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ABSTRACT

PAGER-CoV (http://discovery.informatics.uab.edu/
PAGER-CoV/) is a new web-based database that can
help biomedical researchers interpret coronavirus-
related functional genomic study results in the
context of curated knowledge of host viral infection,
inflammatory response, organ damage, and tissue
repair. The new database consists of 11 835 PAGs
(Pathways, Annotated gene-lists, or Gene signa-
tures) from 33 public data sources. Through the
web user interface, users can search by a query
gene or a query term and retrieve significantly
matched PAGs with all the curated information.
Users can navigate from a PAG of interest to other
related PAGs through either shared PAG-to-PAG
co-membership relationships or PAG-to-PAG regu-
latory relationships, totaling 19 996 993. Users can
also retrieve enriched PAGs from an input list of
COVID-19 functional study result genes, customize
the search data sources, and export all results for
subsequent offline data analysis. In a case study, we
performed a gene set enrichment analysis (GSEA)
of a COVID-19 RNA-seq data set from the Gene
Expression Omnibus database. Compared with
the results using the standard PAGER database,
PAGER-CoV allows for more sensitive matching
of known immune-related gene signatures. We
expect PAGER-CoV to be invaluable for biomedical
researchers to find molecular biology mecha-
nisms and tailored therapeutics to treat COVID-19
patients.

INTRODUCTION

With COVID-19 becoming a pandemic, COVID-related
biomedical research has generated a large amount of ge-
nomics and functional genomics data since January 2020
to characterize viral and host factors related to the disease
outcome (1–5). As of 10 August 2020, the GEO database
from the National Center for Biotechnological Informat-
ics has reported 18 available COVID-19 genomic data sets
in the GEO database (6) consisting of 73 samples using
‘COVID-19’ as the search term or 26 data sets consisting
of 736 samples using ‘SARS-CoV-2’ as the search term (7).
There is an urgent need to extract biological insights from
SARS-CoV-2-related RNA-seq, single-cell RNA-seq and
proteomic experimental results (2–5). Our ability to identify
SARS-CoV-2 related genes, RNAs, proteins, interactions,
functional network modules and pathways will help design
new and better diagnostic techniques, therapeutic targets,
or vaccines to fight against COVID-19 (7–9).

To perform functional genomics downstream analysis
such as the Gene Set Enrichment Analysis (GSEA) (10),
users today rely on general-purpose gene set databases, e.g.
MSigDB (11), KEGG (12), EnrichR (13) or PAGER (14).
However, while these databases generally contain ‘immune
response’ pathways or gene signatures based on prior stud-
ies of cancer, autoimmune disorders, or other infectious dis-
eases, they lack specific SARS-CoV-2 gene sets identified in
recent SARS-CoV-2 genomic or functional genomic stud-
ies. For example, as of 1 August 2020, a quick search of
‘COVID’ or ‘SARS-CoV-2’ in MSigDB as of this publica-
tion returns no results and a search of ‘SARS’ or ‘coro-
navirus’ returns only one result. Likewise, a search us-
ing these queries against KEGG (12) retrieves only two
COVID-19-related papers, while the same search against
EnrichR returns no results. Increasing research has led
to the development of several COVID-19 databases, e.g.
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the COVID-19 Drug and Gene Set Library (15) and the
Databases for the targeted COVID-19 therapeutics (16),
both of which were published in August 2020. However,
these databases selected content covering only an incom-
plete aspect of the COVID-19 biomedical research topics
and not all prior knowledge of immune response gene sig-
natures and pathways from related immunological research
studies. They also do not include computational analysis
tools to help users perform gene set enrichment analysis.
Therefore, to identify novel gene signatures and biological
pathways as genomic features in various tissues due to viral
infection remains an ad hoc exploratory process (17,18).

To provide the community with structured COVID-
19 dedicated gene set data and a specialized GSEA
search database, we developed PAGER-CoV (Pathways,
Annotated gene-lists, and Gene signatures Electronic
Repository for Corona Virus), accessible freely at http://
discovery.informatics.uab.edu/PAGER-CoV/. For the cur-
rent release of PAGER-CoV as of this publication, we com-
piled a total of 11 835 PAGs (Pathways, Annotated gene-
lists, and Gene signatures) from 33 data sources including
(i) expert-curated SARS-CoV-2 related PAGs from recently
published high-quality COVID-19 papers in LitCoVID
(19), (ii) curated COVID-19 pathways related to candidate
drug repositioning candidates from the PubChem database
(20) and (iii) selected immune response PAGs imported
from the PAGER 2.0 database (14). PAGER-CoV is de-
signed as a web database that compiles comprehensively cu-
rated gene sets on coronavirus-related infection, inflamma-
tion, organ damage, and repair from literature and public
databases. PAGER-CoV has an intuitive user interface, with
which users can perform both basic browsings of COVID-
19 related PAGs using either a medical term such as ‘cy-
tokine storm’ or an official gene symbol such as ‘ACE2’.
Also, PAGER-CoV allows users to perform GSEAanal-
ysis using a list of genes, e.g., those generated from a
differentially-expressed gene list from a COVID-19 RNA-
seq experiment, to quickly retrieve top-scoring PAGs that
relate closely to the input gene lists. By browsing through
retrieved PAGs, users can examine (i) virus or human gene
components of each PAG, (ii) each PAG’s curated descrip-
tion, (iii) the source literature or database reference of each
PAG, (iv) gene–gene interactions relationships among the
genes covered by the PAG, (v) each PAG’s pre-calculated
quality score (‘nCoCo Score’) that measures the PAG qual-
ity using topological intra-gene–gene interaction while con-
trolling for PAG size (14) and (vi) related PAGs based on
shared membership (m-type) or regulatory (r-type) PAG-
to-PAG relationships described in (14,21). To accommo-
date the rapidly accumulating SARS-CoV-2 functional ge-
nomic data, we also designed a ‘Content Contribution’ page
through which users can upload customized content for
their incorporation into future releases. PAGER-CoV users
can also download partial or full database content for ad-
vanced bioinformatics analysis elsewhere.

