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Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy in
childhood. Despite enormous improvement of prognosis during the last half
century, ALL remains a major cause of childhood cancer-related mortality.
During the past decade, whole genomic methods have enhanced our
knowledge of disease biology. Stratification of therapy according to early
treatment response measured by minimal residual disease allows risk group
assignment into different treatment arms, ranging from reduction to
intensification of treatment. Progress has been achieved in academic clinical
trials by optimization of combined chemotherapy, which continues to be the
mainstay of contemporary treatment. The availability of suitable volunteer main
histocompatibility antigen-matched unrelated donors has increased the rates of
hematopoietic stem cell transplantation (HSCT) over the past two decades.
Allogeneic HSCT has become an alternative treatment for selected,
very-high-risk patients. However, intensive treatment burdens children with
severe acute toxic effects that can cause permanent organ damage and even
toxic death. Immunotherapeutic approaches have recently come to the
forefront in ALL therapy. Monoclonal antibodies blinatumomab and inotuzumab
ozogamicin as well as gene-modified T cells directed to specific target antigens
have shown efficacy against resistant/relapsed leukemia in phase I/II studies.
Integration of these newer modalities into combined regimens with
chemotherapy may rescue a subset of children not curable by contemporary
therapy. Another major challenge will be to incorporate less toxic regimens into
the therapy of patients with low-risk disease who have a nearly 100% chance of
being cured, and the ultimate goal is to improve their quality of life while
maintaining a high cure rate.
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Introduction
Acute lymphoblastic leukemia (ALL) accounts for 25% of all 
childhood cancers and its outcome significantly influences the 
overall treatment results in pediatric oncology. The improvement of 
prognosis in childhood ALL is one of the most successful stories of 
modern medicine. An almost uniformly fatal disease at the begin-
ning of the 1960s has transformed into a curable disorder in more 
than 90% of children with contemporary therapy. The major reason 
for improved survival is a decreased risk of relapse1,2. The outcome 
continues to improve at the beginning of the 21st century. More-
over, this progress takes place not only in high-income countries 
but also in countries with limited resources because conventional 
chemotherapy is inexpensive and readily available worldwide3.

Early response to treatment
Since the beginning of the 2000s, patients have been stratified into 
risk groups according to the early treatment response evaluated by 
minimal residual disease (MRD). It has been determined by detec-
tion of aberrant leukemic phenotype by flow cytometry or by spe-
cific rearrangements of immunoreceptor genes IgH/TCR (heavy 
immunoglobulin/T-cell receptor)4. MRD has been confirmed in 
multivariate analysis as the most significant prognostic factor 
within all immunophenotypes and genetic subgroups. MRD is first 
monitored during and at the end of induction5,6. Patients with a slow 
early response are stratified into the high-risk group. They profit 
from a more intensive post-induction treatment and augmented 
delayed intensification7–10. Rapid early responders to combined 
chemotherapy with B-cell precursor (BCP)-ALL benefit from early 
intensification of post-induction therapy, not from a prolonged 
double-delayed (augmented) intensification11,12. MRD performed 
about 3 months from diagnosis—that is, after early post-induction 
treatment—identifies a subset of patients with inferior outcome 
on Berlin-Frankfurt-Münster (BFM) protocols13,14. Treatment of 
T-cell (T)-ALL stratified according to treatment response has led 
to the excellent event-free survival (EFS) and overall survival (OS) 
of 85% and over 90%, respectively15, although T-cell immunophe-
notype remains an adverse risk factor in multivariate analyses of 
clinical trials1,14. Stratification according to MRD response helps 
to improve prognosis of T-ALL patients in general but also in 
subsets, such as in the recently identified early T-cell precursor  
(ETP)-ALL. ETP-ALL patients tend to respond more slowly to 
induction therapy, and initial studies reported poor outcome16. 
When stratified according to MRD response, their outcome is 
comparable to those with non-ETP-ALL15,17.

