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Serum lipidomics profiles
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diabetes in patients from
multiple communities
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Objective: Dyslipidemia is a hallmark of diabetes mellitus (DM). However,

specific lipid molecules closely associated with the initiation and progression

of diabetes remain unclear. We used a pseudotargeted lipidomics approach to

evaluate the complex lipid changes that occurred long before the diagnosis of

type 2 diabetes mellitus (T2DM) and to identify novel lipid markers for screening

prediabetes mellitus (PreDM) and T2DM in patients frommultiple communities.

Methods: Four hundred and eighty-one subjects consisting of T2DM, three

subtypes of PreDM, and normal controls (NC) were enrolled as discovery

cohort. Serum lipidomic profiles of 481 subjects were analyzed using an

ultrahigh performance liquid chromatography-triple quadrupole mass

spectrometry (UHPLC-QqQ-MS)-based pseudotargeted lipidomics method.

The differential lipid molecules were further validated in an independent case-

control study consisting of 150 PreDM, 234 T2DM and 94 NC.

Results: Multivariate discriminative analyses show that lipidomics data have

considerable potential for identifying lipidome differences among T2DM,

subtypes of PreDM and NC. Statistical associations of lipid (sub)species

display significant variations in 11 lipid (sub)species levels for T2DM and

distinctive differences in 8 lipid (sub)species levels between prediabetic and

normoglycemic individuals, with further differences in 8 lipid (sub)species levels

among subtypes of PreDM. Adjusted for sex, age and BMI, only two lipid (sub)

species of fatty acid (FA) and phosphatidylcholine (PC) were associated at p<

0.05 for PreDM (all) and subtypes of PreDM. The defined lipid markers not only

significantly improve the diagnostic accuracy of PreDM and T2DM but also
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effectively evaluating the risk of developing into each subtype of PreDM and

T2DM when addition of age, sex, BMI, and FPG, respectively.

Conclusions: Our findings improve insights into the lipid metabolic complexity

and interindividual variations among subtypes of PreDM and T2DM, beyond the

well-known differences in dyslipidemia in clinic.
KEYWORDS

diabetes, subtypes of prediabetes, impaired glucose tolerance, impaired fasting
glucose, lipidomics, dyslipidemia, biomarkers
Introduction

Type 2 Diabetes mellitus (T2DM) is one of the most

prevalent endocrine diseases worldwide characterized by

dyslipidemia and dysglycemia. Prediabetes mellitus (PreDM) is

a state of dysglycemia that precedes the onset and development

of T2DM (1). The International Diabetes Federation (IDF, 2019)

estimates that 700.2 million adults aged 20-79 years will suffer

from T2DM by 2045. Currently, the prevalence of PreDM in

adults is reported to be 38% in the USA and 35.7% % in China (2,

3). T2DM and PreDM have become one of the leading

challenges of public health in the world.

Unfortunately, most diabetic patients have no obvious

disease symptoms in the early stage, leading to miss the

opportunities for timely diagnosis of T2DM. Individuals with

PreDM experience a certain degree of lipid metabolic disorder

and are likely to develop overt T2DM (4). PreDM can be divided

into three different subcategories such as impaired glucose

tolerance (IGT), impaired fasting glucose (IFG), and IGT plus

IFG from an oral glucose tolerance test (OGTT) data according

to World Health Organization (WHO 1999) diagnostic criteria.

Although all three belong to PreDM, they differ somewhat in

their biological underpinnings. For example, fasting and 2-h

glucose differ in hepatic insulin sensitivity, muscle insulin

resistance and first- and second-phase insulin responses (5).

Furthermore, a few of those with PreDM are so identified on all

three subcategories (6).

Conventional diabetic risk factors such as plasma

triacylglycerols (TG), total cholesterol (TC), small dense low

density lipoprotein cholesterol (LDL-C), and high-density

lipoprotein cholesterol (HDL-C), are well-established (7–9).

However, it is not well understood whether independent

pathways exist that bypass these conventional factors

altogether due to large individual differences and the

complexity of the pathophysiological mechanisms of diabetes.

To this end, further understanding the lipid molecular pathways

underlying prediabetic and diabetic disease especially for
02
subtypes of PreDM, may facilitate to find novel strategies

which interrupt, reverse, or prevent its initiation prior to

clinical disease.

Last but not least, many studies have shown that T2DM can

be prevented or delayed by intensive behavioral lifestyle and

pharmacological interventions in high-risk populations,

especially in subjects with PreDM (10, 11). It is warranted to

better identify those at risk and to focus prevention efforts on

those who will benefit the most. The OGTT is the gold standard

for the diagnosis of PreDM and DM, yet is not popular with

primary care physicians and patients. To a large extent, OGTT

has been replaced by the more convenient FPG and HbA1c

measurements as diagnostic tools (12, 13). However, FPG or

HbA1c is prone to miss a considerable number of affected

individuals (14). Therefore, developing a simple means for

identifying the subjects with PreDM and DM would be

very valuable.

In recent decades, the advent of high-resolution and high-

sensitivity “omics” techniques has provided clinicians with an

additional avenue to monitor disease-related abnormalities from a

molecular level perspective (15). Lipidomics can capture both

endogenous and exogenous lipidome changes in living systems in

response to internal and external perturbations and thus confers

further insights into the intricate pathophysiology of diseases (15).

A growing number of studies have been focused on the

relationship between dysregulation of lipid metabolism and the

pathogenesis of T2DM and/or PreDM (16–19). An updated

systematic review and meta-analysis of prospective cohort

studies identified 62 metabolomics reports testing prospective

associations between metabolites/lipids and (pre)diabetes

progression (16). The Prevencion con Dieta Mediterranea

(PREDIMED) study reported that the baseline levels of

glycerides and phosphatidylethanolamines (PE) exhibited highly

positive associations with the development of T2DM (18). Some

recent studies have also shown that glycerophospholipids (GPL),

fatty acids (FA) and acylcarnitines are also associated with the

onset and development of T2DM (19–21). These results
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demonstrated that the lipidomics data can provide important

information about diabetes and its progression. However, it is also

evident that the identification and screening of prediabetic

population, especially for subtypes of PreDM were neglected.