For the rest of this paper, we will describe how the
database content was constructed, how web users could in-
teract with the database, and why PAGER-CoV represents
an improvement over the general-purpose gene set database
for characterizing coronavirus-related functional genomics
data.

MATERIALS AND METHODS

PAGER-CoV schema design and data source overview

Figure 1 demonstrates the PAGER-CoV database schema,
which contains eleven entities (also called tables) and four-
teen relationships. The primary design was adapted from
our prior work on the PAGER 2.0 database (14). Briefly,
(i) the PAG table contains the general information of the
PAGs, including the PAGs’ IDs, names, and data sources
from which the PAGs are compiled, and PAG categories.
As in (14). Each PAG belongs to either one of three
categories: curated pathways/networks (P-type), curated
gene sets without pathway/network (A-type), computa-
tionally derived gene sets with little or no curation (G-
type), such as differentially expressed gene from an RNA-
seq data. (ii) The GENE tables contains the general infor-
mation of the genes, including names, official gene sym-
bols defined by NCBI (https://ftp.ncbi.nih.gov/gene/DATA/
GENE INFO/), and external IDs linking to other well-
known genetic databases. (iii) The PAG-GENE MEM-
BER table contains gene membership in each PAG. (iv)
GENE2GENE INT and GENE2GENE REG tables con-
tain the gene–gene interactions. Here, GENE2GENE INT
replicates the general protein–protein interactions in the
HAPPI v.2.0 database (22); while GENE2GENE REG
replicates gene–gene regulations, which are validated in-
vitro experiment, from the PAGER database (14). (v) The
PAG2PAG R-TYPE and PAG2PAG M-TYPE tables con-
tain two types of PAG-PAG relationships: regulatory and
co-membership. As in (14) the PAG-PAG regulatory re-
lationship reflects the PAG causal ordering inferred from
gene-to-gene regulations; while the co-membership rela-
tionship reveals signaling cross-talk between PAGs that
share signaling components within signal transduction
pathways, in response to external stimuli. Data in the
PAGER-CoV database is managed by the Oracle 19c rela-
tional database engine.

Data collection overview

We compiled data into the PAGER-CoV database based
on two general strategies: expert curation from literature
and automated database integration. The expert curation
involves manual data extraction from COVID-19 litera-
ture following by quality control, which is different from
our earlier high-throughput automated software-based cu-
ration method (14,21).

Curation of P-type PAGs from PubChem

To incorporate COVID-19 P-type PAGs, we performed
web scraping for pathways relating to COVID-19 pathways
on PubChem (https://pubchem.ncbi.nlm.nih.gov/#query=
covid-19&tab=pathway). We wrote a Python 3 script on
Anaconda distribution, which calls PubMed’s Common
Gateway Interface (CGI) (23) to download these PubChem
COVID-19 pathways and their genes. The script directly
made an API call to the PubMed website to get the most
up-to-date gene expression of COVID-19 Pathways and re-
freshes on an automated batch schedule that maintains the
data processing. Upon the downloaded pathway and gene

http://discovery.informatics.uab.edu/PAGER-CoV/
https://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/
https://pubchem.ncbi.nlm.nih.gov/#query=covid-19&tab=pathway


