of the orally administered
dose, a phenomenon known as the first-pass effect [46]. The extent of intestinal versus liver removal of
drugs is therefore intimately related [47–50].

2. Reason or Need for Intestinal Flow Models

Although the development of clearance concepts for the intestine has lagged behind that for
the liver [51–53], there have been some activities trending towards the fabrication of a useful and
meaningful intestine clearance model to predict the extent of removal and examine how the intestine
influences the rate of liver removal according to the route of drug administration. The correct intestinal
model will exert serious implications in terms of drug–drug interactions (DDIs) with inducers or
inhibitors, or in terms of in vitro–in vivo extrapolation (IVIVE).

3. Route-Dependent Intestinal Metabolism

Midazolam is a prototypic probe substrate of CYP3A4 metabolism that is often utilized for the
screening of CYP3A4 and CYP3A5 activities in inhibition or induction studies [42,54–58]. Midazolam
is metabolized by both the intestine and liver [42,59]. For the completely absorbed drug (Fa ~ 1), there
was a dramatically lower intestinal extraction ratio (EI = 0.08), measured across the arterial and hepatic
portal venous blood for midazolam after its intravenous administration among anhepatic patients
whose livers were removed during transplantation surgery [59]. In comparison, the mean fraction
metabolized across the intestinal mucosa when given intraduodenally was much higher (EI = 0.43).
This first, direct evidence uniquely shows route-dependent metabolism of the small intestine. Clinically,
the erythromycin breath test relates well to the midazolam unbound liver clearance and not correlated
to the intestinal clearance [60]. For radiolabeled (-)morphine that forms morphine 3-glucuronide
(M3G) in both the intestine and liver, M3G was absent and undetectable in the vascularly perfused rat
intestine preparation when morphine from the reservoir recirculated the rat intestine, a scenario akin
to the systemic administration of morphine. This contrasts the copious presence of the radiolabeled
M3G metabolite in both the intestinal lumen and reservoir after the intraduodenal administration of
morphine into the gut lumen [61]. Additional animal and human studies attest to the same trend of a
higher extent of intestinal metabolism after oral (po) than after intravenous (iv) drug administration
(Table 1). These examples serve as direct evidence that display route-dependent metabolism of the
small intestine. There will be a corresponding route-dependent change in the proportion of liver
metabolites formed as well, since the unmetabolized drug leaving the intestine now enters the liver for
further processing.
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Table 1. Examples of route-dependent intestinal metabolism.

Compound System Enzyme/Metabolite Examples References

Enalapril Perfused rat intestine–liver
preparation Esterase/enalaprilat

Enalaprilat formed from
enalapril after po

administration but not
systemic administration

[62]

Acetaminophen Perfused rat small
intestine preparation

Ugt1a6/acetaminophen
glucuronide

Metabolite observed after
intraduodenal but not

systemic dosing
[63]

(-)-6-aminocarbovir
(6AC)

Perfused rat small
intestine preparation

Adenosine deaminase activates
(-)-carbovir to 6AC

6AC was highly extracted
by intestine after luminal
dosing (0.54) compared to

reservoir dosing (0.08)

[64]

Morphine Perfused rat small
intestine preparation

Ugt2b1/
morphine 3-glucuronide (M3G)

M3G appeared after
intraduodenal but not

systemic dosing
[61]

L-754,394,
(furanopyridine

derivative)

Rats and dogs in vivo and
rat liver perfusion

Cyp3a/
epoxide intermediate

Inhibition of L-754,394 and
its metabolites by Cyp3a is
much greater for po than
iv administration of drug

[65]

Cyclosporine Human in vivo CYP3A4/AM1 and AM9
Metabolites: AM1 and
AM9 are lower after iv

compared to po
[66]

Verapamil Human in vivo CYP3A4 and 3A5/ norverapamil Metabolite, norverapamil
formation after po > iv [67]

Hydralazine Human in vivo
Acetyltransferase/

3-methyl-striazolo-3,4,
α-phthalazine (MTP)

More MTP formation
observed after oral dosing

than iv dosing
[68]

Cyclobenzaprine Human in vivo
UGT/

cyclobenzaprine glucuronide
(CBG)

Formation of CBG was
greater for the oral than for

parenteral case
[69]

Midazolam
(MDZ) Human in vivo

CYP3A4/
1’-OH and 4-OH MDZ

EI after intraduodenal
administration >> EI for iv

administration
[59,70]

Methyldopa Human in vivo SULT/
methyldopa sulfate (MS)

Greater formation of MS
after po than iv dosing of

M
[71]

Quinidine Human in vivo CYP3A/
3-hydroxyquinidine

More 3-hydroxyquinidine
formed via oral compared

to iv route
[72]