In this study, we conducted a pseudotageted lipidomics

analysis for 959 serum samples from multiple communities in

Shanghai, China, including 469 newly diagnosed T2DM patients,

301 subjects of three subtypes of PreDM and 189 individuals with

normal glucose tolerance. Our aims were to 1) explore distinct

differences in serum lipidome from the aspect of the molecular

level during the progression of prediabetic and diabetic

individuals beyond the well-known differences in dyslipidemia

in clinic; 2) identify specific lipid (sub)species associated with each

subtype of PreDM; and 3) define diagnostic lipid markers, which

is suitable for improving the efficiency and accuracy of current

routine (pre)diabetic screening.
Materials and methods

Participants

A total of 959 human fasting serum samples for

pseudotargeted lipidomics analyses were collected using

Vacuette gel plastic tubes from Shanghai Jiao Tong University

Affiliated Sixth People’s Hospital (Shanghai, China). All of the

serum samples were stored at -80°C prior to sample

pre-treatment.

Diagnostic criteria were applied according to the standards

of medical care for T2DM in China 2019 (22), which adopts the

World Health Organization (WHO 1999) diagnostic criteria.

PreDM is divided into three different subcategories: impaired

glucose tolerance (IGT) with 7.8 mmol/L ≤ 2h-PG< 11.1,

impaired fasting glucose (IFG) with 6.1 mmol/L ≤ FPG< 7.0

and IGT&IFG with 7.8 mmol/L ≤ 2h-PG< 11.1 and 6.1 mmol/

L ≤ FPG< 7.1 based on an Oral glucose tolerance test (OGTT)

data. The study was approved by the Ethical Committees of

Shanghai Jiao Tong University Affiliated Sixth People’s Hospital

and performed according to the declaration of Helsinki of 1964

and its later amendments. All participants provided informed

written consents.
Materials and chemicals

HPLC grade acetonitrile (ACN), methanol (MeOH) and

isopropanol (IPA) were purchased from Merck (Darmstadt,

Germany). HPLC grade methylene chloride (CH2Cl2), tert-

butyl methyl ether (MTBE) and ammonium acetate (AmAc)

were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Ultrapure water was obtained by the Milli-Q system

(Millipore, Billerica, MA). Lipid standards including

phosphatidylcholine (PC) 19:0/19:0, lysoPC (LPC) 19:0, PE
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17:0/17:0 and PE 15:0/15:0, phosphatidylserine (PS) 17:0/17:0,

phosphatidylglycerol (PG) 17:0/17:0, sphingomyelin (SM)

d18:1/12:0, ceramide (Cer) d18:1/17:0, diacylglycerol (DG)

12:0/12:0 and DG 14:0/14:0, triacylglycerol (TG) 15:0/15:0/15:0

and TG 20:0_20:1_20:0-d5, FA 16:0_d3 and FA 18:0_d3 were

purchased from Avanti polar lipid (Alabaster, AL).
Sample preparation

Briefly, 150 mL of cold MeOH containing FA 16:0_d3 and

FA 18:0_d3 at 0.67 μg/mL, LPC 19:0 at 0.33 μg/mL, PC 19:0/19:0

at 0.67 μg/mL, PE 17:0/17:0 and PE 15:0/15:0 at 0.33 μg/mL, PS

17:0/17:0 at 0.35 μg/mL, PG 17:0/17:0 at 0.35 μg/mL, SM d18:1/

12:0 at 0.17 μg/mL, DG 12:0_12:0 and DG 14:0_14:0 at 0.5 μg/

mL, TG 15:0/15:0/15:0 and TG 20:0_20:1_20:0-d5 at 0.53 μg/mL

was added to 20 mL of each serum or quality control (QC)

sample followed by the addition of 500 mL of MTBE. After that,

the mixture was vortexed for 10 min. And then 150 mL of

ultrapure water was added to the mixture to form a two-phase

system. Subsequently, the mixture was vortexed for 60 s and then

centrifuged at 13,000 g and 4 °C for 10 min. In the end, 200 μL of

the supernatant was lyophilized and stored at -80 °C prior to LC-

MS analysis. The lyophilized residues were resuspended in ACN/

IPA/H2O (65:30:5, v/v/v) containing 5 mM of AmAc.

QC sample was prepared by mixing an equal amount of

serum from each sample to monitor the stability of the

lipidomics analysis process. The serum samples in the

discovery and validation sets were randomly analyzed and one

blank sample plus one QC sample were inserted in the analytical

sequence after every run of 10 serum samples.
Pseudotargeted lipidomics analysis

ACQUITY UPLC (Waters, Milford, MA, U.S.A.) coupled to

a hybrid QqQ-Trap 5500 system (AB SCIEX/MDS-Sciex,

Concord, ON, Canad) that equipped with a Turbo ion spray

source was used for pseudotargeted lipidomics profiling analysis

in the scheduled MRM mode.

Lipid separation was performed on a Waters BEH C8

column (2.1 mm×100 mm, 1.7 μm). The mobile phase

consisted of 60:40 (v/v) ACN/H2O with 10 mM of AmAc

(phase A) and 90:10 (v/v) IPA/ACN containing 10 mM of

AmAc (phase B). The flow rate was set at 0.3 mL/min and the

column temperature was set at 60°C. The elution gradient was

50% B at 0-1.5 min and increased linearly to 85% B at 9.0 min,

and then reached 100% B at 9.1 min, hold for 1.9 min. Finally,

the elution gradient was returned to 50% B in 0.1 min, and held

for 1.9 min for column equilibrium. The total running time was

13 min.

The MS detection was operated in positive and negative ion

modes, respectively. In positive mode, the IonSpray voltage was
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5500 V, ion source temperature was set to 500°C, gas 1 (GS1)

and gas 2 (GS2) were both set to 50 psi. In negative ion mode, the

IonSpray voltage was -4500 V, ion source temperature was set to

550°C, GS1 and GS2 were both set to 40 psi. In both ion modes,

the collision gas and the curtain gas were set to “High” and 35

psi, respectively. Lipid ion pairs existing in the serum sample

were identified according to the strategy described

previously (23).