Nucleic Acids Research, 2021, Vol. 49, Database issue D591

A

B

B

A

GENE

GENE_IDP

TAX_ID

GENE_SYMBOL

LOCUS_TAG

SYNONYM

CHROMOSOME

MAP_LOCATIOM

DESCRIPTIUON

TYPE_OF_GENE

SYMBOL_FROM_NOM

FULLNAME

NOM_STATUS

MODIFICATION_DATE

GENE2GENE_INT

GENE_A_IDP,F

GENE_B_IDP,F

UNIPROT_A

SYM_A

UNIPROT_B

SYM_B

DATA_SOURCE

H_SCORE

RANK

PAG2PAG_r-type

PAG_A_IDP,F

PAG_B_IDP,F

PAG_A_REG_IN

PAG_A_REG_OUT

PAG_A_REG_OUT

PAG_B_REG_IN

PAG_B_REG_OUT

NUM_REG

P_VALUE

A

B

A

B

PAG

PAG_IDP

NAME

SIZE

ORGANISM

DESCRIPTION

LINK

REFERENCE

PUBMED_ID

CATEGORY

STATUS

CONTRIBUTOR

FLAG

COCO_SCORE

REF_OLD_ID

EXTERNAL_ID

RECORD_DATE

PAG2PAG_m-type

PAG_A_IDP,F

PAG_B_IDP,F

PAG_A_SIZE

PAG_B_SIZE

NUM_OLAP

SIMILARITY_SCORE

P_VALUE

PAG2GENE_MAP

PAG_IDP,F

GENE_IDP,F

GENE_SYM

SOURCE_PAG_MAP

SOURCEP,F

PAG_IDP,F

SOURCE

SOURCEP

DESCRIPTION

SOURCE_TYPE_PAG_MAP

PAG_TYPEP,F

PAG_IDP,F

PAG_TYPE

PAG_TYPEP

DESCRIPTION

GENE2GENE_REG

GENE_A_IDP,F

GENE_B_IDP,F

SYM_A

SYM_B

ORGANISM

SOURCE

SCORE

TF_DESCRIPTION

MECHANISM

ACTION

REFERENCE

Figure 1. PAGER-CoV Schema. The PAG table represents the central element of the database; SOURCE, SOURCE TYPE and GENE tables store addi-
tional information mapping to each PAG. There are 14 relationships among the 11 entities. The primary keys in the entities are underlined, bolded, and
marked with ‘P’. The foreign keys in the entities are marked with ‘F’.

information, the immunologist would curate, including re-
vising the pathway description and removing COVID irrel-
evant genes, each pathway.

Manual curation of A-Type PAGs

Four A-type PAGs representing computationally-predicted
repositioned drugs for COVID-19 were curated from (24).
Five A-Type PAGs were manually curated from Mouse
Genome Informatics Database (MGI), reflecting tissue or
cell development markers. For these PAGs from MGI, the
mouse gene IDs were converted to official human gene sym-
bols before being added to PAGER-CoV. An A-Type PAG
representing cytokine-storm-related genes were curated
from a review article (25). An A-Type PAG was generated
by processing raw single-cell sequencing data from https://
zenodo.org/record/3744141#.XuknTi2ZN24 and added to
PAGER-CoV. Additionally, an A-Type PAG representing
human exosome markers was curated from a review article
(26).

Literature curation of G-Type PAGs

Following comprehensive SARS-CoV-2 literature review,
manual curation of SARS-CoV-2/COVID-19 G-Type

PAGs from emerging SARS-CoV-2 literature or data source
was performed using the following methodology. First,
mapping of SARS-CoV-2 protein to SARS-CoV-2 gene in-
formation was manually curated from the NCBI GenBank
database using the SARS-CoV-2 sequencing information
(NCBI Reference Sequence: NC 045512.2) isolated from
patient zero at the Wuhan Seafood Market in Wuhan, CN
(27). SARS-CoV-2 gene symbols were mapped to the viral
protein product, e.g. ‘ORF1ab polyprotein’ mapped to the
ORF1ab gene. G-Type PAGs manually curated from this
study were given appropriate PAG Titles (e.g. ‘Viral gene
encoding SARS-CoV-2 Nsp1 viral protein’ for SARS-CoV-
2 protein nsp1), and annotated with additional information
in the ‘PAG Name’ field. Mature peptide sequence informa-
tion was matched to corresponding viral gene or open read-
ing frame product information, alongside corresponding
protein IDs. Annotation of the SARS-CoV-2 protein func-
tion, e.g. ‘Geneset description’ attribute, was taken from the
COVID-19 subset of the UniProtKB database (28). A total
of 33 PAGs (each containing a single viral gene member)
were compiled in this manner, representing the relationship
between viral proteins and the viral gene.

Following this step, PAGs relating to in-vitro-validated
SARS-CoV-2 viral protein to human host gene interactions
were curated from a study where the authors cloned and
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expressed SARS-CoV-2 viral proteins in-vitro and identi-
fied human host binding partners using affinity purification
mass spectrometry (29). A total of 88 PAGs were curated
from this study––71 PAGs representing the total viral-to-
human protein-protein binding partners identified, and 17
PAGs representing known druggable targets. In addition,
64 PAGs representing the significant cellular pathways dis-
rupted during SARS-CoV-2 infection were curated from
another proteomics study in which authors used human
cell-culture lines to examine proteomic changes in SARS-
CoV-2 infected human cell-lines over time (2).

Next, we curated repositioned drug target gene-sets relat-
ing to clinical drugs under investigation to treat COVID-19.
COVID-19 repositioned drugs, and their associated human
protein drug targets and ADME proteins, were manually
curated from the DrugBank database (30). Missing genes
from the DrugBank database were manually searched for in
literature and cited accordingly. PAGs with missing genes
were excluded from import into PAGER-CoV. From this
step, a total of 96 completed drug target/ADME-associated
G-Type PAGs were added to PAGER-CoV.