4. Intestinal Flow Models: Segregated Flow (SFM), QGut, and Traditional (TM) Models

Compartmental models are ill equipped to examine the extent of drug metabolism among
metabolizing tissues or organs that are arranged serially. Hence, physiologically based pharmacokinetic
(PBPK) modeling of the intestine and liver works a lot better. The approach has been used to appraise
the extent of intestine vs. liver removal of drugs [48,49,73–78]. Here, the view is that the intestine
is perfused 100% by superior mesenteric arterial flow (QSMA), which drains into the portal venous
blood (QPV) for the traditional intestinal model (TM), and, upon combining with QHA, these flows in
turn perfuse the liver. However, the TM would not explain route-dependent intestinal metabolism
on midazolam [59] and morphine [61], which propelled us to develop useful intestinal flow models
that can describe this phenomenon. The segregated flow model (SFM) describes a split flow pattern,
as proposed by Klippert and Noordhoek [79], with a lower flow rate perfusing the active, enterocyte
region (fQ or fraction of the total intestinal flow, <20%) that houses the enzymes and absorptive/efflux
transporters, and the remainder flow (>80%) perfusing the non-active, serosal region has since
surfaced [80]. With oral administration, the entire dose amount needs to cross into the enterocyte
region—the volume of which is conveniently viewed as (fQ´Vint), where Vint (or VI) is the volume
of the total intestine—whereas, for intravenous dosing, <20% of the drug in the circulation reaches
the enterocyte region, and this will effectively reduce the rate of drug removal by the intestine. The
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segregated flow behavior of the intestine is found to explain route-dependent intestinal removal
observed for many drugs.

A similar flow model, the QGut model [81–83], was coined as a minimal model based on
the well-stirred model equation for the liver, namely, FI =

QGut

QGut+fuBCLI
int

[49], after the equation of

Yang et al. [83] was corrected upon substitution of fuB for the unbound fraction to intestinal tissue, fuI.
Since the villous flow (Qvilli) is 6% of the cardiac output as 19 L/h, the ratio of the Qvilli/QPV or fQ value
for the QGut model is as high as 0.484 for a lipophilic drug such as midazolam [81–83]. Notably, fQ is
different among these flow models: the SFM (fQ < 0.2), QGut model (fQ = 0.484) and TM (fQ =1). The fQ

value is expected to affect the extent of intestine and liver removal (EI and EH) in the intestine–liver
unit with respect to the route of drug administration.

5. Equations for Prediction of Route-Dependent Intestinal Removal

There are major differences in drug distribution and therefore intestinal drug clearance when the
drug is entering from gut lumen into the villous tip or from the circulation (drug given intravenously)
(Figure 2). For the TM, whereby the total intestinal flow perfuses the entire intestine (fQ = 1), there is
no difference in the distribution and clearance of drug between oral and intravenous administration
when the enterocyte and serosal regions are meshed together (Figure 2A). After po administration, the
drug is absorbed into the enterocyte (yellow arrow) and is well distributed in the enterocyte (right
graph); the distribution of drug into the enterocyte is also similar after intravenous administration,
and the drug is again well-distributed into the enterocyte (fQ = 1). For the SFM (Figure 2B), the extent
of distribution after po dosing for a rapidly absorbed drug is similar to that as for TM. Since the
enterocyte region is perfused with a lower flow rate (fQ´QPV) according to the SFM, its drug extraction
ratio for EI,po,SFM is therefore slightly higher than that for the TM, EI,po,TM, as the drug is associated
with a longer transit time in the tissue [18]. However for iv dosing, there is a reduced distribution of
drug reaching the enterocyte due to the reduced intestinal flow (fQ < 0.2), and there will be a smaller
intestinal clearance pursuant to intravenous dosing (Figure 2B). Thus EI,po,SFM > EI,iv,SFM or FI,iv,SFM >

FI,po,SFM (Figure 2B) when the drug is shunted away from the enterocyte region, especially for highly
permeable drugs entering the intestinal tissue from the circulation than from the gut lumen [18,80].

The explicit solutions for both the TM and SFM (and QGut model) are provided by Sun and Pang [84],
who placed the intestine and liver into simple or semi-physiologically based pharmacokinetic (PBPK)
models upon viewing both metabolic as well as transport (basolateral influx and efflux) pathways
in the intestine and liver (Figure 3). The only difference between the TM and SFM (or QGut model)
is the presence of an additional intestinal compartment, since the intestine is now denoted as two
subcompartments, the enterocyte and serosa, for the SFM and QGut model. For simplistic assignment
of the volume and flow, fQ x volume or flow are used to designate the enterocyte volume and flow,
respectively, and (1 − fQ) x volume or flow are used to denote the serosal volume and flow, respectively.
A common solution ([Equation (1)] now surfaces to represent the systemic bioavailability with oral
administration [84]. This common equation may be used to describe bioavailability, Fsys, when fQ = 1,
0.484 and <0.2, respectively, for the TM, QGut model, and the SFM.

AUCpo/Dosepo
AUCiv/Doseiv

= Fsys = Fa FIFH

Fa

[
fQQPVCLI

d2

fQQPVCLI
d2+(f QQPV+fuBCLI

d1)[CL I
int,met1+CLI

int,met2+CLI
int,sec(1−F a)]

][
QH(CL H

d2+CLH
int,H

)
QH(CL H

d2+CLH
int,H)+fuBCLH

d1CLH
int,H

]
(1)

where CLI
d1 is the influx transport clearance and CLI

d2 is the efflux transport clearance. CLI
int,met

is the intestinal intrinsic metabolic clearance (for pathways 1 or 2) and CLI
int,sec is the secretory

intestinal intrinsic clearance. In the liver, the sum of CLH
int,sec and CLH

int,met is CLH
int; fuB is the unbound

fraction in blood, and QPV and QH are the portal venous flow and total liver blood flow, respectively.
The superscripts I and H denote the intestine and liver, respectively. Notably, the unbound fractions of
drug in intestine and liver tissue (fuI and fuH) are canceled out in the manipulation.