Considering the large sample size involved in this study, the

retention time (tR) of the detected lipids was corrected from 20

min (24) to 13 min elution gradient by the spiked lipid internal

standards to improve the analytical throughput of

pseudotargeted lipidomics in the subsequent serum sample

analysis. The information of the internal standards is listed in

Supplementary Table S1.
Data processing and statistical analysis

The lipidome data collected by the pseudotargeted

lipidomics method were processed using MultiQuant software

(version 3.0.3, AB SCIEX, Framingham, U.S.A.). The intensities

of lipids in each sample were normalized to those of the

corresponding lipid internal standards before statistical analysis.

Partial least squares difference analysis (PLS-DA) was

performed by SIMCA-P software (Umetrics, Umeå, Sweden).

Variable importance in the projection (VIP) generated from

PLS-DAmodel was used for defining lipids that contribute to the

classification between groups. Nonparametric tests for

individual lipids were performed using the open-source

software MultiExperiment Viewer (MeV, version 4.9.0, Dana-

Farber Cancer Institute, MA) in Wilcoxon, Mann-Whitney test

mode with the significant level of p< 0.05 and false discovery rate

(FDR)< 0.05. Non-parametric test for total lipid content of each

lipid (sub)species was performed using the Statistical Package for

the Social Sciences (SPSS, version 19.0, SPSS Inc., USA) and the

significant level of was set at p< 0.05. Linear regression tests were

carried out to test for statistical associations of lipid (sub)species

levels with each of subtype of PreDM and T2DM, taking age, sex

and BMI as covariates. Binary logistic regression was used to

build the model based on the potential biomarkers. A receiver-

operating characteristic curve (ROC) was used to evaluate the

results of the regression analysis.
Results

The present work applied a two-step analysis strategy

including the discovery and validation steps. Figure 1 shows

the overall workflow of the study. A total of 481 participants

including 95 NC, 151 PreDM (78 IGT, 24 IFG, 49 IGT&IFG)

and 235 T2DM were taken as pseudotargeted lipidomics

discovery cohort, while 478 were as the independent external
Frontiers in Endocrinology 04
validation cohort containing 94 NC, 150 PreDM (86 IGT, 23

IFG, 41 IGT&IFG) and 234 T2DM.
Clinical characteristics
of the studied subjects

Table 1 summarizes the clinical characteristics of the studied

subjects in the discovery and validation sets in details. It was

found that the levels of several clinical characteristics related to

diabetes including age, BMI, HOMA-IR, Insulin, FPG, OGTT-

0.5h PG, OGTT-1h PG, OGTT-2h PG, OGTT-3h PG and

HbA1c were significantly increased in both PreDM and T2DM

groups as compared with those in NC group.
Serum lipidome profiling
of PreDM and T2DM

A total of 804 lipids were identified in 20 mL of the serum QC

sample, covering common 18 lipid (sub)species including FA, LPC,

PC, PE, DG, TG, etc. Typical chromatograms of lipids detected in

QC samples are shown in Supplementary Figures S1A, B in positive

and negative ion modes, respectively. To assess the data quality

throughout the analysis, the relative standard deviation (RSD) of the

normalized lipidome data was calculated for all QC samples

(Supplementary Figures S1C, D). It was observed that RSDs of

76% and 73% of lipids were less than 20% and RSDs of 89% and

88% of lipids were less than 30% in the discovery and validation
FIGURE 1

Systematic framework of this study.
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sets, respectively. Only lipids with RSDs less than 20% in QC

samples were included for the subsequent statistical data analysis.

First of all, orthogonal signal correction-PLS-DA (OSC-PLS-

DA) was performed to obtain the overall lipidomic profile

differences in PreDM versus NC and T2DM versus NC. In the

discovery set, both PreDM and T2DM groups were clearly

separated from the NC group (Supplementary Figures S2A, B),

implying that the lipid molecular characteristics of PreDM and

T2DM were different from those of NC. In addition, there was

also a clear trend of separation between PreDM and T2DM

(Supplementary Figure S2C), indicating that the lipidomic

pattern of T2DM was different from that of PreDM. Similar

findings were also obtained in the validation set (Supplementary

Figures S2D-F).
Differences in lipid (sub)species for
PreDM subtypes and T2DM

Differences at 18 lipid (sub)species levels were further

investigated among individuals with PreDM, T2DM and those

with normoglycemia in the discovery (Figure 2) and validation

sets (Supplementary Figure S3). The results showed distinctive

lipidome signatures for NC, each subtype of PreDM and T2DM

individuals. The statistical significance of differences with p

value< 0.05 in lipid (sub)species distributions among

normoglycemic, prediabetic and diabetic individuals were

determined using non-parametric test (Mann-Whitney test)

for both sets (Table 2). Significant increase in FA, Cer, SM,

lysoPE (LPE), PC, PE, phosphatidylinositol (PI), DG, TG, TG

with alkyl/alkenyl ether substituents (TG-O) and cholesterol

ester (CE) levels were found in patients with T2DM. FA, Cer,
Frontiers in Endocrinology 05
SM, PC, PC with alkyl/alkenyl ether substituents (PC-O), PE,

DG and TG levels were differentially distributed among
TABLE 1 Clinical characteristics of the studied subjects in the discovery and validation sets*.