For the final step of manual curation, available raw se-
quencing data from newly emerging COVID-19 studies was
searched on the NCBI GEO database with keyword search
terms ‘COVID-19’ and ‘SARS-CoV-2’. Available datasets
were comprehensively evaluated by our curation team to
identify high-quality COVID-19-specific G-type PAGs and
were processed, analyzed, and curated into PAGER-CoV
by our curation team. To compare host-related immune re-
sponses in patients between SARS-CoV-2 and other res-
piratory viruses, raw RNA-sequencing data available from
clinical samples of non-SARS-CoV-2-related viral pneumo-
nia were also re-analyzed, processed, and added to PAGER-
CoV as two separate PAGs (31). Therefore, a total of ten
G-type PAGs were collected this way.

Integrating indirectly related PAGs from PAGER

Since SARS-CoV-2 is a new coronavirus that shares many
biological mechanisms of infection and immune response
profiles in tissues with other viral infections, in this step, we
seek to integrate ‘indirectly-related’ PAGs from the existing
gene set database into PAGER-CoV. We decided upon us-
ing our previously published PAGER 2.0 database, because
(i) PAGER 2.0 incorporates a wide array of heterogeneous
data sources for comprehensiveness (e.g. MSigDb, Bio-
Carta, DSigDb, as well as deprecated data sources such as
GeneSigDb), (ii) PAGER 2.0 contains thoroughly-curated
gene sets from validated, high-quality data sources with
additional annotations and (iii) PAGER 2.0 is structured
ease of comparison due to construction of quality mea-
sures for PAGs (i.e. nCoCo score). To import relevant PAGs
from PAGER 2.0 to PAGER-CoV, we used the following
search terms related to host viral infection, inflammatory
response, organ damage, and tissue repair: ‘viral’, ‘virus’,
‘infection’, ‘inflammation’, ‘immunity’, ‘tissue repair’, ‘or-
gan repair’, ‘inflammatory’, ‘Tcell’, ‘Bcell’, ‘T-cell’, ‘B-cell’,
‘monocyte’, ‘interferon’, ‘CD4’, ‘CD8’, ‘Treg’, ‘immune
response’, ‘toll like receptor’, ‘TLR’, ‘oxidative stress’,
‘interleukin’, ‘tissue damage’, ‘regeneration’, ‘vitamin D’,
‘chemokine’, ‘hypoxia’, ‘TNFalpha’, ‘NF-kappaB’, ‘LPS’,

‘cytokine’, ‘peripheral blood mononuclear cells’, ‘pbmc’,
‘leukocyte’, ‘granulocyte’, ‘neutrophil’, ‘monocyte’, ‘lym-
phoid’, ‘lymphocyte’, ‘vaccine’, ‘vaccination’, ‘dendritic’,
‘inflammatory’, ‘wound healing’, ‘CD34’, ‘interferon’, ‘in-
terleukin’, and ‘macrophage’. In total, 10 015 PAGs cover-
ing 18 907 genes were imported from PAGER 2.0.

PAG data quality control

To clean the data from the curated source, we created an au-
tomatic checking system to correct errors in curated data,
assigning the internal PAG identifiers and insert into the
PAGER-CoV database. We observed that the errors came
from three aspects, the first type of failure coming from cu-
ration, such as duplicate genes in a PAG member list or
invalid genes with no official gene names or Entrez IDs
that needed to be fixed. The second type of error is invalid
characters embedded in contents, such as u’\xa0’ was re-
placed by space, u’\u2030′ was replaced by ‘&quote’ etc.
The third type of error is the missing annotations in origi-
nal data, such as a few pathways in PubChem, which had
no taxonomy name. We pulled out these pathways, manu-
ally checked pathway description and information in origi-
nal sources, add added back the species. To assign new iden-
tifiers to PAGs in sequence, we characterized the type of
the PAGs using three-letter in the naming convention, re-
trieved the last number of existing type-specific PAGs in the
database, and assembled the new identifier. Before inserting
the records, our curator team validated and approved each
PAG individually

Additional PAG annotations

The quality of PAGs is measured by a normalized statis-
tically significant coverage of gene-gene functional corre-
lations in gene-pairs or gene-triplets, named ‘normalized
Cohesion Coefficient score (nCoCo)’ in PAGER 2.0 (14).
The quality of PAGs is measured by a normalized statis-
tically significant coverage of gene-to-gene functional cor-
relations in gene-pairs or gene-triplets, named ‘normalized
Cohesion Coefficient score (nCoCo)’ in PAGER 2.0. The
brute force way of measuring the quality of PAGs is to re-
port a total count of all the interactions for each PAG. How-
ever, it does not provide measurements against the back-
ground, and such count can vary dramatically when other
non-quality factors change, e.g. increase of PAG size. There-
fore, we introduce nCoCo score to address the following
problems:

1. In nCoCo score, we measure not only the count of ‘bi-
nary interactions’ but also ‘interaction triangles’, the lat-
ter of which is a measure of the existence of network
modules.

2. In nCoCo score, we convert the count of interactions and
interaction triangles into a statistic against the count in
the background distribution from randomly generated
PAGs. Therefore, the reported statistic carries more sta-
tistical significance than a simple count.

3. In nCoCo score, we perform additional size normaliza-
tions (method described in PAGER 2.0) to make the den-
sity score of PAGs at varying sizes comparable by elimi-
nating the score’s size bias.