Contemporary therapy
Optimization of standard chemotherapy in academic randomized 
clinical studies improves the outcome even at the beginning of 
the 21st century. Substituting dexamethasone for prednisone for 3 
weeks in the context of 2 years of BFM multi-agent therapy reduced 
the relapse risk by one-third18. On the other hand, dexamethasone 
also accounts for both long- and short-term side effects, many of 
which are dependent on dose intensity19. The immunosuppressive 
action of dexamethasone, alongside the use of anthracyclines, con-
tributed to higher incidence of infection-related mortality compared 
with prednisone and thus resulted in no difference in OS between 
both arms. High-dose methotrexate 5 g/m2 (HD MTX) in consolida-
tion reduces bone marrow (BM) and extramedullary relapses more 

efficiently than lower escalating doses of intravenous MTX without 
leucovorin rescue (followed by l-asparaginase, Capizzi regimen) 
in BCP-ALL20. l-asparaginase has been a key component of all 
treatment regimens for childhood ALL since the 1960s. Its optimal 
dose, preparation, and route of administration remain uncertain21. 
Prolonged and intensified therapy with l-asparaginase improves the 
outcome of children with ALL. Administration of l-asparaginase 
can be hampered by allergic reactions. Clinical allergy is associated 
with inactivation of l-asparaginase by antibodies. Apart from overt 
allergy, antibodies can also cause a so-called silent inactivation, in 
which l-asparaginase is neutralized subclinically. Monitoring of 
l-asparaginase blood levels is useful because it detects silent  
inactivation22. Pegylated Escherichia coli l-asparaginase  
(l-asparaginase coupled to polyethylene glycol) has a longer 
half-life and is potentially less immunogenic than native E. coli  
l-asparaginase and has been used with increasing frequency in 
frontline pediatric treatment regimens23. Following allergy to 
pegylated l-asparaginase, Erwinia l-asparaginase can be substi-
tuted and achieves therapeutic activity24.

Cranial irradiation is associated with a higher incidence of second-
ary malignancies and cognitive impairment in young children25,26. 
The use of dexamethasone, HD MTX, and intrathecal triple therapy 
in central nervous system (CNS) leukemia treatment has enabled 
reduction or even omission of cranial irradiation without com-
promising OS27,28. In a recently published meta-analysis, cranial 
radiotherapy (CRT) was associated with reduced risk of relapse 
only in patients with overt CNS leukemia at diagnosis29. Omission 
of CRT from childhood ALL therapy results in improved cognitive 
outcome. However, despite this improvement, survivors continue to 
demonstrate the elevated risk for attention deficits when compared 
with a reference population of children30.

The indication of hematopoietic stem cell transplantation (HSCT) 
in first complete remission (CR) is recommended for a subgroup 
of children (approximately 5%) who are resistant to current 
chemotherapy (induction failure, persistent high MRD)31,32.

Maintenance treatment with mercaptopurine and MTX is an 
integral part of ALL treatment. Lower adherence to oral mercap-
topurine increases relapse risk33. The addition of vincristine plus 
steroid pulses in maintenance treatment still may be useful in 
cases where less intensive early therapy is used34. Children with 
intermediate-risk ALL who received intensive chemotherapy 
on the basis of BFM protocols did not benefit from intensifica-
tion of the maintenance therapy with pulses of vincristine and  
dexamethasone35. Some subgroups of patients with unfavorable 
biology, like deletion of the gene for transcription factor IKZF1, 
might benefit from pulses during maintenance even on treatment 
with BFM backbone36.

Treatment-related mortality
The incidence of treatment-related mortality (TRM) on contem-
porary ALL trials is reported to be between 2 and 4%. The most 
common cause of death is infection. The 5-year EFS of children 
with low-risk ALL who have favorable cytogenetics and good 
response to treatment is higher than 90%, and death from TRM 
is as common as relapse. As such, reducing infection-related 
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mortality is a paramount concern when improving outcomes in 
childhood ALL. Patients at highest risk of infection-related TRM 
are children older than 10 years, slow early responders, and those 
with Down syndrome (DS)37,38. Lower socioeconomic status, non-
compliance to therapy, and (in countries with limited resources) 
malnutrition all increase the risk of treatment failure39,40.