Discovery Set Validation Set

NC PreDM T2DM NC PreDM T2DM

Sex (male/female) 40/55 53/98 115/120bb 36/58 57/93 119/115ab

Age (years) 38.5 ± 16.0 51.1 ± 14.6aaa 55.9 ± 11.4aaabb 38.8 ± 14.2 53.3 ± 12.8aaa 55.3 ± 12.3aaa

BMI (kg/cm2) 24.0 ± 4.6 24.5 ± 4.2 25.1 ± 3.4aab 23.6 ± 4.3 24.3 ± 3.8 24.8 ± 3.4aa

HOMA - b (%) 134.7 ± 126.7 99.4 ± 119.5aaa 68.2 ± 45.5aaabb 134.9 ± 101.8 95.1 ± 79.2aaa 71.8 ± 53.5aaabbb

HOMA - IR 2.3 ± 1.4 2.8 ± 2.5 4.3 ± 2.8aaabbb 2.3 ± 1.5 2.7 ± 1.5a 4.2 ± 3.0aaabbb

FPG (mmol/L) 5.1 ± 0.7 5.9 ± 0.7aaa 7.7 ± 1.6aaabbb 5.2 ± 0.5 5.9 ± 0.7aaa 7.4 ± 1.7aaabbb

Insulin (U/L) 10.2 ± 6.0 10.5 ± 9.0 12.8 ± 7.8aabbb 10.0 ± 6.2 10.3 ± 5.9 12.6 ± 8.3ab

0.5h-PG (mmol/L) 8.5 ± 1.5 10.5 ± 1.4aaa 12.8 ± 2.4aaabbb 8.6 ± 1.4 10.3 ± 1.6aaa 12.3 ± 2.3aaabbb

1h-PG (mmol/L) 8.4 ± 2.2 11.6 ± 2.1aaa 15.8 ± 3.3aaabbb 8.3 ± 1.9 11.5 ± 2.2aaa 15.5 ± 3.2aaabbb

2h-PG (mmol/L) 6.0 ± 1.1 8.9 ± 1.4aaa 15.3 ± 4.0aaabbb 6.1 ± 1.1 8.8 ± 1.4aaa 14.6 ± 4.0aaabbb

3h-PG (mmol/L) 4.6 ± 1.3 5.9 ± 1.9aaa 10.6 ± 4.3aaabbb 4.5 ± 1.3 5.7 ± 1.9aaa 10.1 ± 4.1aaabbb

HbA1c (%) 5.4 ± 0.4 5.8 ± 0.5aaa 6.8 ± 1.1aaabbb 5.4 ± 0.5 5.8 ± 0.4aaa 6.7 ± 1.0aaabbb

SBP (mmHg) 123.0 ± 14.5 131.9 ± 18.4aaa 134.2 ± 15.6aaabbb 120.5 ± 17.4 128.8 ± 17.2aa 134.9 ± 18.4aaabb

DBP (mmHg) 73.6 ± 10.2 79.5 ± 11.1aaa 80.8 ± 9.4aaa 75.1 ± 11.4 77.4 ± 9.1a 82.8 ± 11.1aaabbb
*: T2DM, PreDM vs. NC, a, p< 0.05; aa, p< 0.01; aaa, p< 0.001. T2DM vs. PreDM, b, p< 0.05; bb p< 0.01; bbb, p< 0.001. Data represent mean ± SD.
A

B

D

C

FIGURE 2

Mean normalized lipid (sub)species levels in T2DM, PreDM and
NC by (A) any of the three criteria for PreDM, (B) IGT, (C) IFG
and (D) IGT&IFG in the discovery set. Data are expressed as
means ± SEM.
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individuals with PreDM and individuals with normoglycaemia.

Among the subtypes of PreDM, SM, PC, PE, DG and TG were

associated for PreDM defined by IGT and IGT&IFG, while FA

and Cer were associated with prediabetic status defined by

IGT&IFG. Only PG level was identified to be significantly

associated with PreDM defined by IFG. After statistical

differences in lipid (sub)species levels by linear regression with

sex, age and BMI as covariates (Table 3), FA, Cer, SM, LPC with

alkyl/alkenyl ether substituents (LPC-O), PC, PE, PI, DG and

TG showed a significant association with T2DM, while FA and

PC were associated at p< 0.05 for all PreDM. In the subtypes of

PreDM, only PC significantly associated with prediabetic status

defined by IGT and IGT&IFG, and no lipid (sub)species show

significant changes for PreDM defined by IFG.
Potential lipid markers for PreDM and
T2DM screening

A PLS-DA model was established to find out the vital

variables to distinguish the PreDM from NC groups in the

discovery set. A total of 153 lipids with VIP > 1.0 were selected

for subsequent univariate analysis to determine whether they

were significantly altered in the PreDM group versus the NC

group (Figure 3A). In total, 43 lipids exhibited p< 0.05 and FDP<

0.05 (Figure 3A) and were regarded as the lipid biomarker
Frontiers in Endocrinology 06
candidates. To define the potential diagnostic lipid biomarkers

for PreDM, an independent validation cohort of 478 individuals

was used to evaluate the reliability of these 43 biomarker

candidates with the criteria of p< 0.05, FDR<0.05 and VIP >1.

Ultimately, 22 lipids were validated to be potential biomarkers

for PreDM (Figure 3A). To identify lipid predictors, odds ratios

(ORs) of developing PreDM per SD increase in these 22 lipid

species were further calculated by conditional logistic regression

models after adjusting for age, sex, BMI in the discovery and

validation sets, respectively. Two lipids (FA 20:2, PC 32:0)

showed significant associations with incident PreDM

(Supplementary Table S2). Subsequently, a binary logistic

regression analysis and an algorithm of the forward stepwise

method were employed to construct the optimal model using

these 2 potential lipid biomarkers. Finally, FA 20:2 and PC 32:0

were defined as an ideal biomarker panel 1 to distinguish

patients with PreDM from NC subjects (Figure 3B).

Similar analytical procedures mentioned above were carried

out to identify the ideal biomarker panel to distinguish patients

with T2DM from NC subjects. As shown in Figure 4A, 48 lipids

were defined to be biomarker candidates with p< 0.05, FDR<

0.05 and VIP > 1 in the both cohorts. Subsequently, ORs of

developing T2DM per SD increase in these 48 lipid species were

further calculated by conditional logistic regression models after

adjusting for age, sex and BMI in the discovery and validation

sets, respectively. Thirty-one lipids showed significant
TABLE 2 Statistical differences in lipid (sub)species levels by Mann-Whitney test.