Pharmaceutics 2020, 12, 312 6 of 23

Pharmaceutics 2020, 12, x 5 of 23 

villous flow (Qvilli) is 6% of the cardiac output as 19 L/h, the ratio of the Qvilli/QPV or fQ value for the 
QGut model is as high as 0.484 for a lipophilic drug such as midazolam [81–83]. Notably, fQ is different 
among these flow models: the SFM (fQ < 0.2), QGut model (fQ = 0.484) and TM (fQ =1). The fQ value is 
expected to affect the extent of intestine and liver removal (EI and EH) in the intestine–liver unit with 
respect to the route of drug administration. 

5. Equations for Prediction of Route-Dependent Intestinal Removal 

There are major differences in drug distribution and therefore intestinal drug clearance when 
the drug is entering from gut lumen into the villous tip or from the circulation (drug given 
intravenously) (Figure 2). For the TM, whereby the total intestinal flow perfuses the entire intestine 
(fQ = 1), there is no difference in the distribution and clearance of drug between oral and intravenous 
administration when the enterocyte and serosal regions are meshed together (Figure 2A). After po 
administration, the drug is absorbed into the enterocyte (yellow arrow) and is well distributed in the 
enterocyte (right graph); the distribution of drug into the enterocyte is also similar after intravenous 
administration, and the drug is again well-distributed into the enterocyte (fQ = 1). For the SFM (Figure 
2B), the extent of distribution after po dosing for a rapidly absorbed drug is similar to that as for TM. 
Since the enterocyte region is perfused with a lower flow rate (fQ´QPV) according to the SFM, its drug 
extraction ratio for EI,po,SFM is therefore slightly higher than that for the TM, EI,po,TM, as the drug is 
associated with a longer transit time in the tissue [18]. However for iv dosing, there is a reduced 
distribution of drug reaching the enterocyte due to the reduced intestinal flow (fQ < 0.2), and there 
will be a smaller intestinal clearance pursuant to intravenous dosing (Figure 2B). Thus EI,po,SFM > EI,iv,SFM 
or FI,iv,SFM > FI,po,SFM (Figure 2B) when the drug is shunted away from the enterocyte region, especially 
for highly permeable drugs entering the intestinal tissue from the circulation than from the gut lumen 
[18,80]. 

 
Figure 2. Schematic of drug molecules (D) traversing the intestinal membrane and entering the 
enterocyte for the tradtional model (TM) (A) and segregated flow model (SFM) (B). After po 
admininstration, the drug is absorbed into the enterocyte (yellow arrow) and distributed abundantly 
in the epithelisum (adjacent) for both the TM and SFM. After intravenous administration, the drug is 
distributed to the same extent in the epithelium according to the TM (fQ = 1) while the SFM (fQ < 0.2) 
predicts a much lower distribution of drug in enterocytes. This figure was reproduced with 
permission from Noh and Pang [18], Wiley, 2019. 

Figure 2. Schematic of drug molecules (D) traversing the intestinal membrane and entering the
enterocyte for the tradtional model (TM) (A) and segregated flow model (SFM) (B). After po
admininstration, the drug is absorbed into the enterocyte (yellow arrow) and distributed abundantly in
the epithelisum (adjacent) for both the TM and SFM. After intravenous administration, the drug is
distributed to the same extent in the epithelium according to the TM (fQ = 1) while the SFM (fQ < 0.2)
predicts a much lower distribution of drug in enterocytes. This figure was reproduced with permission
from Noh and Pang [18], Wiley, 2019.
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For a drug in the circulation entering the intestine, the rate of drug removal by the enterocyte is
fQ.QPV (1 − FI)·CA, but there is no removal by the serosal region (Figure 4). The split flow pattern for
the SFM or QGut model results in a flow-averaged outflow, portal venous concentration, CPV [49].

CPV =
fQQPVFICA+(1− f Q)QPVCA

QPV
= CA[fQFI + (1− f Q)] (2)
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This flow-averaged portal venous concentration is then combined with the arterial concentration
(CA) to perfuse the liver. Along the same line of reasoning, the rates of removal of drug by the intestine
and liver or the fractional contributions are given by,

vI

vI+vH
=

fQQPV(1− F I

)
fQQPV(1− F I) + EH

〈
QPV[f QFI+(1− f Q)] + QHA

〉 (3)

and
vH

vI+vH
=

EH
〈
QPV[f QFI+(1− f Q)] + QHA

〉
fQQPV(1− F I) + EH

〈
QPV[f QFI+(1− f Q)] + QHA

〉 (4)

The contributions of the intestine (vI) and liver (vH) in first-pass removal are hence described by
Equations (3) and (4). With fQ values = 1 (left) (TM), = 0.1 (SFM), or = 0.484 (QGut model) and with
the assumption that QPV is approximated by QSMA, simulations show that, for a drug entering the
intestine from the circulation, the TM predicts the highest intestinal contribution by the intestine–liver
unit, whereas the SFM predicts the least; the QGut model predicts values somewhere in the middle
(Figure 4A). The importance of the intestine increases when the liver possesses a low enzymatic
removal capacity (high FH). Under the same scenario, results for the %contribution by the liver are
the exact opposites, since there is a reciprocal relation to the intestine (Figure 4B). For the SFM, which
suggests a lower contribution of metabolism by the intestine for drugs entering from the circulation,
the contribution by the liver to first-pass removal is higher than those predicted for the TM and QGut

model, since there is a greater substrate flux entering the liver that will result in a greater %contribution
by the liver, especially for high EH drugs.