Biologic and genetic features: targeted therapy
Good risk prognostic genetic biomarkers of BCP-ALL are t(12;21) 
(ETV6-RUNX1) and high hyperdiploidy (51–65 chromosomes)41. 
Patients with either of these abnormalities have a 5-year OS of over 
90%. Five chromosomal abnormalities—MLL (KMT2A) trans-
locations, t(9;22) (BCR-ABL1), t(17;19) (TCF3-HLF), near hap-
loidy (fewer than 30 chromosomes), and low hypodiploidy (30–39  
chromosomes)—are well-recognized prognostic biomarkers of 
high-risk disease at all ages42. Previously reported uniformly poor 
outcome of patients with hypodiploidy of less than 45 chromosomes 
might be improved by MRD-stratified treatment43. Approximately 
30% of pediatric patients with BCP-ALL are screened negative for 
established diagnostic and prognostic markers. They are referred 
to as B-other ALL. Approximately 50% of B-other cases have a 
gene expression profile similar to that of BCR-ABL1-positive ALL. 
These cases form a subgroup that has been termed BCR-ABL1-
like or Ph-like44,45. They frequently harbor alterations of IKZF1 or 
other B-lymphoid transcription factor genes. Stratification of these 
patients according to MRD helps to improve previously reported 
poor outcome of this subgroup46. Kinase-activating gene fusions 
detected in this subgroup are collectively found in 1 to 2% of 
BCP-ALL cases and can be targeted with tyrosine kinase inhibi-
tors (TKIs)47. Patients failing initial treatment might profit from 
the introduction of TKIs to high-risk chemotherapy. Up to 5% of 
childhood ALL cases have JAK-STAT signaling pathway-activating 
fusions (CRLF2, JAK2, and EPOR), which appear to be targetable 
by JAK inhibitors48.

Philadelphia chromosome-positive acute lymphoblastic 
leukemia
HSCT has been the gold standard treatment for maintaining CR 
in Philadelphia chromosome-positive (Ph+) ALL since the 1990s; 
however, its importance may change in the era of TKIs. The onset 
of targeted therapy exemplified by TKIs has revolutionized the 
therapy of Ph+ ALL. TKIs are introduced early in induction and 
continue through maintenance treatment. Length of treatment and 
cumulative dose of TKIs seems to play a role in the achievement 
of a better outcome49,50. MRD is considered to be essential for risk 
group stratification. Discrepancies in MRD using IgH/TCR and 
BCR-ABL1 fusion indicate that lineages other than BCP may also 
be affected by the disease51. The best way to incorporate TKIs, con-
ventional chemotherapy, and HSCT is still unclear. With current 
approaches, which are developed from high-risk protocols, acute 
toxicity is a significant problem. Future trials will examine the 
necessary chemotherapy dose intensity alongside TKI therapy and 
address in which subgroups HSCT is needed; with regard to TKIs, 
which agent to use, how long application should be, and what the 
role of post-HSCT is must be further investigated52.

Clinical features: age and Down syndrome
Most of the adolescents older than 15 years can be cured with risk-
adjusted intensive therapy without HSCT. They show higher rates 
of severe infections, osteonecrosis, thrombosis, and hyperglyc-
emia53,54. On the other hand, the outcome of infants younger than 
1 year old is not improving. MLL gene rearrangement, which is 
associated with chemoresistance to conventional chemotherapy, 
is present in 80% of them. Their leukemic cells display a global 
hypermethylated genomic state. It explains remarkable sensitivity 
to demethylating agents55. Their potential to improve the outcome 
of the infant ALL cases will be verified in clinical trials.

Children with DS-ALL have a higher cumulative incidence of 
relapses and therapy-related mortality (infectious deaths) than non-
DS patients. They have low incidence of prognostically advanta-
geous genetic subtypes (ETV6-RUNX1 fusion, hyperdiploidy 
51–65 chromosomes). Higher risk of toxic complications puts 
pressure on physicians to reduce the treatment intensity in 
DS-ALL. However, even in DS, unmodified risk-adjusted ALL 
treatment, combined with good supportive care, is indicated56.