Lipid (sub)
species

Discovery set Validation set

PreDM
(All)

PreDM
by IGT

PreDM
by IFG

PreDM by
IGT&IFG

T2DM PreDM
(All)

PreDM
by IGT

PreDM
by IFG

PreDM by
IGT&IFG

T2DM

n = 151 n = 78 n = 24 n = 49 n = 235 n = 150 n = 86 n = 23 n = 41 n = 234
p p p p p p p p p p

FA 0.003 0.001 0.776 < 0.001 < 0.001 0.017 0.069 0.442 0.011 < 0.001

Cer 0.007 0.011 0.483 0.024 < 0.001 0.023 0.147 0.891 0.001 < 0.001

HexCer 0.261 0.538 0.848 0.110 0.136 0.809 0.610 0.384 0.402 0.793

Hex2Cer 0.845 0.860 0.583 0.579 0.463 0.997 0.868 0.794 0.916 0.869

SM 0.001 0.005 0.252 0.005 < 0.001 0.001 0.049 0.022 < 0.001 < 0.001

LPC 0.941 0.767 0.801 0.675 0.721 0.621 0.973 0.593 0.089 0.695

LPC-O 0.468 0.942 0.357 0.329 0.989 0.425 0.538 0.671 0.188 0.452

LPE 0.151 0.470 0.199 0.142 0.022 0.084 0.244 0.696 0.027 0.008

PC 0.019 0.018 0.837 0.026 < 0.001 < 0.001 < 0.001 0.092 0.001 < 0.001

PC-O 0.029 0.04 0.151 0.208 0.016 0.029 0.203 0.062 0.030 0.058

PE < 0.001 < 0.001 0.216 0.018 < 0.001 0.001 0.003 0.451 0.003 < 0.001

PE-O 0.765 0.954 0.162 0.776 0.683 0.544 0.132 0.595 0.552 0.86

PG 0.016 0.028 0.023 0.305 < 0.001 0.327 0.817 0.032 0.160 0.064

PI 0.005 0.006 0.868 0.009 < 0.001 0.416 0.171 0.524 0.518 0.019

DG 0.003 0.009 0.751 0.003 < 0.001 0.013 0.006 0.131 0.004 < 0.001

TG 0.016 0.017 0.817 0.018 < 0.001 0.023 0.010 0.188 0.015 < 0.001

TG-O 0.121 0.077 0.791 0.344 < 0.001 0.294 0.542 0.484 0.031 0.001

CE 0.110 0.064 0.404 0.103 0.019 < 0.001 0.010 0.079 < 0.001 0.002
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associations with incident T2DM (Supplementary Table S3).

Additionally, a binary logistic regression analysis and an

algorithm of the forward stepwise method were performed to

build the optimal model using these 31 potential lipid

biomarkers. In the end, lipid molecules of FA 18:2, FA 20:2,

SM 32:1, SM 40:7, PC 38:7 and PC 40:6 were selected as the

biomarker panel 2 (Figure 4B) to distinguish patients with

T2DM from NC subjects.
Diagnostic power of potential lipid
markers for PreDM and T2DM

A binary logistic regression model was conducted to test the

diagnostic power of potential lipid biomarkers for PreDM and

T2DM. ROCs were plotted and the area under receiver-

operating characteristic curves (AUC) were obtained to

evaluate the accuracy of the diagnostic model based on lipid

biomarker candidates and/or clinical characteristics. The

diagnostic power of the panel 1 combined with FPG was

higher than that of FPG alone in discriminating PreDM from

NC in the discovery and validation sets (AUC = 0.850 vs. 0.821

and 0.810 vs. 0.797), respectively (Table 4). Furthermore, the

diagnostic accuracy of panel 1 combined with FPG (69.5% and
Frontiers in Endocrinology 07
66%) was much higher than FPG alone (48.3% and 42.7%) in

identifying patients with PreDM from NC in the discovery and

validation sets. Notably, the combination of lipid panel 1 with

age, sex, BMI and FPG exhibited more improvement in

diagnosing PreDM in the discovery and validation sets

(diagnostic accuracy = 77.3% and 73.2%), respectively (Table 4).

For the diagnosis of T2DM, the panel 2 combined with FPG

had a similar AUC to that of FPG (i.e., 0.986 and 0.964 versus

0.982 and 0.951) in the discovery and validation sets, respectively

(Table 4). However, this serum lipid panel 2 combined with FPG

showed better diagnostic accuracy when compared with FPG

(92.3% versus 68.1%, and 88.9% versus 59.0% in the discovery

and validation sets) in identifying patients with T2DM from NC.

Furthermore, the combination of this lipid panel 2 with age, sex,

BMI and FPG had an even more accuracy in diagnosing T2DM

(accuracy = 93.2% and 94.0% in the discovery and validation

sets) (Table 4). Additionally, similar results were obtained when

using the American Diabetes Association (ADA) criteria which

defines IFG as 5.6 to 6.9 mmol/L (Table 4).

To assess whether the panel 1 and the panel 2 have the ability

to identify the risk of diabetes, the risk probability of developing

into diabetes was calculated by an equation constructed from the

above two panels of 7 lipid markers (i.e., FA 18:2, FA 20:2, SM

32:1, SM 40:7, PC 32:0, PC 38:7 and PC 40:6), age, BMI and FPG.
TABLE 3 Statistical differences in lipid (sub)species levels by linear regression, with sex, age and BMI as covariates.