6. Is the SFM the Better Intestinal Flow Model Compared to the TM?

Theoretical development of the SFM readily explains the observed higher EI for midazolam
and morphine given orally versus intravenously (also Table 1), as do many other drug examples or
substrates. When different sets of in vivo or intestinal perfusion data were fitted to the TM versus the
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SFM, fits to the SFM were all superior over those for the TM. The fitted values of fQ were all <0.2, and
the SFM was shown to better the TM statistically among all examples (Table 2). The villous flow pattern
to the enterocyte region [85], being a low fraction (<0.2), has also been suggested by Granger et al. [86].
A better discrimination between the TM and SFM occurs when metabolite data are present, as provided
by the example of morphine, which forms morphine-3-glucuronide (M3G) by the intestine and liver in
the rat in vivo. The discriminatory power for the morphine study was further provided by the biliary
versus urinary excretion ratio of the metabolite, M3G, which is unable to cross the liver membrane due
to its polarity [87]. The M3G presence in bile suggests that the origin of the metabolite is from the liver.
The urinary morphine 3-glucuronide originates from both intestinal and liver metabolism, and the
observed ratio of M3G in urine/bile associated with intraduodenal morphine dosing was 2.55-fold
that with intravenous morphine administration, as predicted for the SFM [76]. The observations for
morphine and morphine 3-glucuronide correlated much better with the predictions from the SFM than
from TM.

Table 2. Fitted values of fQ in rodents in vivo and in perfusion preparations.

Drug Fraction of Intestinal
Flow to Enterocytes (fQ) Experimental Condition References

Benzoic acid 0.07 Rat liver perfusion [88]

Codeine 0.16 Rat in vivo [77]

Digoxin 0.20 Rat intestinal perfusion [26]

Digoxin 0.16 Mouse in vivo [89]

Morphine 0.10 Rat in vivo [76]

Morphine 0.024 Rat intestinal perfusion [80]

1,25-Dihydroxyvitamin D3 0.11 Mouse in vivo [87]

By contrast, there is practically no difference in the fitted results between the SFM and TM for
codeine, the inactive precursor that is N-demethylated to form morphine [77]. At first glance, the
similarity of both the SFM and TM fits is unique, suggesting that the drug is not subject to intestinal
metabolism. For codeine, rat Cyp2d1 (human CYP2D6) is of very low abundance in the intestine, and
intestinal metabolism of codeine is very low. For that reason, the agreement of the TM and SFM fits
to the codeine data infer a lack of intestine metabolism for codeine. We also recently observed the
same pattern for the pan-inhibitor, ketoconazole, after oral and intravenous administration to the rat
(unpublished information, Keumhan Noh, Lilly Xu, and K. Sandy Pang).

6.1. Implications on Formation of Intestinal and Liver Metabolites

Noh and Pang [18] examined the formation of the metabolites: M1 from intestine and M2 from
liver, as well as extraction ratios of the intestine with the route of drug administration. For TM, the
simulations verified that FI,po,TM = FI,iv,TM for highly permeable drugs, but FI,po,SFM < FI,iv,SFM for
SFM and FI,po,SFM < FI,po,TM = FI,iv,TM < FI,iv,SFM. The SFM predicts the highest formation of the M1
metabolite with oral dosing but the lowest formation of M1 with intravenous administration; the
converse should occur for M2 formation from liver. From M1/M2, the ratio would further unveil that
there is more M2 formation arising via the iv route because of direct delivery of drug via the hepatic
artery to the liver. Additionally, M1 is less formed according to the SFM for drugs administered iv
than po. For this reason, the ratio M1/M2 would always be smaller after intravenous administration
according to the SFM as well as TM (Figure 5).
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formation. Additionally, M2 formation is highest according to the SFM for iv drug administration
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6.2. Implications of the SFM on Drug–Drug Interactions (DDIs)

Another reason for properly selecting the intestine flow model is on the prediction of DDI with
an inducer or inhibitor. Because >80% intestinal flow bypasses the enterocytes according to the SFM,
the route of administration of the inhibitor/inducer, if oral, should be much more effective than the
intravenous route, with the underlying reason that the inhibitor/inducer concentrations would be
higher in the enterocyte region. Hence, the extent of DDIs is dependent on how the victim drug or
inhibitor/inducer is administered and which intestinal flow model, TM or SFM, prevails (Table 3). For
midazolam given intravenously (2 mg) or orally (6 mg) to humans, its AUCiv increased 5-fold, whereas
AUCpo increased 16-fold upon pretreatment with 3 po doses of 200 mg ketoconazole orally at 12 h prior
to midazolam dosing, and twice at every 12 h thereafter [57]. For digoxin (1 mg), the inducer rifampin
(600 mg daily po for 15 days) produced a dramatic lowering of AUCpo but not AUCiv of digoxin due to
a 3.5-fold induction of intestinal P-gp protein [20]. In monkeys, ketoconazole inhibited the metabolism
of simvastatin, a typical Cyp3a substrate, when given orally and increased the AUCpo 5 to 10x, without
changing AUCiv for simvastatin given intravenously [90]. For midazolam, oral treatment (50 mg/kg/day
for 4 days) of dexamethasone increased the Vmax values for 1′-hydroxylation and 4-hydroxylation of
midazolam in rat intestinal microsomes much more than that with iv dexamethasone [91]. For digoxin
given to Wistar rats, purple grape juice (inhibitor of transporter or enzymes) increased the AUCpo