Leukemias of ambiguous lineage
Up to 5% of acute leukemia cases present with some kind of 
lineage ambiguity. Among the four subsets of ambiguous lineage 
leukemias, the most prevalent are those classified by the presence of 
too many phenotype features of the opposite lineage (ALL versus 
acute myeloid leukemia). The existing definitions are arbitrary and 
sometimes are criticized for including too few markers (the World 
Health Organization definition, now most widely used) or too many 
markers (the previous EGIL—European Group for the Immuno-
logical Classification of Leukemias—definition)57,58. Irrespective of 
the definition, the prognosis of children with this type of ambigu-
ity was slightly poorer when compared with other cases receiving 
the same treatment59,60. Much rarer subtypes are bilineal (biclonal) 
leukemias, in which two or more clones belonging to different 
lineages coexist at diagnosis. Interestingly, emerging studies 
show that despite phenotypic differences, the two clones often 
share genetic features (61 and Thomas Alexander, personal com-
munication). A third subtype, also uncommon, is the undifferenti-
ated leukemia. Patients with this subset do not fulfill the existing 
criteria for ALL or for acute myeloid leukemia. In such situa-
tions, infiltration of hematopoietic organs by another malignancy 
should always be considered. The fourth subtype is represented by 
leukemias that change their phenotype from one lineage to another 
during the beginning of treatment. Historically, this feature has 
mostly been referred to as being associated with MLL rearrange-
ments or BCR/ABL162. More recently, lineage switching toward 
monocytic lineage has been described mostly in ALLs with aber-
rant CD2 at presentation63. This phenomenon is present in varying 
degrees in up to 4% of BCP-ALL cases and is mostly temporary, 
not requiring major changes of treatment; however, monocytosis 
as well as monocytoid organ infiltration may be clinically sig-
nificant, and development into monocytic leukemia has been 
observed in one case63. Besides CD2, such “swALL” cases are 
associated with changes in CEBPA methylation63 and overlap with 
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ERG-deleted ALLs64. Overall, owing to their rarity, ambiguous 
lineage leukemias should be studied cooperatively. An international 
study currently taking place addresses the treatment outcome of 
over 270 cases and their molecular background and aims to find 
the causal factors as well as optimal treatments65.

Relapsed acute lymphoblastic leukemia
Relapse is diagnosed in fewer than 15% of children. Relapsed 
disease tends to be more drug resistant than is newly diagnosed 
ALL, as shown by lower disease clearance and reduced CR rate, 
especially in early relapses66,67. When diagnosed, most ALL cases 
are oligoclonal. A patient’s sensitivity or resistance to therapy is 
affected by genetic variations in individual subclones, and these 
can influence a subsequent clonal evolution during treatment as 
well68. Major diagnostic clone at diagnosis is eradicated by chemo-
therapy in the majority of cases. A substantial part of relapsed ALL 
cases arise from minor subclones already present at diagnosis. 
Some abnormalities gained under chemotherapy pressure confer 
resistance to important components of combined chemotherapy, 
like nucleoside analogues (NT5C2, PRPS1 mutations) and gluco-
corticoids (CREBBP mutation)69–72. Despite this, the optimization 
of combined chemotherapy might improve the outcome. The UK 
ALL R3 randomized trial for patients in first relapse compared two 
anthracyclines, mitoxantrone and idarubicin, in induction. Relapse 
incidence was significantly lower in the group treated with mitox-
antrone and translated into a clear survival advantage of more than 
20%, one of the largest improvements ever achieved by a single drug. 
Surprisingly, no difference in MRD could be detected between two 
randomized groups. Three-year OS was 69% in the mitoxantrone 
group73. The most frequent type of relapse is late BM relapse, 
more than 6 months from completion of treatment in BCP-ALL. 
Contemporary chemotherapy combined with HSCT in MRD poor 
responders to induction treatment is able to cure 70% of children74. 
In this group, deletion of IKZF1 transcription factor and alteration 
of TP53 identify patients with significantly inferior outcome75. 
The outcome of early BM relapses of BCP-ALL (during treatment 
or less than 6 months from the completion of treatment) and all 
BM relapses of T-ALL is worse. HSCT is indicated in all of these 
patients achieving remission. Only one-third of them are cured76. 
Deletion of IKZF1 is strongly predictive of a second relapse after 
HSCT75. IKZF1 and TP53 represent relevant prognostic factors that 
should be considered in the assessment of children with relapsed 
ALL. The outcome of isolated and combined extramedullary 
relapses depends on the interval between diagnosis and relapse. 
HSCT may improve the outcome of those with highest risk.

The results of allogeneic HSCT are steadily improving. There is 
no difference in outcome between HSCT from matched sibling 
donors (MSDs) and unrelated main histocompatibility antigen-
identical 9–10/10 volunteers (matched unrelated donor [MUD]). 
Transplant-related mortality is now below 10% in MSD and 20% in 
MUD HSCT. The likelihood of being cured by HSCT performed in 
second remission is about 60%31. Standard conditioning regimens 
include total body irradiation, which is associated with signifi-
cant risk of secondary cancer. Substituting chemotherapy for total 
body irradiation is currently being evaluated by a randomized 
study.