Lipid (sub)
species

Discovery set Validation set

PreDM
(All)

PreDM
by IGT

PreDM
by IFG

PreDM
by

IGT&IFG

T2DM PreDM
(All)

PreDM
by IGT

PreDM
by IFG

PreDM
by

IGT&IFG

T2DM

n = 151 n = 78 n = 24 n = 49 n = 235 n = 150 n = 86 n = 23 n = 41 n = 234

b P b P b P b P b P b P b P b P b P b P

FA 0.369 0.018 0.515 0.006 0.172 0.480 0.391 0.059 0.617 < 0.001 0.321 0.042 0.286 0.118 0.167 0.543 0.539 0.023 0.714 < 0.001

Cer 0.272 0.063 0.356 0.039 -0.008 0.973 0.300 0.121 0.615 < 0.001 0.248 0.119 0.231 0.188 -0.118 0.691 0.531 0.024 0.628 < 0.001

HexCer 0.125 0.395 0.084 0.628 -0.042 0.860 0.302 0.128 0.149 0.335 -0.054 0.725 -0.020 0.912 -0.218 0.423 0.161 0.462 -0.065 0.652

Hex2Cer 0.073 0.614 0.087 0.610 -0.135 0.579 0.213 0.273 0.210 0.163 0.042 0.782 0.103 0.564 0.110 0.661 0.055 0.801 0.026 0.862

SM 0.283 0.060 0.251 0.138 0.047 0.838 0.334 0.086 0.513 0.001 0.554 0.001 0.338 0.067 0.578 0.034 0.826 0.001 0.477 0.003

LPC -0.239 0.097 -0.350 0.054 -0.233 0.363 -0.247 0.228 -0.384 0.007 0.064 0.681 -0.101 0.554 0.015 0.953 0.117 0.582 -0.239 0.099

LPC-O -0.240 0.095 -0.328 0.070 -0.154 0.548 -0.376 0.087 -0.518 < 0.001 0.049 0.764 -0.067 0.695 -0.011 0.963 -0.014 0.946 -0.374 0.006

LPE -0.076 0.599 -0.204 0.255 0.065 0.788 -0.018 0.929 -0.013 0.933 0.119 0.462 0.020 0.909 0.098 0.699 0.167 0.434 0.228 0.144

PC 0.347 0.026 0.408 0.023 -0.024 0.920 0.392 0.050 0.385 0.014 0.571 0.001 0.555 0.004 0.574 0.038 0.634 0.007 0.586 0.001

PC-O 0.287 0.062 0.307 0.078 0.292 0.208 0.285 0.131 0.282 0.054 0.359 0.023 0.303 0.096 0.635 0.021 0.502 0.030 0.275 0.065

PE 0.162 0.291 0.202 0.145 -0.081 0.777 0.174 0.338 0.367 0.037 0.328 0.054 0.292 0.121 0.026 0.931 0.522 0.018 0.836 < 0.001

PE-O 0.066 0.645 0.056 0.738 0.312 0.179 0.066 0.725 0.206 0.164 -0.019 0.904 -0.150 0.433 0.236 0.415 0.232 0.321 0.090 0.552

PG 0.334 0.036 0.331 0.057 0.453 0.037 0.211 0.250 0.523 0.002 0.169 0.287 0.098 0.580 0.450 0.100 0.315 0.171 0.243 0.126

PI 0.220 0.156 0.152 0.368 -0.123 0.625 0.388 0.052 0.579 0.001 -0.001 0.997 -0.085 0.623 -0.015 0.955 0.207 0.336 0.318 0.045

DG 0.286 0.053 0.378 0.028 -0.329 0.312 0.303 0.117 0.526 0.003 0.122 0.457 0.196 0.286 -0.818 0.058 0.297 0.192 0.533 0.003

TG 0.190 0.188 0.266 0.115 -0.361 0.279 0.270 0.155 0.487 0.003 0.137 0.389 0.217 0.235 -0.642 0.110 0.291 0.190 0.508 0.004

TG-O 0.113 0.426 0.200 0.220 -0.033 0.895 0.156 0.397 0.491 0.021 0.007 0.962 0.023 0.896 -0.459 0.244 0.204 0.349 0.313 0.109

CE 0.209 0.148 0.299 0.078 -0.207 0.420 0.158 0.411 0.177 0.219 0.412 0.014 0.350 0.053 0.297 0.276 0.615 0.009 0.300 0.062
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A

B

FIGURE 3

(A) Venn diagram of significantly differential lipids based on NC and PreDM. (B) Histograms of potential lipid markers in NC and PreDM
specimens. Data are presented as mean ± SD.
A

B

FIGURE 4

(A) Venn diagram of significantly differential lipids based on NC and T2DM. (B) Histograms of potential lipid markers in NC and T2DM specimens.
Data are presented as mean ± SD.
Frontiers in Endocrinology frontiersin.org08

https://doi.org/10.3389/fendo.2022.966823
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Xuan et al. 10.3389/fendo.2022.966823
The constructed equation is displayed as follows:

Logit  P  =  T2DM½ � =  6:39 � 10−4 � FA  18 : 2½ � + 2:54 �10−3 � FA  20 : 2½ �
+8:60 �10−5 � SM  32 : 1½ � + 9:09�10−4 � SM  40 : 7½ � + 1:26 � 10−5

� PC  32 : 0½ � + 4:32 � 10−5 � PC  38 : 7½ � + 4:08 � 10−5 � PC  40 : 6½ � + 2:47

� FPG½ � + 8:74 � 10−2 � Age½ � + 9:55 � 10−2 � BMI½ � − 30:46

where [P = T2DM] is the risk probability of developing into

diabetes with this panel, and [FA 18:2], [FA 20:2], [SM 32:1],

[SM 40:7], [PC32:0], [PC 38:7] and [PC 40:6] mean the relative

concentrations of these lipid molecules. The units of [FPG],

[Age], [BMI] are mmol/L, year, kg/cm2, respectively. We

observed that the risk probability of developing into diabetes

gradually increased from the NC, PreDM, ultimately to T2DM

in the discovery set (Figure 5A). More interestingly, the risk

probability of developing into diabetes increases sequentially

from impaired glucose tolerance (IGT), impaired fasting glucose

(IFG) to IGT&IFG (Figure 5C). Similar results were obtained in

the validation set (Figures 5B, D).
Associations of the biomarker panels
and lipid (sub)species with HOMA-b
and HOMA-IR

As the identified biomarker panel consisting of FA 18:2, FA

20:2, SM 32:1, SM 40:7, PC 32:0, PC 38:7 and PC 40:6 was

confirmed to have high diagnostic power for PreDM and T2DM

in two independent cohorts, it may mean a major association of

these lipids with the pathogenesis of T2DM. To reveal the

possible mechanisms of the found lipid panels associated with

PreDM and T2DM risks, we first performed a Pearson

correlation analysis of these 7 lipids with HOMA-b and

HOMA-IR — the two common diabetes parameters. The

result showed that FA 18:2 and SM 40:7 displayed a significant
Frontiers in Endocrinology 09
negative correlation with HOMA-b (P< 0.05). To further reveal

the biological relevance of lipidomic profiles and insulin

sensitivity and/or b-cell function, we have also tested

associations between HOMA-b, HOMA-IR and distinctly

differential lipid (sub)species (e.g., FA, Cer, SM, PC, PE, DG,

and TG) among diabetic, prediabetic and normoglycemic

individuals. The outcome revealed that Cer had a significant

negative correlation with HOMA-b (P< 0.05), while PI, TG-O

and DG had a significant positive correlation with HOMA-IR

(P< 0.05).
Discussion

T2DM and PreDM is highly associated with metabolic

dysregulations, including hyperglycemia and hyperlipemia.