Nucleic Acids Research, 2021, Vol. 49, Database issue D593

The gene prioritization within PAGs is based on gene
weight calculated in the PAG, called ’relevant protein score
(RP-score)’ was described in PAGER 2.0 (14).

To compute the nCoCo scores, first, we applied the
HAPPI-2 database to recalculate the CoI and CoT scores
using the hypergeometric cumulative distribution function
(CDF). Second, we build the multi-box plots using the bins
with log2-scale of PAG gene sizes and used the median to
represent the value in each bin and applied the polynomial
function to find the regression of the CoI score vs PAG size.

CoI (p) = Sz(p)2 ∗ a + Sz (p) ∗ b (1)

where Sz(p) is the size of the PAG p, and the CoI(p) is the
CoI score of the PAG P.

Third, we calculated nCoCo score based on the formula:

nCoI (p) = med (P AGn)

∗CoI (p) /
[

Sz (p) ∗ a + Sz(p)2 ∗ b
]

(2)

where med(P AGn) is the median gene size of all PAGs. a
and b are coefficients.

Fourth, the nCoCo score is calculated by the sum of the
normalized interactive score nCoI and normalized triangle
score nCoT:

nCoCo (p) = nCoI (p) + nCoT (p) (3)

To find an optimal nCoCo score cutoff, we created a neg-
ative set of PAGs by substituting gene members in ‘true’
PAGs with gene members randomly generated from the
PAGER-CoV database. After calculating the nCoCo score
of the negative PAGs, we chose the optimal nCoCo score
cutoff that maximized the product of sensitivity (true posi-
tives over true cases) and specificity (the true negatives over
negative cases).

PAGER-CoV database web user interface

The web user interface implemented the following essential
functionalities for biomedical researchers and bioinformati-
cians: (i) Basic Search. On the main home page, users can
search the database using a medical term or a gene symbol
and retrieve a list of PAGs. The retrieved PAGs can be re-
fined, explored on the web, or downloaded onto the user’s
computer for further analysis. (ii) Downstream analysis. On
the ‘Analyze’ page, users can perform GSEA with an input
gene list. Users can customize the statistical parameters ac-
cording to the user’s specific experimental requirements. (iii)
Contribute content. On the ‘Contribute’ page, a user can up-
load their curated gene sets and pathways for review and
subsequent consideration for inclusion into the PAGER-
CoV database. The submission file could be either differ-
ential gene expression format (DEG) or literature-curation
format (LIT), as described on the ‘Contribute’ page. After
submission, the contributed data will be checked for qual-
ity and eventually integrated into the PAGER-CoV after
passing quality checks. (iv) Download the database. On the
‘Download’ page, users can download different database
versions. This feature allows users to perform independent
GSEA analysis. PAGER-CoV is free and open to all users,
and there is no login requirement.

The PAGER-CoV website features an improved user in-
terface and user-upload schema over the related PAGER
2.0 database, with a more intuitive user-side browsing, anal-
ysis, and submission experience (Figure 3). To improve
user navigations, we restructured the PAGER web inter-
face to have the ‘Basic Search’ function as the feature-in-
focus on the PAGER-CoV home page. We also streamlined
the navigation from one PAG to related PAGs, by adding
a ‘related PAGs’ box to the right of each PAG’s summary
content.

Data processing related to the case study

To show that PAGER-CoV improves COVID-19 func-
tional genomics analysis, we compared the GSEA (10)
results between two conditions: one using PAGER 2.0 as
the reference pathway/gene set collection, the other using
PAGER-CoV as the reference pathway/gene set collection.
We selected the ‘Transcriptional response to SARS-CoV-2
infection’ from GEO data series (ID: GSE147507) (32) for
the case study. In the step of data filtering, all four control
samples from the ‘NHBE Mock’ and three ‘NHBE CoV’
experimental samples were processed in parallel using
the DESeq2 (33) pipeline. Then, we performed standard
GSEA analysis (10) by comparing the results using the
PAGER-CoV database (release date: 3 August 2020)
and the results using the standard PAGER 2.0 database
(14). For the GSEA analysis, the GSE147507 down-
loadable files for normalized gene expression matrix and
the sample label file ‘GSE147507.all.label.gsea.cls’ were
used (Supplemental File S1). GSEA chip platform choice
‘ftp.broadinstitute.org://pub/gsea/annotations versioned/
Human Symbol with Remapping MSigDB.v7.1.chip’
were used, whereas all other parameters were set to GSEA
software (https://www.gsea-msigdb.org/gsea/downloads.
jsp) default. For candidate PAGs for GSEA analysis, we
used only PAGs with gene sizes between 15 and 500. After
filtering, 18 136 candidate PAGs in PAGER 2.0 and 4 612
candidate PAGs in PAGER-CoV remained.

RESULTS

PAGER-CoV data compilation and data quality assessment

In PAGER-CoV, we compiled a total of 11 835 PAGs from
33 data sources. Table 1 shows a summary of PAG counts
categorized by the data source. There are 13 data sources
covering 271 PAGs manually curated from SARS-CoV-2 lit-
erature or relevant databases, 1 549 PAGs web-scraped from
the COVID-19 PubChem database, and 19 PAGER 2.0-
inherited data sources comprising 10 015 viral and immune-
related PAGs inherited from PAGER 2.0.