(73%) but not AUCiv for digoxin [92]. There exist many other examples attesting to this interesting
DDI pattern for orally but not intravenously administered victim drugs in the presence of inhibitors
or inducers, also given orally (Table 3). These examples confirm the observation that inhibitors or
inducers of intestinal enzymes act best after oral administration, since the concentration attained will
be highest within the intestine, and the same goes for the victim drug. The inhibition expected for the
SFM should be the greatest, and hence this would also create opposite changes in liver metabolism,
since inhibition of the intestine leads to a greater flux of substrate towards liver metabolism.
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Table 3. Greater inhibitory or inductive effects after oral administration than iv administration for
drug–drug interactions (DDIs) of the intestine.

Compound Inducer/Inhibitor (Dosing
Route)

Enzyme
/Transporter Outcome Reference

Induction Studies

Alfentanil Rifampicin (po) CYP Decrease in
AUCpo/AUCiv = 8.2 [93]

Cyclosporin Rifampicin (po) CYP Decrease in
AUCpo/AUCiv = 2.6 [94]

Digoxin Rifampicin (po) P-gp Decrease in
AUCpo/AUCiv = 1.3 [20]

Indinavir Dexamethasone (po) CYP and
P-gp

Decrease in
AUCpo/AUCiv = 2.3 [24]

Methadone Rifampicin (po) CYP Decrease in
AUCpo/AUCiv = 1.4 [95]

Midazolam Rifampicin (po) CYP Decrease in
AUCpo/AUCiv = 4.4 [96]

Nifedipine Rifampicin (po) CYP Decrease in
AUCpo/AUCiv = 8.5 [97]

Talinolol Rifampicin (po) P-gp Decrease in
AUCpo/AUCiv = 1.7 [98]

Tacrolimus Rifampicin (po) CYP Decrease in
AUCpo/AUCiv = 2.0 [99]

Temsirolimus Rifampicin (po) CYP Decrease in
AUCpo/AUCiv = 1.3 [100]

Inhibition Studies

Alfentanil Grapefruit juice (po)
Troleandomycin (po) CYP Increase in

AUCpo/AUCiv = 1.5–2.6 [93]

Atorvastatin Itraconazole (iv) CYP and
P-gp

AUCiv +INH
/AUCiv,control = 1.3

AUCpo +INH
/AUCpo control = 2.2

[101]

Cyclosporine
Carvedilol (po)

Grapefruit juice (po) Ketoconazole
(po)

CYP Increase of
AUCpo/AUCiv = 1.5–2.8 [66,102,103]

Felodipine Grapefruit juice (po) CYP Increase of
AUCpo/AUCiv = 1.9 [104]

Losartan Ticlopidine (po) CYP Increase of
AUCpo/AUCiv = 1.2 [105]

Midazolam

Clarithromycin (po) Diltiazem
(po) Erythromycin (po)

Fluconazole (po) Grapefruit juice
(po) Itraconazole (po)

Ketoconazole (po) Saquinavir (po)
Voriconazole (po)

CYP Increase of
AUCPO/AUCIV = 1.4–3.2 [57,91,93,106–111]

Nifedipine Grapefruit juice (po) licochalcone
A (po) CYP Increase in

AUCpo/AUCiv = 1.2–1.4 [112,113]

Saquanvir Grapefruit juice (po) CYP Increase in
AUCpo/AUCiv = 1.7 [114]

Simvastatin Ketoconazole (po) CYP Increase in
AUCpo/AUCiv = 5.0 [90]

Tacrolimus Ketoconazole (po) CYP Increase in
AUCpo/AUCiv = 1.4 [115]

Noh and Pang [18] recently explored the properties of the SFM and TM models with respect
to inhibitors via simulations. Within the assigned, limited parameter space set forth for the drug
example, the reduction in M1 formation is highest when both inhibitor (intestine inhibition constant,
Ki = 2 µM) and drug are both given orally, and least or almost unaltered at all when the drug is
given intravenously (Figure 6A). Inhibition of metabolism is revealed by the higher drug AUC in the
presence of the inhibitor. Often, changes in metabolite patterns are able to reveal inhibition of enzymes
within the tissue. For TM, the same extent of M1 formation occurs for both intravenous and oral drug
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administration, and inhibition of M1 formation is the same after iv or po drug administration. For SFM,
a greater extent of inhibition exists for the drug given orally and least when given intravenously. Liver
metabolism is in turn affected upon inhibition of the intestinal metabolism, and an inverse relation to
that for the intestine is found.
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Figure 6. Simulation of intestinally (M1) and hepatically (M2) formed metabolites. For simulation,
M1 and M2 were assumed to be inhibited within the intestine only (A), and both the intestine and
liver (B) for a drug example ([18]; data in Table 6 of the reference). The simulation showed that the
SFM predicted the highest and lowest M1 formation after oral and intravenous drug admintration,
respectively, and the TM predicts a similar extent. The inhibition on intestinal metabolism is the greatest
when both the inhibitor and drug are given orally, as predicted by the SFM (A). When both intestine
and liver metabolism is inhibited, the pattern of change is not readily predictable (B). A greater liver
inhibition exists after iv drug administration, and the extent of inhibition within the liver can exceed
that in the intestine (B). This figure was reproduced with permission from data in Table 6 of Noh and
Pang [18], Wiley, 2019.