Multiple high-risk factors including age, genetic factors,

smoking, alcohol consumption, obesity, hyperglycemia,

hypertension, hyperlipidemia, etc. leading to diabetes have

been identified. However, these factors provide limited

information for understanding the metabolic disturbances in

T2DM and PreDM. Lipids are essential components of cell

membrane structure and key regulators of the cell cycle and

physiological processes. A comprehensive lipidomics study on

PreDM subtypes and T2DM can provide in-depth insights into

the onset and development of diabetes.

Our results show that there are distinct differences in

lipidome mainly related to metabolism of FA, Cer, SM, PC,

PE, DG, and TG among diabetic , prediabetic and

normoglycemic individuals. The degree of disorder in Cer, PE,

DG and TG was gradually increasing in the progression of

PreDM to T2DM. Adjusted for sex, age and BMI, we found

that the mean levels of FA and Cer in T2DM were still much

higher than those in normoglycemic individuals. It has been

previously reported that lipids involved in the fatty acid and
TABLE 4 AUC and accuracy for diagnosis of PreDM and T2DM in the discovery and validation sets*.

WHO criteria (6.1 ≤ FPG< 7.0 mmol/L) ADA criteria (5.6 ≤ FPG< 6.9 mmol/L)

Discovery cohort Validation cohort Discovery cohort Validation cohort

AUC (95% Cl) Accuracy AUC (95% Cl) Accuracy AUC (95% Cl) Accuracy AUC (95% Cl) Accuracy

Model for diagnosis of PreDM

FPG 0.821 (0.770-0.871) 48.3% 0.797 (0.743-0.852) 42.7% 0.901 (0.865-0.938) 73.4% 0.901 (0.863-0.938) 71.7%

FPG/Panel 1 0.850 (0.804-0.897) 69.5% 0.810 (0.756-0.863) 66.0% 0.907 (0.872-0.943) 76.9% 0.905 (0.869-0.941) 76.3%

Age/Sex/BMI/FPG/Panel 1 0.877 (0.834-0.919) 77.3% 0.866 (0.821-0.911) 73.2% 0.910 (0.875-0.945) 78.6% 0.923 (0.891-0.955) 71.7%

Model for diagnosis of T2DM

FPG 0.982 (0.971-0.993) 68.1% 0.951 (0.929-0.973) 59.0% 0.993 (0.987-1.000) 68.1% 0.975 (0.958-0.992) 59.0%

FPG/Panel 2 0.986 (0.977-0.995) 92.3% 0.964 (0.945-0.983) 88.9% 0.995 (0.989-1.000) 97.4% 0.978 (0.963-0.993) 94.4%

Age/Sex/BMI/FPG/Panel 2 0.992 (0.986-0.998) 93.2% 0.975 (0.960-0.991) 94.0% 0.997 (0.993-1.000) 97.0% 0.990 (0.982-0.998) 95.3%
fro
*: Panel 1, FA 20:2, PC 32:0; Panel 2, FA 18:2, FA 20:2, SM 32:1, SM 40:7, PC 38:7 and PC 40:6.
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sphingolipid metabolism pathways show different signatures

between normoglycemic individuals and those with T2DM

(25, 26). We also observed that the mean levels of FA and Cer

of individuals with PreDM were noticeably higher than those of

NC when adjusted for sex, age and BMI (Table 3). Cer is a

bioactive sphingolipid that is responsible for signaling

transmission and is closely related to b-cell function and

insulin sensitivity (27, 28). Consistent with these findings, the

level of circulating Cer was significantly and negatively

associated with the level of HOMA-b (P< 0.05). Interestingly,

all of these elevated Cer contain saturated FA chains, showing a

gradual upward trend as diabetes progresses (Table 5). We

speculated that the elevated Cer with saturated FA may be

more relevant with high insulin levels and HOMA-IR,

exacerbating the development from PreDM to diabetes as

compared with other types of Cer. However, the detailed

mechanism needs to be further studied.
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We also showed differences in lipidome between subtypes of

PreDM. For example, the mean levels of SM, PC, PE, DG and TG

of individuals with prediabetes defined by IGT or IGT&IFG were

much higher than those of normoglycemic individuals. And the

mean levels of FA and Cer of individuals with prediabetic status

defined by IGT&IFG were also higher than those of NC. However,

only PG level was identified to be significantly associated with

PreDM defined by IFG. When adjusted for sex, age and BMI, the

mean PC levels of individuals with PreDM defined by IGT and

IGT&IFG were also higher than normal, but the difference was

non-significant for IFG defined prediabetes, suggesting that PC

levels may interact differently with the metabolic drivers of fasting

and post-load glucose levels. PC are well known as the most

important components of the phospholipid bilayer of the cell

membrane. The imbalance of PC will greatly affect the

physicochemical properties of the cell membrane, leading to

cellular dysfunction (29). Previous studies have also found that
A B

DC

FIGURE 5

Line charts present the risk probability of developing into T2DM in the cohorts of the NC, PreDM and T2DM in the discovery (A) and validation
(B) sets based on addition of FA 18:2, FA 20:2, SM 32:1, SM 40:7, PC 32:0, PC 38:7, PC 40:6 to Age, BMI, and FPG; Line charts present the risk
probability of developing into T2DM in the cohorts of the NC, subgroups of PreDM including IGT to IFG to IFG&IGT, and T2DM in the discovery
(C) and validation (D) sets based on addition of FA 18:2, FA 20:2, SM 32:1, SM 40:7, PC 32:0, PC 38:7, PC 40:6 to Age, BMI, and FPG. aP< 0.05,
when T2DM and PreDM are compared with NC; bP< 0.05, when T2DM is compared with PreDM, cP< 0.05, when IGT, IFG and IGT&IFG is
compared with NC, dP< 0.05, when IFG, IGT&IFG and T2DM is compared with IGT, eP< 0.05, when IGT&IFG and T2DM is compared with IFG,
fP< 0.05, when T2DM is compared with IGT&IFG. Data represent mean with 95% CI.
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PC metabolism was abnormal in diabetes and its complications,