Figure 2 shows the nCoCo score distribution for all the
PAGs (P-type, A-type, and G-type) distributed over differ-
ent score intervals. Since nCoCo score is a measure of PAG
data curation quality (see the Materials and Methods sec-
tion for details), we can compare the relative distribution of
PAGs over nCoCo score intervals to determine how biologi-
cally ‘informative’ these PAGs can be. The quality score dis-
tribution result indicates that P-type PAGs in PAGER-CoV
has the highest quality (nCoCo score mean = 8 126), fol-
lowed by A-type PAGs as the second-highest (nCoCo score

ftp.broadinstitute.org://pub/gsea/annotations_versioned/Human_Symbol_with_Remapping_MSigDB.v7.1.chip
https://www.gsea-msigdb.org/gsea/downloads.jsp
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Table 1. PAGER-CoV PAG count and Data Sources. PAGER-CoV con-
sists of three major source categories: (i) curated PAGs inherited from
the original PAGER database (PAGER); (ii) PAGs curated from the Pub-
Chem COVID-19 Pathway database (PubChem); (iii) PAGs manually-
curated from selected SARS-CoV-2-related literature or database resource
(curation)

Category Source Count

PAGER-BioCarta 105
PAGER-DSigDB 49
PAGER-GAD 70
PAGER-GOA 1888
PAGER-GOA EXCL 1030
PAGER-GTEx 2
PAGER-GWAS Catalog 79
PAGER-GeneSigDB 390
PAGER-KEGG 38

PAGER (ver. 2.0) PAGER-MSigDB 6139 10015
PAGER-NCI-Nature Curated 13
PAGER-NGS Catalog 1
PAGER-Pfam 82
PAGER-PharmGKB 4
PAGER-PheWAS 57
PAGER-Protein Lounge 30
PAGER-Reactome 25
PAGER-Spike 3
PAGER-WikiPathway 10

PubChem PubChem pathway 1549 1549

Am J Respir Crit Care Med 2
Cell 5
Cell Host and Microbe 1
Drugbank 96
GenBank (gene mapping), COVID-19
UniProt (for Geneset Description)

33

Microbiology and Molecular Biology
Reviews

1

Curation Mouse Genome Informatics Database 5 271
Nature 111
Nature Cell Discovery 4
Nature Medicine 1
The Annual Review of Cell and
Developmental Biology

1

Zenodo 1
bioRxiv 10

Total 11835

mean = 338), and followed by G-type PAGs as the lowest
(nCoCo score mean = 155). However, the majority (92%) of
all PAGs has a quality no less than the quality score cutoff
( = 1).

PAGER-CoV web-based search interface

Figure 3A-F demonstrate a typical searching session in
PAGER-CoV. In Figure 3A (basic search), the user may en-
ter a search term, such as ‘spike protein’, ‘cytokine storm’,
‘ACE2’, or ‘TMPRSS’. Figure 3B shows the basic search
result. Here, the ‘ACE2’ result contains 53 PAGs; 49 PAGs
contain ACE2 genes (matched by ‘member’), and 2 PAGs
have ‘ACE2’ in the PAG description (matched by PAG de-
scription). Figure 3C shows the list of PAGs, sorted by the
PAG size, when ‘match by member’ is selected. Selecting
‘batched by PAG description’ shows a similar result. Here,
the user may also filter the PAG list by PAG Type, Source,
and Organism. Figure 3D shows the PAG information when

a specific PAG is selected. From here, the user can view
which genes the PAG contains (Figure 3E), how important
each gene is in the PAG (quantified and sorted by the RP-
score), and the relationship with other PAGs (Figure 3F).
By using PAGER-CoV as a comprehensive database for in-
teractive browsing, researchers can quickly gather gene set
information, identify related literature, and generate new
hypotheses.

PAGER-CoV reveals insights of how bronchoalveolar im-
mune cells response to COVID-19