The patterns of intestinal and liver metabolites formed upon inhibition of both the intestine and
liver are less revealing as to which tissue is being inhibited, since the proportions of M1 to M2 formed
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do not always change in the same direction. When inhibition occurring for both the intestine and liver
(same Ki = 2 µM for M1 and M2 formation), the fluctuations for M1 and M2 are small for the TM and
SFM for oral drug administration when inhibition of the intestine is highest. Although inhibition is
noted for the victim drug, the extent of M1 formation may even increase due to inhibition of liver
metabolism to a greater extent for the drug given intravenously due to the higher input with QHA,
with inhibition of the liver being more severe than for the intestine (Figure 6B). It is surmised that the
extent of change here depends very much on the parameter space and susceptibility of the intestine
versus the liver to the inhibitor and route of administration. But a higher AUC of the drug is strong
evidence for the presence of the inhibitor on intestinal and liver metabolism.

6.3. Changes in Intestinal and Liver Metabolism with Respect to Flow to Intestine and Liver

Different flow rates to the enterocyte region in the intestine–liver unit would affect intestinal and
liver drug processing differentially. An increase in QPV decreases the EI,po (increased FI,po), allowing
for more substrate flow to the liver for both the TM and SFM. With the greater substrate flux but faster
transit in the liver, the rate of liver metabolism may remain the same although the increase in liver
blood flow increases the CLH [47,50]. The converse is also true, with a lower QPV or QSMA, an increase
in EI and a lower flux to the liver will result.

6.4. Implications of the SFM on IVIVE

The IVIVE of transporter function is difficult to deduce when different transit times in GIT, gastric
emptying rates, varying pH, and microenvironment exist [116]. The permeability, apical absorptive
transporters, and split flow pattern of the intestine to the enterocyte and serosal regions, and efflux
transporters complicate the IVIVE picture in the prediction of Fa and FI. In terms of IVIVE, Kadono et
al. [117] employed permeability measurements in artificial membranes to obtain Fa from the apparent
permeability (Papp) with the parallel artificial membrane permeability assay (PAMPA) and obtain Fa

and FI from a scaling factor against a standard such as midazolam using the Yang equation [83]. In
addition, IVIVE may be poor for the SFM due to the split flow behavior of the intestinal models, when
there is incomplete accessibility of the substrate in circulation to reach enterocytes to fully recruit the
intestinal metabolic activity, and this translates to poor IVIVE for the liver. Moreover, methods for
identification of intestinal enzymatic activities vary. There are differences in the intestinal functional
activity with the mucosal scraping and buffer isolation methods [70,118]. Paine et al. [70] found
CYP3A content in each intestinal segment as 30.6, 22.6 and 16.6 pmol/mg mucosal microsomal protein,
with similar Km towards midazolam but varying Vmax values. von Richter et al. [119] showed that
the CYP3A4 in isolated enterocytes (76 pmol/mg homogenate protein corresponded to 210 pmol/mg
microsomal protein) and was 3.2-fold higher than that in corresponding liver samples, whereas the
P-gp content was 7.2-fold higher in enterocyte homogenate than in liver. The CYP3A4 content from
the isolated cell method is higher than that from mucosal scraping. Moreover, intestinal metabolism
may occur within cells that are shed into the gut lumen that possess copious metabolic activities
in the lumen [118]. Nishimuta et al. [120] employed human intestinal and human microsomes to
predict the CYP3A intrinsic metabolic clearance for human intestinal microsomes (HIM) versus human
liver microsomes (HLM) (CLint,HIM and CLint,HLM, corrected by the ratio of CLint,HIM to CLint,HLM),
and alamethicin-activated HIM for the clearance of UGT substrates. The CYP3A intestinal intrinsic
clearance (CLint,I,CYP3A) was highly correlated to hepatic intrinsic clearance (CLint,L,CYP3A), being
2.2-fold higher in liver, although the correlation was poorer for UGTs. Ito and Houston [34] scaled
up the CLint,H with an empirical scaling factor (SF) of 6.2 g protein/kg weight to compensate for the
extent of underprediction for IVIVE in rats. Allometric scaling shows that in vitro microsomal data
consistently underestimate CLint,met,I and CLint,met,H. Hence, scaling and IVIVE remain somewhat
empirical approaches.
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7. Other Intestinal Models