characterized by an elevation of PC (20). We deduced that the

significant increase in PC may be preceded by diabetes and

its complications.

Globally, the incidence of diabetes and prediabetes increases

year by year. Up to date, accurate and highly-efficient diagnosis of

T2DM and PreDM is only feasible by applying a 75 g OGTT (30).

However, an OGTT is a laborious, time-consuming and error-

prone process due to frequent blood sampling over 2 hours, which

is not suitable for a large-scale diabetes screening. The analysis of

FPG or HbA1c is commonly used for PreDM and T2DM

screening, but is prone to miss a considerable number of

affected individuals (8, 31). In the current study, we identified

and validated two lipid marker panels in distinguishing patients

with PreDM and T2DM from NC subjects with high diagnostic

power. The combination of the panel 1 with age, sex, BMI and

FPG significantly improved the diagnostic accuracy of broad-scale

PreDM screening (73.2% versus 42.7%). The combination of the

panel 2 with age, sex, BMI and FPG significantly improved the

diagnostic accuracy of broad-scale T2DM screening (94.0% versus

59.0%). It led to a striking decrease from > 50% and > 40%missed

diagnoses by using FPG down to 16.8% and 6% by applying lipid

panel + age + sex + BMI + FPG for PreDM and T2DM in the

validation set, respectively. These results demonstrated that the

two serum lipid panels had the potential to screen patients with

PreDM and T2DM from healthy populations without performing

an OGTT in a large-scale population.

Individuals with PreDM already experience a extent of

lipidome variations and are likely to develop overt T2DM (4).

It needs to better identify those at risk and to focus prevention

efforts on those who would benefit most. The combination of

panel 1 and panel 2 with age, BMI and FPG enabled to efficiently

evaluate the risk of developing into diabetes from each subtype

of PreDM. We found that although IGT, IFG as well as

IGT&IFG are all subtypes of PreDM, IFG and IGT&IFG are

more likely to develop into diabetes than IGT in our study.

Collectively, these findings are helpful to raise the awareness of

the risk of different subtypes of diabetes, and provide the

evidence for early intervention of these lipid markers to reduce

the progression from prediabetes to diabetes. However, our
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cross-sectional study has some limitations, the risk assessment

of these identified lipid markers for the development of diabetes

requires further validation in prospective cohorts.

Last but not least, all of the 7 lipids included in the panels 1 and

2 showed significant changes in serum levels from normal glucose

tolerant individuals to PreDM to manifest T2DM (Figures 3B, 4B).

Furthermore, we found that FA 18:2 and SM 40:7 from the panels

1 and 2 showed a significant negative correlation with HOMA-b
(P< 0.05). We speculated that increased FA 18:2 and SM 40:7 levels

may impair beta-cell function rather than insulin sensitivity and

thus contribute to (pre)diabetes, but further investigation needs to

be conducted in the future.
Conclusions

In the present study, a high-coverage pseudotargeted

lipidomics method was used to uncover distinctive lipidome

signatures between groups among normoglycemic, prediabetic

and diabetic individuals, including energy metabolism related

lipid (sub)species (FA, DG, TG) as previously reported, and

distinctive signatures in PC levels between different subtypes of

PreDM. The identified lipid markers significantly improved the

diagnostic accuracy of PreDM and T2DM when combined with

age, sex, BMI, and FPG, not only reducing FPG-false-negative

missed detections, but also effectively evaluating the risk of

developing into each subtype of PreDM and T2DM. Our

findings demonstrated that lipidomics data provide a high-

dimensional lipidome changing snapshot beyond the well-

known differences in dyslipidemia in clinic in the early

developmental stages of T2DM and improve insights to lipid

metabolic complexity and interindividual variations in PreDM

and T2DM.
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TABLE 5 Significantly changed ceramides in the T2DM and PreDM vs. NC.

Lipids Discovery set Validation set

PreDM vs. NC T2DM vs NC PreDM vs. NC T2DM vs NC

p FDR FC p FDR FC p FDR FC p FDR FC

Cer(d18:1/16:0) 3.78E-03 3.27E-02 1.08 2.98E-06 9.07E-06 1.16 4.45E-02 1.14E-01 1.05 3.63E-05 1.85E-04 1.12

Cer(d18:1/18:0) 9.19E-03 4.65E-02 1.14 1.12E-05 2.97E-05 1.22 7.32E-03 3.32E-02 1.15 6.73E-05 2.83E-04 1.20

Cer(d16:1/22:0) 3.78E-02 1.04E-01 1.09 7.43E-09 6.47E-08 1.29 5.91E-03 2.99E-02 1.19 2.70E-06 2.91E-05 1.33

Cer(d18:1/22:0) 2.55E-02 8.11E-02 1.06 7.56E-07 2.78E-06 1.19 1.60E-02 5.61E-02 1.10 9.29E-07 1.44E-05 1.21

Cer(d18:1/23:0) 5.14E-03 3.61E-02 1.09 2.42E-06 7.67E-06 1.18 4.86E-02 1.20E-01 1.09 6.88E-05 2.88E-04 1.19

Cer(d18:1/24:0) 4.66E-03 3.41E-02 1.08 3.93E-07 1.60E-06 1.19 3.13E-02 8.94E-02 1.10 3.43E-06 3.36E-05 1.20
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