Since the lung is among the most common organ attacked
by COVID-19, there have been many studies investigating
the lung response to COVID-19. Therefore, we are inter-
ested in analyzing the single-cell transcriptomic data un-
der COVID-19 using PAGER-CoV. Here, we processed
raw single-cell RNA-seq data from the GEO database
GSE145926 data set. The data set were collected from
clinical bronchoalveolar lavage fluid samples from mod-
erate vs. severe cases of COVID-19 (34). The significant
differentially-expressed gene list that was computed us-
ing the Seurat pipeline (35) was used in the PAGER-CoV
GSEA analysis. PAGER-CoV provided 692 PAGs (Fig-
ure 4A–C) with the default cut-offs as follows: ‘type of
PAG‘ is set to ‘all’, ‘size of genes in PAGs’ ranges from
2 to 5 000, ‘similarity score’ ≥ 0.05, ‘number of overlap-
ping genes’ ≥ 1, ‘nCoCo’ ≥ 0, ‘P-value’ ≤ 0.05, ‘False Dis-
covery Rate’-adjusted P-value (FDR) ≤ 0.05, ‘species’ is
set to ‘all’, and all ‘data sources’ are selected. Among the
top ten results retrieved by FDR, all are directly related
to coronavirus infections, eight of which are manual cu-
rated PAGs. Interestingly, two (MAX000504, MAX000342)
of the ten top-ranked PAGs were imported from PAGER
from the same study (36), which are up-regulated and down-
regulated gene sets in response to Epstein-Barr Virus (EBV)
infection in individuals with nasopharyngeal carcinoma ep-
ithelial cancer (Figure 4D). Other neighboring PAGs related
to MAX000504 may also have major roles in the COVID-19
immune response. For example, GEX000051, a top-ranked
downstream regulatory PAG for MAX000504, was shown
as derived from a ‘genome-wide association study of ma-
ternal cytomegalovirus infection and schizophrenia’ (37).
This molecular gene set evidence confirms the potential
linkage between COVID-19 and the psychiatric and neuro-
logical effects of SARS-CoV-2 infected patients, which re-
ported the clinical observation of COVID-19 Psychosis in
many patients (38) (39). Meanwhile, although MAX000342
is indirectly related to this study, the 277 down-regulated
genes identified from Epstein-Barr Virus (EBV)-associated
nasopharyngeal carcinoma epithelial cancer tissue samples
contain the host MHC Class I HLA gene family members
(40). Susceptibility to COVID-19 severity based on immune
MHC haplotype is an area being actively investigated (41)
and supported by increasing evidence (42). Other down-
stream regulatory PAGs to MAX000342 are reported by
PAGER-CoV (Figure 4E). Users can download the search
results and explore PAGs further with their own desktop
computers.
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Figure 2. PAGER-CoV Data Quality PAGER-CoV data quality distribution; nCoCo score distribution breakdown by PAG-type. (A) nCoCo score dis-
tribution of the three PAG types. Dashed line represents the optimal nCoCo score cutoff (= 1) with sensitivity = 0.76 and specificity = 0.92. (B) P-type
PAG nCoCo score distribution grouped by sources. The ‘Others’ category includes ‘PAGER-NCI-Nature Curated’, ‘PAGER-WikiPathway’, ‘PAGER-
PharmGKB’ and ‘PAGER-Spike’. (C) A-type PAG nCoCo score distribution grouped by sources. The ‘Others’ category includes ‘Nature’, ‘Nature Cell
Discovery’, ‘The Annual Review of Cell and Developmental Biology’, ‘Microbiology and Molecular Biology Reviews’, ‘Drugbank’, ‘Zenodo’, ’Mouse
Genome Informatics Database’, ‘bioRxiv’, ‘PAGER-Pfam’ and ‘PAGER-GTEx’. (D) G-type PAG nCoCo score distribution grouped by source. The ‘Oth-
ers’ category includes ‘Am J Respir Crit Care Med’, ‘PAGER-GAD’, ‘Nature Medicine’, ‘Cell’, ‘Cell Host and Microbe’ and ‘PAGER-NGS Catalog’.

PAGER-CoV enhances GSEA analysis in COVID-19 spe-
cific study

Using the differentially express genes in GSE147507 dataset
as the input, our results show that GSEA supported by
PAGER-CoV is better than the same analysis supported
by general-purpose gene set databases such as PAGER 2.0
(Figure 5, Supplemental File S2). Between 396 enriched
PAGs from the PAGER-CoV-GSEA results and 256 en-
riched PAGs from the PAGER-GSEA results, there are 188
‘Set C’ shared PAGs (FDR q-value ≤ .05). In PAGER-CoV-
GSEA, there are 208 unique PAGs (‘Set B’), consisting of
165 PAGs derived from the PAGER-imported subset (‘Set
B1’) and 43 PAGs derived from a newly curated subset only
in PAGER-CoV (‘Set B2’). We manually examined the 165
Set B1 PAGs and found all of them to be of high biological
relevance to SARS-CoV-2, including 7 already confirmed
by additional SARS-CoV-2 literature. In PAGER-GSEA,
on the other hand, contains only 68 PAGs uniquely iden-
tified in the PAGER 2.0 database (‘Set A2’) and 0 PAGs
derived from imported PAGER-CoV (‘Set A1’). We manu-
ally examined the 68 Set A2 PAGs and found only 9 to be of
high biological relevance to SARS-CoV-2, 45 to be of possi-
ble biological relevance, and 14 to be of little direct biolog-
ical significance. This comparison results show that using
PAGER-CoV for GSEA can not only pick up newly curated

PAGs but also help improve the sensitivity of detection for
existing imported PAGs, i.e., B1 PAGs, due to errors of the
GSEA FDR estimations introduced by the overall inflated
candidate PAG count of PAGER 2.0 for GSEA evaluations
(PAGER 2.0: 18 136 candidate PAGs vs PAGER-CoV: 4 612
candidate PAGs).