Our laboratory has extended the SFM to the segmental, segregated flow model (SSFM) to
accommodate transporter and enzyme heterogeneity [121]. However, we have oversimplified the
segments as a 1/3 of the total volume, flow and permeability characteristics (Figure 7), even knowing
that the surface area, permeability, and lengths of the segments of the digestive tract differed [27]. We
found higher abundance P450 activity in the proximal region but higher localization of P-gp in the distal
region; this pattern produced the lowest availability in drug absorption (Figure 8). This same trend
was confirmed by Watanabe et al. [122] years later in a simulation study. The transporter distributions
and functions along the intestinal segments reveal similar transporter and drug metabolizing enzyme
distribution patterns along the small intestine for rodents and humans (Table 4). Therefore, the rat may
be used to predict drug transport across the small intestine in humans. The same extrapolation, however,
is not recommended for drug metabolizing enzymes due to the known species differences observed
among animal species [123]. The TM- or SFM-PBPK models have been developed to encompass
heterogeneity of transporters and enzymes for improved prediction of PK, including polymorphism and
sex differences in enzymes, and tease out contributions of intestine and liver in first-pass metabolism
(Table 4). Other factors on the physiology of the GIT may also be considered. It is known that the
duodenum is the shortest segment and is approximately 1/5 and 1/7 the lengths of the jejunum and
ileum, respectively [28]. As shown by the transport of substrates in segments using chamber or
single-pass segmental perfusion, drug permeability, revealed with use of a deconvolution-permeability
model, is higher in the jejunum [124,125]. Moreover, the pH and transit times in the duodenum,
jejunum and ileum differed [28]. Dressman et al. [3] described, in the continuous absorption model,
that the GIT is a continuous tube with varying spatial properties on permeability and solubility and pH,
surface area, lengths, diameters, gastric emptying [4], highlighting the importance of gastric emptying
time, small intestinal transit time, and effective surface area for absorption [5]. There are other models
that accommodate variation in villi surface area, in drug permeability along the intestinal segment.
Wu [126] applied the SSFM to examine enterohepatic circulation of glucuronides and found that the
processes is affected by segmental distribution of enzymes. With accountability of segmental CYP
and P-gp activities, reasonable absorption, efflux, and metabolism are observed for midazolam and
compound S [25].
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Figure 7. An expanded intestinal flow model—the segmental segregated flow PBPK model depicting
the intestine as three different segmental regions with segregated flows to the enterocyte and serosal
subcompartments. This figure was reproduced with permission from [121], ASPET, 2003.
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Figure 8. Heterogeneous distribution of Cyp3a and P-gp in the rat intestine, and changes 
accompanying the inducer, pregnenolone 16α-carbonitrile (PCN) on intestinal bioavailablity. Both P-
gp and Cyp3a relative protein expressions were determined by Western blotting (see referecne 26). 
The scale on the y-axes of the left panel represents an arbitray scale. Segments 1, 2, 7, and 8 are the 
duodenal, proximal jejunal, distal jejunal and ileal segments, respectively. The symbols, duo and jej 
of the left panel denote the duodenum and jejunum, respectively. This figure was reproduced with 
permission from [26], ASPET, 2006. 
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Organic anion transporting polypeptide 3 (Oatp3) highest in jejunum [133] 
Oligopeptide transporter 1 (PepT1) duodenum > jejunum > ileum [133] 

Multidrug resistance-associated protein 2 (Mrp2) duodenum > jejunum > ileum [133] 
Multidrug resistance-associated protein 3 (Mrp 3) duodenum < jejunum < ileum [133] 
Multidrug resistance-associated protein 4 (Mrp 4) duodenum > ileum > jejunum [88] 

P-glycoprotein (P-gp) duodenum < jejunum < ileum [26] 
Organic solute transporter α-β (Ostα,β) duodenum > jejunum > ileum [21] 

Cytochrome P450 3A (Cyp3a) duodenum ~ jejunum > ileum [134,135] 
Estrone sulfatase duodenum > jejunum > ileum [136] 

Glutathione S-Transferase (Gst) duodenum ~ jejunum > ileum [137] 
UDP-Glucuronosyltransferase (Ugt) duodenum ~ jejunum > ileum [138] 

Humans 
ASBT duodenum < ileum [139] 

OATP2B1 duodenum < ileum [140] 

PEPT1 
slightly increasing 

jejunum > ileum > duodenum 
duodenum ~ ileum 

[19,139] 

MCT1 
slightly decreasing 
duodenum > ileum 

[19] 

CNT11 
CNT2 

even 
duo > ileum 

[138] 

OCT1 even [19] 
OCTN1 duodenum < ileum [138] 
OCTN2 even [19,139] 
MRP3 even [19] 

Figure 8. Heterogeneous distribution of Cyp3a and P-gp in the rat intestine, and changes accompanying
the inducer, pregnenolone 16α-carbonitrile (PCN) on intestinal bioavailablity. Both P-gp and Cyp3a
relative protein expressions were determined by Western blotting (see referecne 26). The scale on the
y-axes of the left panel represents an arbitray scale. Segments 1, 2, 7, and 8 are the duodenal, proximal
jejunal, distal jejunal and ileal segments, respectively. The symbols, duo and jej of the left panel denote
the duodenum and jejunum, respectively. This figure was reproduced with permission from [26],
ASPET, 2006.

Commercially available softwares on drug absorption include Simcyp® (advanced dissolution
absorption metabolism (ADAM) model is implemented in Simcyp®), GastroPlus and GI-Sim [127],
and GUT framework [128], which tackle the subject of drug absorption. Although the same input
parameters may be used, the software show different Fa prediction characteristics depending on the
rate-limiting steps of oral drug absorption [127]. The advanced compartmental absorption transit
model or ACAT model [9], first conceived by Yu and Amidon [2] as the compartment absorption
model [1], has evolved to include permeability (in silico properties derived from chemical structure),
logP, pKa, particle size and dose. Dissolution that is based on the Nernst–Brunner modification of the
Noyes–Whitney equation is implemented. The influx and efflux transporters [129], pH and pKa, and
heterogeneous enzyme distribution are recognized as important processes of the software [2,10,11].
Other considerations include the microbiota and composition. It appears that most of these models deal
with dosage form and drug properties and may not have considered the segregated flow behavior of the
intestine. A suggestion is for these software developers to consider first finalizing their software based
on the absorption of a drug solution while incorporating flow and enzyme/transporter heterogeneity,
then combining this to another model with the drug and intestine properties (logP, pKa, particle size,
pH, surface area) to consider drug absorption.