Immunotherapy
The intensity of current front-line therapy has reached its threshold. 
Further intensification is not realistic. The majority of children with 
early BM relapse currently have little chance to be cured. There 
is growing evidence that targeted treatment and immunotherapy 
have the potential to improve the outcome of childhood ALL with 
reduced toxicity. A novel method of cellular therapy is based on 
the use of adoptively transferred T lymphocytes which were modi-
fied in vitro prior to transfer to express an artificial signaling mol-
ecule designated chimeric antigen receptor (CAR). The CAR 
redirects the specificity of the modified T lymphocytes to surface  
antigens expressed by malignant cells. The most successful 
example of CAR-based immunotherapy is the treatment of BCP-
ALL by targeting of the surface antigen CD19. In a pilot study, 
CR was achieved in 90% of 30 children and adults with highly 
refractory disease77. CAR cells can cross the blood-brain barrier 
and eliminate leukemic cells in the cerebrospinal fluid. CAR cells 
of the third generation are able to engraft and persist for at least 
several months78. The most common acute toxicity of CAR T cells 
is cytokine release syndrome. A wide variety of cytokines, includ-
ing interleukin-6, interferon-gamma, and tumor necrosis factor, are 
elevated in the serum of patients experiencing fever, tachycardia, 
hypotension, and other toxicities. Higher disease burden predicts 
more toxicity. The interleukin-6 receptor antagonist tocilizumab is 
widely used for toxicity following CAR infusion79. Randomized 
studies are needed to demonstrate whether they will be able to 
substitute HSCT.

Blinatumomab, a bi-specific anti-CD19/CD3 chimeric antibody, 
draws malignant B cells in close proximity to CD3-positive T cells. 
Activated T cells effectively induce serial target cell killing. In  
current clinical trials, blinatumomab is administered over a 28-day 
continuous infusion, followed by a 14-day rest period. In a 
phase I/II study of blinatumomab in children, objective responses 
were noted in 43% patients, including negative MRD in 39% of 
patients. Optimal placement of immunotherapy with blinatumomab 
or other conventional immunomodulating approaches or both has 
yet to be determined80,81.

The anti-CD22 immunoconjugate inotuzumab ozogamicin is an 
antibody-drug conjugate, consisting of humanized anti-CD22 mon-
oclonal antibody joined to the cytotoxic agent calicheamicin by a 
non-immunogenic linker. After inotuzumab calicheamicin binds to 
CD22, rapid internalization of the conjugated calicheamicin occurs, 
targeting tubulin and inducing DNA breakage, apoptosis, and cell 
death. The response rate in adults with refractory/relapsed ALL is 
80%, and clinical studies in children were launched recently82.

Conclusions
Despite advances in targeted therapy approaches, conventional 
chemotherapy is unlikely to be replaced and this is because of 
its impressive cure rate in ALL. The task in coming years will 
be to compare immunotherapy with standard chemotherapy on a  
randomized basis in frontline treatment and in the treatment of first 
relapse. The goals are to also cure those children in whom combined 
chemotherapy fails and to reduce the toxicity that is responsible for 
reducing the quality of life for those who are cured.
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ALL, acute lymphoblastic leukemia; BCP, B-cell precursor;  
BCP-ALL, B-cell precursor acute lymphoblastic leukemia; BFM, 
Berlin-Frankfurt-Münster (study group); BM, bone marrow; CAR, 
chimeric antigen receptor; CNS, central nervous system; CR,  
complete remission; CRT, cranial radiotherapy; DS, Down syn-
drome; DS-ALL; acute lymphoblastic leukemia in children with 
Down syndrome; EFS; event-free survival; ETP, early T-cell 
precursor; ETP-ALL, early T-cell precursor acute lymphoblas-
tic leukemia; HD, high-dose; HSCT, hematopoietic stem cell 
transplantation; IgH/TCR, heavy immunoglobulin/T-cell recep-
tor; MRD, minimal residual disease; MSD, matched sibling 
donor; MTX, methotrexate; MUD, matched unrelated donor; OS, 

overall survival; Ph+ ALL, Philadelphia chromosome-positive 
acute lymphoblastic leukemia; T-ALL, T-cell acute lymphoblastic 
leukemia; TKI, tyrosine kinase inhibitor; TRM, treatment-related 
mortality.
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