In the original study of GSE147507, the authors reported
a unique transcriptional response of cells infected with
SARS-CoV-2 unique from other known respiratory viruses,
namely, a markedly subdued interferon-I and -III expres-
sion as well as higher chemokine expression (most notably
IL-6). Our GSEA PAGER-CoV-GSEA case study results
are consistent with these findings because we observed sig-
nificant enrichment of the PAGs relating to 1) cytokine re-
sponse and inflammation (WIG000864, WIG001072 and
WIG000005), in Set B2, 2) NF-kB signaling (WIG000733
in Set B1; FEX000120 in Set C), and 3) other immune path-
ways upstream of IL-6 expression (WIG001050 in Set B2;
WAG000055 in Set C; and FAX000905 in set B1). Interest-
ingly, three PAGs of high significance relating to the ner-
vous system (WIG000823, FEX000140, WIG000048) from
three unique data sources (WikiPathways, GeneSigDB, Re-
actome) were enriched in the PAGER-CoV-GSEA, suggest-
ing strong biomolecular mechanistic links between COVID-
19 and damage to the nervous system as reported by (43).
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Figure 3. PAGER-CoV Web Interface and Basic Search Case Study. (A) Homepage of PAGER-CoV webserver. (B) The summary page of retrieved PAGs
using the keyword ‘ACE2’ (C) The page of retrieved PAG results after clicking on the ‘matched with PAG’s member – 49’. The left panel is ‘query term
matches,’ which allows users to filter the PAGs based on the PAG attributes. The right panel is the itemized overview of retrieved PAGs. (D) The PAG detail
page after tapping a PAG name. The PAG summary on the left side contains the PAG detailed information with outsourcing links. The related PAGs on
the right side provides the top-ranked PAGs evaluated by m-type and r-type relationship scores. The full ranked PAG list can be retrieved by clicking on
the ‘more. . . ’ (E) The GENE detail page after clicking on a ‘gene symbol’ (e.g. SMAD3). The gene summary composites the gene detailed information
and an NCBI link. (F) The page of ‘Related PAGs’ retrieved result. There are multiple PAG attributes allowing users to filter out uninteresting PAGs.
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Figure 4. PAGER-CoV Analysis Case Study and User-Submitted PAGs. (A) An example of the input gene list ‘differentially expressed gene list from
COVID-19 clinical samples mild vs. severe’. (B) The page of retrieved PAG results. (C) M-type and r-type PAG-PAG relationship information below the
‘Retrieved PAG results’ page. (D) PAG detail page after tapping on a PAG ID. (E) Example of retrieved top-ranked neighboring PAGs ‘Genes down-
regulated in nasopharyngeal carcinoma relative to the normal tissue.’ of the PAG ‘Genes up-regulated in nasopharyngeal carcinoma (NPC) compared to
the normal tissue’.
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PAGER
PAGER-CoV

A: 68 B: 208C: 188

A1 A2

0 68

B1 B2

165 43

A B

Set Description Count

A Total PAGs uniquely enriched in PAGER-GSEA (i.e.  not 
found or not significant in PAGER-CoV-GSEA) 68

A1
PAGs enriched in PAGER-GSEA (FDR-value < .05); 

present in PAGER-CoV but not significantly enriched in 
PAGER-CoV-GSEA

0

A2 PAGs uniquely enriched in PAGER-GSEA (FDR-value < 
.05) and not found in PAGER-CoV 68

B Total PAGs uniquely enriched in PAGER-CoV-GSEA (i.e. 
not enriched or not found in PAGER-GSEA) 208

B1
PAGs enriched in PAGER-CoV GSEA (PAGER-CoV

FDR-value < .05); present in PAGER but not significantly 
enriched in PAGER-GSEA (FDR-value > .05)

165

B2 PAGs uniquely enriched in PAGER-CoV-GSEA (FDR-
value < .05) but not found in PAGER 43

C Total PAGs significantly enriched (FDR-value < .05)  in 
both PAGER and PAGER-CoV GSEA 188

Figure 5. PAGER-CoV versus PAGER-original Comparison. (A) Venn diagram of PAGER-CoV GSEA versus PAGER-GSEA analysis results. (B) Tabular
breakdown of Sets A and B. Further detailed annotations of Set A, Set B, Set C, Set A1, Set A2, Set B1 and Set B2 can be viewed in Supplementary Table
S2.

DISCUSSION

In this work, we describe the development of a comprehen-
sive coronavirus-related gene set database for functional ge-
nomic downstream studies. With the continued influx of ge-
nomic and functional data, PAGER-CoV database content
will need to be periodically updated. We expect the update
will primarily be based on the framework described earlier
to include both manual curated PAGs from literature and
automatically imported PAGs from gene set databases with
refined search terms. To make the database truly useful, fu-
ture developers must consider the delicate balance between
comprehensive coverage, the data quality, and potential im-
pact on GSEA analysis recall performance among candi-
date PAGs. While we designed the database web user inter-
face to be minimalistic for ease of navigation, we plan to
introduce additional database features, e.g., reference data
source links, additional PAG curation, and links to applica-
tions for network visual analytics, as this resource grows it’s
user base.

DATA AVAILABILITY

PAGER-CoV is freely available to the public without regis-
tration or login requirements (http://discovery.informatics.
uab.edu/PAGER-CoV/). The data is available for download
based on the agreement of citing this work while using the
data from PAGER-CoV website.
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