Table 4. Heterogeneous distribution of enzymes and transporters in animal and human intestine.

Transporter/Enzyme Segmental Distribution References

Animals

Apical sodium-dependent bile acid transporter
(Asbt)

highest at ileum
duodenum < jejunum < ileum [130,131]

Nucleoside transporters (Cnt) highest in jejunum [132]

Monocarboxylic acid transporter (Mct1) duodenum < jejunum > ileum [88]

Organic cation transporter 1 (Oct1) duodenum < jejunum < ileum [133]
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Table 4. Cont.

Transporter/Enzyme Segmental Distribution References

Organic cation transporter 3 (Oct3) duodenum < jejunum < ileum [133]

Organic anion transporting polypeptide 3 (Oatp3) highest in jejunum [133]

Oligopeptide transporter 1 (PepT1) duodenum > jejunum > ileum [133]

Multidrug resistance-associated protein 2 (Mrp2) duodenum > jejunum > ileum [133]

Multidrug resistance-associated protein 3 (Mrp 3) duodenum < jejunum < ileum [133]

Multidrug resistance-associated protein 4 (Mrp 4) duodenum > ileum > jejunum [88]

P-glycoprotein (P-gp) duodenum < jejunum < ileum [26]

Organic solute transporter α-β (Ostα,β) duodenum > jejunum > ileum [21]

Cytochrome P450 3A (Cyp3a) duodenum ~ jejunum > ileum [134,135]

Estrone sulfatase duodenum > jejunum > ileum [136]

Glutathione S-Transferase (Gst) duodenum ~ jejunum > ileum [137]

UDP-Glucuronosyltransferase (Ugt) duodenum ~ jejunum > ileum [138]

Humans

ASBT duodenum < ileum [139]

OATP2B1 duodenum < ileum [140]

PEPT1
slightly increasing

jejunum > ileum > duodenum
duodenum ~ ileum

[19,139]

MCT1 slightly decreasing
duodenum > ileum [19]

CNT11
CNT2

even
duo > ileum [138]

OCT1 even [19]

OCTN1 duodenum < ileum [138]

OCTN2 even [19,139]

MRP3 even [19]

P-gp ileum > jejunum > proximal [19,25,28,140]

BCRP even
jejunum > ileum > duodenum [19,55,141]

MRP2 mRNA
MRP1 protein
MRP2 protein

slightly decreasing
proximal > distal

even
[19,142]

MRP1 to 5
MRP2 to MRP6

MRP4
duodenum < jejunum and ileum [141,143,144]

CYP3A4 proximal > distal [25,28]

UGT1A1
UGT1A3
UGT1A4
UGT1A5
UGT1A6
UGT1A7
UGT1A8
UGT1A9
UGT1A10
UGT2B4
UGT2B7

UGT2B10
UGT2B15

duodenum ~ jejunum and ileum
duodenum < jejunum and ileum
duodenum ~ jejunum and ileum
duodenum ~ jejunum and ileum
duodenum > jejunum and ileum
duodenum ~ jejunum and ileum
duodenum ~ jejunum and ileum
duodenum ~ jejunum and ileum
duodenum and jejunum > ileum
duodenum and jejunum < ileum
duodenum and jejunum < ileum
duodenum and jejunum < ileum
duodenum < jejunum and ileum

[145]

SULT1A1, 1A3, 1B1, 1E1
SULT2A1

jejunum < ileum
jejunum > ileum [146]

GST
GST

jejunum > ileum
jejunum ~ ileum [147]

8. Conclusions

This review has highlighted that metabolite formation and DDIs of the intestine are not well
predicted by the traditional intestinal flow model (TM) with respect to the routes of administration of
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drug and inhibitor. Instead, we recognize the importance of the segregated flow model (SFM) as the
premier model to examine intestinal drug metabolism. The evidence in the literature is compelling
in support of the SFM based on route-dependent intestinal metabolism. The higher propensity of
inhibition with oral and not intravenous dosing is indisputable. Implementation of the SFM is just
an additional intestinal compartment away, and this PBPK segregated intestinal flow model (SFM)
should be expanded to encompass heterogeneity of transporters and enzymes (SSFM) for improved
prediction of PK, including polymorphism and sex differences in enzymes to tease out contributions of
intestine and liver in first-pass metabolism. This type of metabolism model could now be coupled with
an absorption model to fully investigate the different aspects of Fa, FI and FH. We encourage the use
of the more “bottom–up” approach in PBPK modeling to provide mechanistic insight into intestinal
metabolism/transport [148] by incorporating the SFM into the model. Another improvement could be
made is when the QSMA is not assumed to equal QPV. The difference in flow (QPV-QSMA) is due to
the venous returns from the coeliac and splenic arteries, and stomach and mesenteries. These venous
returns would join that from the small intestine (QSMA) and the hepatic arterial flow to perfuse the
liver [149,150].
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